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Abstract—We propose an architecture for reconstructing depth
images from raw photon count data. The architecture uses very
sparse illumination patterns, making it not only computationally
efficient, but due to the significant reduction in illumination
density, also low power. The main idea is to apply compressive
sensing (CS) techniques to block (or patch) regions in the
array, which results in improved reconstruction performance,
fast concurrent processing, and scalable spatial resolution. Using
real and simulated arrayed LiDAR data, our experiments show
that the proposed framework achieves excellent depth resolution
for a wide range of operating distances and outperforms previous
algorithms for depth reconstruction from photon count data
in both accuracy and computational complexity. This enables
eye-safe reconstruction of high-resolution depth maps at high
frame rates, with reduced power and memory requirements. It
is possible to sample and reconstruct a depth map in just 12 ms,
enabling real-time applications at frame rates above 80 Hz.

Index Terms—Compressive Sensing, LiDAR Imaging, 3D Im-
age Reconstruction, Parallelization

I. INTRODUCTION

THE next generation of autonomous robots, including self-
driving cars, require safe and fast depth perception for

reliable navigation in complex environments. Active sensors,
in particular light detection and ranging (LiDAR) systems,
are critical to achieving this task. LiDAR sensors operate by
measuring the time it takes for a light wave to travel to a
specific object and back. This round-trip, time-of-flight (ToF),
is proportional to the distance of the object in relation to the
speed of light. The most common forms of LiDAR systems
mechanically scan a coherent light source in discrete steps.
They provide accurate distance measurements at short range
and across hundreds of metres [1], [2]. The mechanical nature
of current LiDAR scanners and the requirement for high-
precision calibration, however, makes their manufacturing
process very expensive.

This has recently motivated the development of solid-state
ToF arrays [3]–[5], which are smaller, have no moving parts,
and can be mass produced. While solid-state LiDAR arrays
have many more sensing elements than mechanical LiDARs,
increasing the resolution of the acquired depth image requires
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a proportional increase in illumination and, thereby, of the
emitted laser power. This is particularly important in scenar-
ios with large fields-of-view (FoV), non-ideal reflectors, and
complex scenes that are common for fully autonomous driving
systems. Increasing resolution (amount of data sampled) and
the illumination (emitted power), however, not only require
complex processing schemes, which can lead to prohibitive
operation times in dynamic applications, but also pose severe
eye-safety challenges [6].

To overcome these limitations and to reduce the illumination
density in LiDARs, [7]–[9] proposed the use of compressive
sensing (CS). By leveraging structured illumination patterns,
CS allows the acquisition of data in compressed form, but
requires the solution of a complex optimization problem to
reconstruct it, which has been a challenge to achieve in real-
time or at video frame rates. For this reason, the scenarios
considered in prior work are often limited to simple short range
scenes not representative of real-world scenarios encountered
by autonomous systems.

Problem Statement. The current limitations of solid-state
LiDAR arrays motivate the problem that we aim to solve: to
design a LiDAR system that reconstructs high-resolution depth
images, requires low illumination power, and is fast enough
to reconstruct images in real-time.

Our strategy to address this problem is to apply CS to two
quantitative compressive measurements obtained directly from
LiDAR data: the photon count and the depth-sum.

To enable the real-time operation of the resulting system,
we propose to sense the scene in a block fashion. That is,
we divide the scene into small blocks (or patches), each of
which is sensed independently and concurrently. Such a block
sensing scheme then enables us to either reconstruct the blocks
independently (and in parallel) or to devise an heuristic that
computes a good estimate of the scene.

Contributions. We summarize our contributions as follows:
• We propose a block model for depth imaging and an asso-

ciated CS reconstruction framework for photon detector
arrays with random sparse sampling patterns.

• We formulate the depth reconstruction problem under a
rigorous framework and propose an algorithm that, in
contrast with previous work, imposes no constraints on
the content of the scene, imaging range, or application
scenario.

• We present a de-blocking scheme for very high compres-
sion rates and low illumination density for sparse LiDAR
imaging.

• We show that smaller block sizes enable independent par-
allel block compressive depth imaging at higher fidelity
than prior work with processing times of the order of 10
ms for 128× 128 depth maps.
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Our framework applies to sparsely sampled full histogram
pixel data, an important distinction from single or few valued
pixel data and normal intensity imaging. Part of this work was
presented in [10], and the current paper extends it in several
ways. We present a scalable system architecture capable of
real-time depth reconstruction with greatly reduced memory
and laser power requirements. Laser power per illumination
can be reduced for eye safety or increased to improve recon-
struction quality with adjustable pattern density. We validate
our sparsity assumptions experimentally for different sparsity
models, namely Daubechies wavelets (DWT), discrete cosine
transform (DCT), and total-variation (TV) and elaborate the
full signal and system models to the independent array block-
ing scheme for computationally efficient depth reconstruction.
We expand our framework to leverage full-frame TV sparsity
to reduce blocking artefacts in ultra low compression cases and
propose a discrete reconstruction scheme. Greatly extended
experiments assess the performance of the proposed parallel
framework in much more detail running on a multi-core CPU.

Outline. The remainder of the paper is organized as follows.
In Section II, we discuss related work on CS applied to ToF
depth imaging, as well as on block CS applied to reducing
computational cost. Section III provides background on the
signal model and on the CS formulation of the problem.
Section IV describes the proposed system architecture and
formulates the block scheme applied to compressive depth re-
covery. Finally, in Section V, we evaluate how our assumptions
hold in practice and compare our method against prior art in
terms of speed and quality. Section VI concludes the paper.

II. RELATED WORK

Depth imaging based on ToF principles requires process-
ing large amounts of data because of the large numbers
of histogram bins (temporal or depth dimension) and pixels
(spatial dimension). Such a volume of data has motivated
CS approaches, which we review next. Then, we summarize
methods using block-based CS and discuss their limitations
and trade-offs.

Histogram processing. To recover depth information
from photon count data it is common to exploit a sparse
signal model that assumes that an active sensor only receives
very few surface reflections within the field-of-view of a
single photon detector pixel, or in more recent work [11] [12]
[13], within neighbouring pixels. These approaches achieve
good depth reconstruction, but scale poorly with the number
of pixels, n, and the length of the histogram, p, where p
represents the number of discrete distance (time) steps. Efforts
have also been made to accelerate the processing by utilising
GPUs, e.g. [14], but limiting non-zero bins in a histogram to
≈ 256 bins to accommodate memory limitations.

Sliced spatial compressive depth. Depth images can be
reconstructed from ToF measurements by assuming they are
sparse in some basis as presented in [7]. In other words,
the number of nonzero entries of a signal is much smaller
than the number of zeros when transformed into another basis
domain. This, however, implicitly assumes temporal sparsity,
which implies that intensity masks are sparse and temporally
clustered.

Depth images can also be recovered by solving p multiple
independent 2D imaging problems, each of which is a standard
CS problem [9], [15]. As each time-gated intensity slice is
recovered sequentially, the complexity of reconstruction is
O(pn3) where n is the number of pixels, using conventional
CS algorithms. For example, for a modest p = 512 bins for
short distance ranging, this results in a fairly low frame rate of
3 Hz for a depth map of size n = 64×64 [15], highlighting the
limitations in terms of scalability of this approach for higher
spatial resolution and a wider operating range.

Masked spatial compressive depth. To minimise the com-
putational burden in the reconstruction process, [16] intro-
duced mask priors and constrained the problem to two Lam-
bertian surfaces. The positions of the surfaces were estimated
from the acquired histograms in a parametric fashion, and their
shape recovered by solving two independent CS problems.
However, the proposed method is limited to a small number
of surfaces. A more general framework was presented in [8],
which introduced a proxy, the so-called time-of-flight sum or
simply depth-sum. This uses a two step recovery process,
which implicitly assumes a few simple, planar surfaces en-
forced by a small TV-norm and subsequent basis thresholding
in the wavelet domain. This is similar to explicit masking [16].
This approach is also very sensitive to ambient illumination.
The acquisition times are further limited by the spatial light
modulator (SLM) and by the problem size, a limitation of most
single-pixel systems with a hard limit defined by the desired
size of the final image.

Block compressive sensing. Blocking schemes are a com-
mon technique to distribute computationally expensive oper-
ations across smaller sub-problems and thus have naturally
been applied to compressive sensing, in particular, to single-
pixel cameras for intensity imaging [17], [18]. However, to
the best of our knowledge, they have not yet been applied
to compressive depth imaging. Most blocking formulations
decrease reconstruction times, but require raster scanning the
spatial-light-modulator, which increases the sampling time
compared to normal CS.

Limitations. The use of two or few image reconstructions in
order to recover depth is intriguing for its simplicity. However,
for practical applications with a wide range of scenarios and
non trivial surfaces across a wide operating range, e.g. 0-300
m, the assumption of a few simple surfaces at well separated
depths is a major limitation. A more robust noise removal
scheme is also required to deal with outdoor applications.
Further, the acquisition time has to be reduced without limiting
resolution, while processing time needs to be shortened by
several orders of magnitude for real-time applications.

In our work, we address these shortcomings of compressive
single-pixel depth recovery. We expand the concept of the
depth-sum and formulate it more rigorously in Section III
and extend it with block-independent sparsity regularisation,
developing a system approach compatible with the emerging
solid-state, photon detector LiDAR arrays, e.g. [5].

III. BACKGROUND

We now provide background required to understand our
approach. Although the depth-sum concept is based on [8],
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Fig. 1: Histogram acquisition for pixel i assuming one count per illumination cycle. This results in κ measurements, which
are added together to produce the histogram estimate ĥi. After eliminating noise β, we extract from ĥi the depth-sum (xQ)i
and the photon count (xI)i.

our models are more rigorous and precise. We start with a
signal model associated with a single pixel and then generalize
it to a full array. We next show how the former can be con-
structed from photon count measurements as two optimization
problems.

Compressive depth signal model. We model a scene
viewed from a LiDAR system as a 2D image XD ∈ RNx×Ny

and represent its column-major vectorization as xD ∈ Rn,
where n := Nx · Ny . For each pixel i in the scene, a ToF
LiDAR system collects direct distance measurements of an
object observed at that pixel in the form of an histogram of
the photon returns.

Ideal model. In the ideal case, we assume that, at each pixel
i, there is a single photon return from an object at a specific
distance. Representing the vector of possible, discretized dis-
tances by d ∈ Rp, and assuming the system can detect objects
in all p bins, pixel i of the depth image can be expressed as

(xD)i = (hi ◦ d)T 1p, (1)

where ◦ denotes element-wise multiplication, 1p ∈ Rp the all-
ones vector, and hi ∈ Np the basis vector with all entries but
the singular distance bin index equal to zero, indicating the
distance of the observed return. Note that in this ideal case
only one photon measurement is necessary.

Probabilistic model. The model in (1) is ideal because,
besides assuming no noise, it considers hi to be a canonical
vector, that is, it encodes the assumption of a perfect photon
return on a single surface. A practical direct ToF system,
however, registers photon counts in a much more haphazard
manner, a process usually modelled as a Poisson random
process [19], [20]. To compute the distance of an object more
accurately, several measurements are collected for each pixel,
and their average can be seen as an approximation of the
canonical vector hi in (1). Fig. 1 illustrates the process. For
each pixel i, the system observes κ measurements and converts
them to distances by using a time-to-digital converter (TDC)
sampling device [5], [21], which discretizes time and thus
the possible set of distances. We encode the κth measured
distance, i.e., the distance covered by the respective photon,
by a canonical (or one-hot) vector h̃

(κ)
i ∈ Rp, whose entries

are all zeros except the one corresponding to the bin associated
to the distance of the object. By summing all these vectors,
we obtain a histogram (operator Σ in Fig. 1)

ĥi =

κ∑
k=1

h̃
(k)
i . (2)

Noticing that (ĥi)
T 1p represents the total number of photon

events (i.e. measurements) detected at pixel i, whenever there
is a single return surface and the number of observed measure-
ments is large enough, the ratio ĥi/(ĥi)

T 1p should converge
to a canonical vector hi. Replacing hi in (1) by this quantity
then yields the following estimate for the depth of an object
observed at pixel i:

(x̂D)i =
(ĥi ◦ d)T 1p
(ĥi)T 1p

=
(x̂Q)i
(x̂I)i

, (3)

where we define (x̂Q)i := (ĥi ◦ d)T 1p as the depth-sum (or
ToF-sum [8] with distance conversion), and (x̂I)i := (ĥi)

T 1p
as the photon event sum for pixel i.

In LiDAR imaging, the total ToF recorded during a pattern
exposure is related to the pattern stimulation in exactly the
same way that the total photon count is spatially related to the
pattern stimulation in standard intensity imaging.

However, because a single ToF measurement at a given pixel
can correspond to photons associated with neighboring pixels
(potentially reflected from different surfaces), we need to scale
each ToF measurement by a factor that takes these cross-pixel
interactions into account. Conveniently, this factor is exactly
the photon event sum (intensity), (x̂I)i [8].

Compressive measurements. So far, and as depicted in
Fig. 1, we considered the acquisition of a histogram associated
with a specific pixel. To reduce the number of illuminated
pixels, however, we assume that each histogram measurement
contains information from several pixels. More specifically,
rather than directly measuring (x̂Q)i and (x̂I)i, each measure-
ment aggregates these quantities across a number of different
active pixels, ρ. This reduces both sampling and laser emission
power. In other words, each measurement contains photon
returns from ρ < n randomly selected pixels. For simplicity,
we assume a constant number ρ of activated pixels for all the
measurements. Formally, we collect m measurements for both
the depth-sum and photon event sum, each of which as

(yQ)j =
∑
i∈Aj

(xQ)i + (βQ)j (4a)

(yI)j =
∑
i∈Aj

(xI)i + (βI)j , (4b)

where j = 1, . . . ,m denotes the measurement number, Aj ⊂
{1, . . . , ρ} indicates the set of active pixels that contributed to
measurement j, and (xQ)i and (xI)i represent the ideal depth-
sum and photon event sum. The quantities (βQ)j , (βI)j ∈ R+
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represent noise from ambient photon influx, modelled as
Poisson noise. The patterns Aj can be generated pseudo-
randomly.

Relation to CS. Writing all the above quantities as vectors,
(4) becomes

yQ = AxQ + βQ (5a)
yI = AxI + βI , (5b)

where the jth row of A ∈ {0, 1}m×n contains 1 in all the
entries indexed by Aj and 0 elsewhere, and yQ, yI , βQ, βI ∈
Rm. The ideal vectors xQ, xI ∈ Rn represent, respectively,
the (vectorized) image of the total distance travelled by all the
photons that are reflected by the most significant surface, and
the (vectorized) image of the number of returned photons at
pixel i. As the patterns Aj can be generated pseudo-randomly,
A can also be pseudo-random. A key observation in [10]
is that the vectors xQ and xI can often be modelled as
independent, in the sense that xQ and xI can be reconstructed
without taking each other into account, and as having sparse
representations. That is, there exists a transform Θ ∈ Rq×n

such that most entries of ΘxQ and ΘxI are zero or near-zero.
Examples of Θ include the Wavelet and DCT transforms, or
a difference matrix (which expresses the fact that xQ and xI

have sparse gradients ( [22], [23]). Such assumptions enable
us to estimate xQ and xI concurrently using CS methods, as
we explain next. Once we have estimates for these quantities,
the depth estimate for pixel i is given by dividing them as
in (3).

Reconstruction. Given that yQ and yI in (5) are linear
measurements from xQ and xI , which are assumed to have
sparse representations, the latter can be reconstructed using,
for example, basis pursuit denoising (BPDN) [24]:

minimize
xQ

1
2∥AxQ − yQ∥22 + αQ∥ΘxQ∥1 (6a)

minimize
xI

1
2∥AxI − yI∥22 + αI∥ΘxI∥1 , (6b)

where αQ, αI ≥ 0 balance the competing terms in the
objective, and ∥ · ∥1 is the ℓ1-norm.

CS theory has shown (e.g., [25]), xQ and xI can be
reconstructed from (6a)-(6b) using much fewer measurements
than the vectors’ dimensions, i.e., m ≪ n.1

While this makes the sampling process very efficient,
solving (6a)-(6b) for high spatial resolution (large n) is too
computationally intensive to be done in real-time.

IV. PROPOSED LIDAR SYSTEM

As seen before, CS reduces the amount of data that needs
to be acquired. However, reconstructing the object of interest
from its measurements requires solving an optimization prob-
lem like (6a)-(6b). In our case, histograms can be acquired
very efficiently in a compressed and aggregated form [cf. (5)],
but the subsequent reconstruction of a depth image entails
significant computation. We now describe our strategies to

1While most non-asymptotic CS results apply to constrained problems of
the form minx ∥Θx∥1 s.t. ∥Ax − y∥2 ≤ σ, for some σ > 0 (and AΘ−1

Gaussian), the formulations in (6a)-(6b) are easier to solve numerically. Both
types of problems, however, are equivalent for properly selected α’s and σ.

design LiDAR systems that are efficient in both processes,
sensing and reconstruction. We adopt two different strategies
to address this problem, each relying on different assumptions
about the scene. Both strategies build on a block sensing
model, explained next.

A. Block Sensing Model and Overall Scheme

Recall that each row of A in (5) specifies the pixels that
contribute to a particular measurement, i.e., the set Aj for
measurement j = 1, . . . ,m. In a solid-state ToF LiDAR
system, such sets can be selected arbitrarily. Our key idea
is then to select them such that the matrix A in (5) becomes
block diagonal. More concretely, we partition the full depth
image xD ∈ Rn into B blocks (or patches, or arrays), each of
length nB := n/B:

xD =
(
x
(1)
D , x

(2)
D , . . . , x

(B)
D

)
, (7)

where x
(b)
D ∈ RnB , where b = 1, . . . , B, denotes an individual

block index. The depth and photon event sums associated with
x
(b)
D are, respectively, x(b)

Q and x
(b)
I . By selecting A in (5) to

be block diagonal, (5a) becomes
y
(1)
Q

y
(2)
Q
...

y
(B)
Q

 =


A(1)

A(2)

. . .
A(B)



x
(1)
Q

x
(2)
Q
...

x
(B)
Q

+


β
(1)
Q

β
(2)
Q
...

β
(B)
Q

 ,

(8)

where A(b) ∈ RmB×nB and β
(b)
Q ∈ RmB for b = 1, . . . , B. For

simplicity, we set mB := m/B. A similar model applies to the
photon even sum in (5b). Each block operates independently
with individual access to A, as shown in Fig. 2, in other words,
the histogram quantities xQ and xI are sampled and processed
independently in each block.

Reconstruction strategies. While the measurement struc-
ture in (8) senses the scene in an efficient and parallel manner,
the reconstruction of the full vector xQ in (7) requires solving
a full CS problem involving all the blocks. For a large spatial
resolution, such a problem can be computationally intensive
and thus inadequate for real-time processing.

The key observation in [8] is that the full vector xQ has
small TV-norm and is sparse in the wavelet domain. In our
first reconstruction strategy, we go one step further and assume
that the blocks x

(b)
Q and x

(b)
I are, by themselves, sparse in a

given dictionary.
Assumption 1: For all b = 1, . . . , B, the blocks x

(b)
Q , x

(b)
I ∈

RnB have sparse representations in a given dictionary Θ ∈
RnB×q , in the sense that there exist sparse z

(b)
Q , z

(b)
I ∈ Rq

such that x(b)
Q = Θz

(b)
Q and x

(b)
I = Θz

(b)
I .

We provide extensive experimental evidence for this as-
sumption in Section V-A. Because of the block-diagonal struc-
ture of A in (8), Assumption 1 enables us to reconstruct each
block x

(b)
Q

[
and x

(b)
I

]
independently and in parallel, allowing

for significant speedups and thereby real-time reconstruction.
For our second strategy we assume that the full vectors xQ

and xI have small 2D TV-norm independently:
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Fig. 2: Proposed compressive block LiDAR sampling. A laser array is partitioned into B blocks, each of which illuminates
the scene independently. Information about the received photons is collected into histograms, from which y

(b)
Q and y

(b)
I in (5)

are formed within each block b. A depth image X̂D is constructed by processing these measurements in parallel, which entails
solving several instances of (6), represented by S and possibly with some post-processing, and forming X̂Q and X̂I .

Assumption 2: Both xQ, xI ∈ Rn have small 2D TV-norm,
in the sense that ∥xQ∥TV and ∥xI∥TV are small.

For a vector x ∈ Rn, the 2D TV-norm is defined as
∥x∥TV := ∥Dx∥1, where each row of D ∈ R2n×n extracts
either the vertical or horizontal difference at a given pixel of x.
For computational efficiency, we assume periodic boundaries,
so that products Dx and DT y can be computed via the
FFT [23]. Similar to [8], our Assumption 2 apparently provides
no computational advantage over e.g. DCT domain sparsity.
Yet, the block sensing approach in (8) will enable us to design
a good warm-start for the solution of a global TV problem.
Specifically, we independently solve a TV minimization prob-
lem for each block, and the vector/image composed by the
individual block solutions will be sufficiently close to the
solution of (6a)-(6b) with A given as in (8).

Overall scheme. Fig. 2 gives an overview of the full
pipeline of the proposed scheme. The sensing process is
similar to [8], with several pixels in the laser array contributing
to a single measurement. The main difference is the adaptation
to solid-state arrays and the division of the laser array (and
thus of the photon detector array) into B blocks that oper-
ate independently. Mathematically, this implements the block
sensing matrix of (8). For each block b, several histograms are
formed and added together [cf. (2)], yielding (ĥi)

(b) for pixel
i of block b. Next, we extract from each of these histograms
the depth-sum (x̂

(b)
Q )i :=

(
(ĥi)

(b) ◦ d
)T

1p and the photon

event sum (x̂
(b)
I )i :=

(
(ĥi)

(b)
)T

1p. Because several pixels
within each block are active, these quantities are actually
aggregated from several pixels [cf. (4)-(5)], i.e., they comprise
the measurements (yQ)

(b) and (yI)
(b). These measurements

are then used to reconstruct x̂(b)
Q and x̂

(b)
I , associated to block

b, via BPDN (6) and then tiled together to form the full images
X̂Q and X̂I . This reconstruction process is represented in the
figure as S. Finally, using the relation in (3), X̂Q is divided by
X̂I point-wise to form the estimated depth image X̂D. Note
that all the processes before the formation of the full images
X̂Q and X̂I can be parallelized.

Reconstruction Strategy 1. Our first reconstruction strat-
egy relies on Assumption 1, which states that, for each block
b, the quantities x

(b)
Q and x

(b)
I have sparse representations

in a dictionary Θ ∈ RnB×q . In this case, we reconstruct

x
(b)
Q and x

(b)
I by solving BPDN (6a)-(6b) for each block b

independently, which can be fully parallelized.
Given the measurements y

(b)
Q and y

(b)
I for each block b and

respective measurement matrix A(b), we solve BPDN (6a)-
(6b), represented by the map S, to obtain x

(b)
Q and x

(b)
I . All

these reconstructions can be executed in parallel and use the
same dictionary matrix Θ (even though the framework can be
easily generalised to different dictionaries). Then, after joining
all the blocks to form x̂Q and x̂I , we use relation (3) to obtain
the final vectorized depth image x̂D as illustrated in Fig. 2.

Reconstruction Strategy 2. Total-variation (TV) captures
the notion that only a small number of neighbouring pixels in
natural images have sharp variations in value [22], [23]. This
concept, which can be expressed as a convex regularizer and
thus handled efficiently, has been successfully applied to many
inverse problems involving natural images [26]–[32].

Assumption 2, on which our second reconstruction strategy
relies, states that the depth-sum xQ and photon event sum xI

have small TV-norm. This assumption was also made in [8]
for xQ by solving (6a) with Θ = D, where D ∈ R2n×n is
a difference matrix. Here, however, we take advantage of the
block sensing structure in (8) to compute the solutions of (6a)-
(6b) faster, based on a two-step approach.

Block-TV. Using xQ as an example, our goal is to solve (6a)
with Θ = D and A having a block-diagonal structure [cf. (8)]:

minimize
xQ

1

2

B∑
b=1

∥∥∥A(b)xQ − y
(b)
Q

∥∥∥2
2
+ αQ∥xQ∥TV , (9)

where ∥xQ∥TV = ∥DxQ∥1. The second term in (9) depends
on the full image and does not decompose across blocks.
However, since for any xQ, there always holds

B∑
b=1

∥∥x(b)
Q

∥∥
TV ≤ ∥xQ∥TV , (10)

Assumption 2 implies that the left-hand side of (10) is ex-
pected to be small. In other words, a small total-variation
of a full image implies a small total-variation of the blocks
forming any partition of the image. Replacing ∥xQ∥TV in (9)
by

∑B
b=1

∥∥x(b)
Q

∥∥
TV we obtain an optimization problem that

decomposes blockwise, with the bth problem taking the form
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of a BPDN:

minimize
x
(b)
Q

1

2

∥∥∥A(b)xQ − y
(b)
Q

∥∥∥2
2
+ αQ∥x(b)

Q ∥TV , (11)

for b = 1, . . . , B. Each of these problems can be solved in
parallel.

B. De-blocking as a two-step approach

Based on these observations for total-variation and to reduce
blocking for other basis functions we propose (using xQ as an
example) an extension to compute solutions of (6a) or (9) in
two steps.

1) First, we solve (6a) or (11) for each block b = 1, . . . , B
independently and tile all the blocks to form an estimate
x̃Q.

2) Then, we solve (9) using an iterative solver, e.g.,
TVAL3 [33], using x̃Q as a warm-start (i.e., as the
initialisation of the algorithm).

Notice that step 1) reconstructs B vectors, each of size nB =
n/B, while step 2) reconstructs a single large vector of size n.
However, because the vector x̃Q obtained in step 1) should be
a good approximation of the solution of (11), the algorithm
in step 2) should require a small number of iterations. The
overall process is thus efficient and, as we will show later,
can be run in real-time.

While the idea of using a block-TV approach to reconstruct
a full image [step 1)] has been discussed, for example, in [18],
[34], our approach of using the solution of a block-TV
approach to initialise the full TV problem (9) is novel. It
can also reduce blocking artefacts when using prior CBCS
solutions for other basis regularizations.

Next, we analyse several aspects of the proposed algorithms
and discuss possible extensions.

C. Analysis and extensions

Data acquisition. We estimate data savings against a non-
compressive system that acquires full histograms comprising
np data points, as each pixel has p bins associated. In contrast,
our system only acquires 2m measurements [m for yQ and
yI each]. Furthermore, as explained later, we can estimate
background noise by collecting a single histogram of size p.
The savings in acquired data can then be expressed by the
ratio

C =
2m+ p

np
. (12)

Whenever 2m ≪ np, this ratio is very small. Although we lack
a precise theoretical characterization of the number of mea-
surements m required to reconstruct a s-sparse vector using
BPDN (6) with a block diagonal matrix as in (8) and a generic
dictionary matrix Θ, several asymptotic and non-asymptotic
analyses of similar CS problems suggest m ≃ s log

(
n/s

)
,

e.g., [25]. The sparsity s of a vector, in our case xQ or xI ,
depends on the block size and the complexity of the scene,
for example, the number of different surfaces. Expression (12)
thus implies that there can be substantial savings in acquired

data whenever the spatial and temporal resolutions of the
system, respectively n and p, are large.

dSparse. The large savings in data acquisition expressed
by (12) open up the possibility of going against CS principles
to acquire more measurements m than the dimension n of
the image. Indeed, if m is of the same order as n in (12),
the ratio C is still small whenever p is large. In other words,
acquiring more measurements m than the spatial dimension n
still allows significant savings in comparison with a traditional
LiDAR system that acquires full histograms for each pixel. We
will refer to the regime in which the number of measurements
m is larger than the dimension of the image, i.e., m > n,
as dSparse (from discrete sparse oversampling), and to the
regime in which m < n as fully compressive [35]. Compared
to conventional LiDAR systems, as each measurement still
contains the contributions of ρ ≪ n pixels, the average
radiated output power of dSparse is still small.

In the dSparse regime, the linear systems in (5) become
over-determined, as there are more equations than variables.
In this case, instead of solving a BPDN problem, we estimate
xQ and xI simply via least-squares [36], i.e., we set αQ =
αI = 0 in (6). Due to the block sensing structure in (8), each
block b can be reconstructed independently (and in parallel) by
solving the linear system

(
A(b)TA(b)

)
x = A(b)T y, where x =

x
(b)
Q

[
resp. x(b)

I

]
if y = y

(b)
Q

[
resp. y(b)I

]
. Note that whenever

A(b) is generated randomly (from a non-degenerate probability
distribution), A(b)TA(b) has full rank with probability one.

Noise suppression. In practice, e.g. outdoors, there can be
significant random photon influx from the sun (background
rate). In this case, solely solving a BPDN problem may provide
poor estimates. We thus propose two strategies to estimate and
compensate for the background mean count rate, β̂.

1) In the first strategy, we aggregate a background noise
histogram hn with an additional pixel not in line with
any photon emission. Exposing the detector to the same
number of realisations as an instance of a regular his-
togram ĥi, the active background compensation can be
estimated as

β̂active = max (hn) + η, (13)

where (hn) denotes the dedicated noise histogram, and
η is an offset parameter.

2) The second strategy uses no additional hardware. In-
stead, it allocates a small section of the histogram ĥi of
an arbitrary pixel i to capture noise while the emitter
is idle. For example, it can allocate additional ln bins
beyond the operating range. The passive background
compensation is then

β̂passive = max
p−ln≤j≤p

(ĥi) + η , (14)

where p is the length of ĥi, i.e. number of bins.

Either noise compensation scheme is applied before storing the
measurements (yQ)j and (yI)j , and is deployed by replacing
ĥi in (3) with ĥ′

i = max
{
0, ĥi − β̂1p

}
, where β̂ is either

β̂active or β̂passive, and 1p ∈ Rp the vector of ones.
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V. EXPERIMENTAL RESULTS

We now describe the experiments we conducted not only
to validate our assumptions on the sparsity of the depth-
sum and photon event sum (intensity) images, but also to
compare the performance of our proposed scheme against prior
approaches. We start by describing the common setup of all
our experiments.

Scenes. We consider typical range scenarios for LiDAR
imaging applications. A small dataset of 3 scenes from [37]
is used to demonstrate real data compatibility with an op-
erating range of 30 cm with sub-millimetre precision. For a
more comprehensive evaluation of our parallel sparse imaging
framework, we use a larger dataset containing a total of 75
scenes. We use 25 randomly selected scenes from [38] to
illustrate a typical indoor short range application with an
operating range of < 10 m and cm precision, e.g. for AR/VR.
For automotive and outdoor applications we use a total of 50
scenes (5 each from each sequence respectively) from [39]
with many participants and objects such as trees and signs in
the foreground (0-50 m), buildings in the background (≤ 300
m) and more road focused scenes with a wide operating range
of 0-300 m from [40].

Experimental setup. For our large dataset, histograms are
simulated [41] using a sample time of 96 µs per pattern
exposure (48 pulses for a maximum range of 300 m) with
an ambient photon rate derived from incident sunlight at 1
klux (0.3 photons per bin) with a TDC presented in [5]. This
dataset generation step takes up to 7 minutes per frame. All
photon count data is re-sampled with our sampling framework.
β̂ is estimated passively for the real data [37] and actively
for the synthetic data. Many algorithms exist to numerically
find a solution for a BPDN problem such as the alternating
direction method of multipliers (ADMM) [42], the fast itera-
tive shrinkage thresholding algorithm (FISTA) [43], gradient
projection for sparse reconstruction (GPSR) [44], and orthog-
onal matching pursuit (OMP) [45]. We used TVAL3 [33] to
optimize for small TV and ADMM for sparsity in linear basis
transforms. These specific algorithms were chosen for their
good performance, adaptability and low execution time.

The parameters αQ and αI for ADMM were hand tuned.
For synthetic data, the depth resolution is set at 1 cm for
the indoor scene (p = 1001) and at 4 cm for outdoor scenes
(p = 7501). The algorithm presented in [8] was implemented
from scratch and hand tuned for depth recovery as best as pos-
sible. We used the code for for BCS-SPL (DCT) [18] provided
by its authors and kept the default parameters. The published
executables for RT3D [14] were used and hyper-parameters
tuned for best performance. We note that histograms had to
be post-processed for RT3D due to limitations in non-zero bins
(active bins). We have applied an ordered threshold to discard
the smallest values to retain 256 active bins, which effectively
is a de-noising operation. We exclude this operation from the
timing analysis.

Performance metrics. We assess the quality of the re-
constructed depth vector, y ∈ Rn, with the ground truth,
x ∈ Rn, using several figures of merit, namely the mean-
squared error MSE(x, y) = 1

n∥x − y∥22, peak signal-to-noise

ratio PSNR(x, y) = 10 log10 max(x)2/MSE(x, y), the signal-
to-reconstruction error SRE(x, y) = 10 log10 ∥x∥22/∥x − y∥22
[13], and the structural similarity index measure (SSIM) [46].
In addition, we use the following metrics to assess the quality
of depth reconstruction: 3-pixel-accuracy metric, which returns
the percentage of good pixels according to a set of thresholds
δ < {1.25, 1.252, 1.253}, the absolute relative difference
(ARD), the root mean square error with log scale (RMSE-LS)
and a log-scale invariant root mean squared error (RMSE-LSI)
[47].

A. Sparsity Assumptions
To validate our assumptions about the sparsity of the depth-

sum and photon count, we evaluate the sparsity across our
dataset for both signals.

It is of particular interest how smaller block sizes below
the often chosen 32 × 32 [17], [18] perform. Further, the
assumption that xQ is as sparse as xI for natural scenes in
[8] should be justified. We provide a more detailed analysis
within this work’s sampling and reconstruction framework,
where there are no constraints on the number of surfaces in
the scene but we assume that there are few surfaces per block.

Depth-sum Sparsity. A s-sparse vector x ∈ Rn has at most
s nonzero entries. We define its sparsity ratio as

Ψ = 1− s

n
. (15)

To test the assertion in [8] that xI sparsity assumptions apply
to xQ, we used an estimate for reflectivity to generate a photon
count image using the power model from [48] and an ideal
depth image xD. Then the depth-sum is xQ = xI ◦ xD.
For linear transforms, Daubechies wavelets (DWT), DCT, and
finally TV are considered in Fig. 3. Both xQ and xI are
transformed and hard-thresholded [49] with a threshold value,
τ , derived from a relative threshold ζ, such that

τ = ζmax(x). (16)
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Fig. 3: Sparsity, Ψ, of DWT, DCT and TV norm of xI and
xQ across relative threshold, ζ, for our dataset with specified
block sizes (a)-(c) and (d) being full frame.
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TABLE I: Performance evaluation of our sparse depth frameworks against prior art including a non-compressive approach. The
best overall and best CS are highlighted. Scenes (128×128) are captured in B blocks with mb measurements per block using
an active pixel ratio of ρ/n for sparse frameworks. The sequential and parallel processing time are tseq and tpar respectively.
tb is the block processing time in seconds, and the simulated sample time is provided as tsamp. All times are in seconds. The
data ratio, C, represents the total number of measurements divided by the full histogram data.
(∗Operating conditions as specified in [8]; †Running on NVidia RTX 2080 Ti (11 GB); ‡line-scanning with

√
n steps.)

higher is better lower is better

mb B ρ/n PSNR, dB SRE, dB SSIM δ1 ARD MSE RMSE-LS RMSE-LSI tb tpar tseq tsamp C, %

RT3D [14] 16384 1 1 22.48 11.56 0.673 0.772 0.141 491.68 0.322 0.067 - 0.0396† - 0.012‡ 100.0
Howland∗ [8] 3277 1 0.5 13.75 2.83 0.179 0.210 2.074 2335.99 0.843 0.447 - - 54.15 0.315 0.005∗
Howland [8] 8192 1 0.25 14.04 3.12 0.043 0.320 1.575 1834.59 0.967 0.502 - - 107.2 0.786 0.013∗

BCS-SPL32 [18] 512 16 0.5 15.92 5.00 0.177 0.394 1.330 2410.33 0.619 0.144 - - 0.221 0.049 0.019

CBCS4-DWT 8 1024 0.5 18.75 7.83 0.183 0.805 0.154 639.13 0.313 0.064 0.00024 0.0847 0.508 0.0008 0.019
CBCS4-DCT 8 1024 0.5 22.01 11.09 0.548 0.850 0.093 436.25 0.252 0.044 0.00011 0.0429 0.225 0.0008 0.019
CBCS4-TV 8 1024 0.5 25.12 14.21 0.550 0.857 0.081 265.72 0.201 0.031 0.00767 2.8771 15.53 0.0008 0.019

CBCS4-TV∗ 3 1024 0.5 22.44 11.52 0.334 0.839 0.112 379.37 0.234 0.039 0.00848 3.0479 17.55 0.0003 0.011
CBCS8-DCT 32 256 0.5 19.67 8.75 0.377 0.822 0.131 789.13 0.333 0.077 0.00048 0.0373 0.251 0.0031 0.019
CBCS8-TV 32 256 0.125 24.43 13.51 0.553 0.857 0.082 316.86 0.220 0.036 0.00976 0.9544 4.750 0.0031 0.019

CBCS4-TVdS 24 1024 0.5 31.34 20.42 0.879 0.864 0.055 159.22 0.155 0.022 0.00799 2.9002 16.43 0.0023 0.046
dSparse4 24 1024 0.5 30.76 19.84 0.888 0.867 0.052 373.60 0.227 0.040 0.00002 0.0101 0.054 0.0023 0.046
dSparse8 96 256 0.125 29.09 18.17 0.865 0.868 0.053 647.56 0.290 0.065 0.00012 0.0122 0.069 0.0092 0.046

The relative threshold, ζ, is swept across a range of 0.05
to 0.975. This ensures that the energy content is accurately
considered and is equivalent to retaining ζn components of
an ordered signal x ∈ Rn. We show results for DWT, DCT
and the TV-norm across our dataset in Fig. 3 with sparsity as
defined in (15). From these results, in most basis transforms,
xQ can actually be sparser than xI (i.e. ΨQ < ΨI ) as
the block size decreases, but is comparable to photon count
intensity throughout. This is consistent for DWT, DCT and
TV regularization alike. Sparsity as a whole decreases as the
block size shrinks, i.e. more non-zero components are retained
and therefore Ψ increases.

This indicates that it is possible to apply many of the
sparsity assumptions which have been validated for natural
intensity images and, by extension, photon count images to the
depth-sum image. Importantly, as xQ can be sparser than xI

for small block sizes nB ≪ 1282 in some some basis regimes,
the depth information contained in xQ should be sufficiently
sampled if bounds are set by the recovery of xI .

B. Reconstruction Performance

We compare our parallel block compressive framework with
a state-of-the-art GPU optimized full histogram processing ap-
proach which achieves real-time operation [14] and the single-
pixel approach presented in [8], which uses a related signal
model but only demonstrate indoor short range applications.
We include short range data in our experimental scenes but
we employ more complex (and realistic) scene compositions.
Further, we compare our independent checkerboard compres-
sive sensing (CBCS) formulation against block compressive
sensing (BCS)-smoothed projected Landweber (SPL) [18], a
block CS approach for intensity imaging, which proposes an
optimal block size of nB = 322, denoted BCS-SPL. The TV
extension and de-blocking two-step approach TVp is evaluated
as well as the discrete pseudo-inverse approach, dSparse, for
sparse random imaging.

Depth Reconstruction Results. The 75 scenes were recon-
structed for each framework and the results were averaged
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Fig. 4: Quality (PSNR) and frame time comparison for com-
pressive depth reconstruction. The frame time is sample time
and total processing time combined. Parallel processing time,
tpar, is used where applicable.

across all scenes. The overall performance of all algorithms is
presented in Tab. I. RT3D [14] was evaluated on a dedicated
GPU (NVidia RTX 2080 Ti), while CBCS and dSparse were
processed in parallel on a general purpose CPU with 8 logical
processing cores and no further optimizations (Matlab R2020a,
8× 2.3 GHz Intel Core i9, 32 GB). Our proposed framework
achieves reconstruction performance comparable to the much
more complex framework of RT3D [14], with similar parallel
execution times despite only running on an 8-core CPU.

We note that in theory each block can be reconstructed inde-
pendently with dedicated logic for each block [35], resulting
in theoretical reconstructions times of < 1, ms as indicated
by the block time tb. Such embarrassingly parallelization of
our algorithm means that its execution time is determined
only by the execution time of the slowest block. CBCS8-
DCT is the fastest compressive approach at 37.3 ms, closely
followed by CBCS4-DCT at 42.9 ms outperforming CBCS8-
DCT otherwise. In terms of quality, CBCS4-TV is the best but
also the slowest. The overall best approach in both time and
quality, compared to all prior art, is dSparse4 with very short
frame times, as illustrated in Fig. 4.

Translated into frame rates, which include sampling and
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(a) RT3D [14]
PSNR=24.84 dB
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(b) Howland [8]
PSNR=14.50 dB
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(c) CBCS4 -DCT
PSNR=22.76 dB
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(d) CBCS4 -TV
PSNR=27.54 dB
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(e) dSparse4
PSNR=50.42 dB
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(f) dSparse8
PSNR=49.59 dB
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(g) RT3D [14]
PSNR=21.56 dB
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(h) Howland [8]
PSNR=3.09 dB
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(i) CBCS4 -DCT
PSNR=18.37 dB
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(j) CBCS4 -TV
PSNR=22.24 dB
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(k) dSparse4
PSNR=27.28 dB
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(l) dSparse8
PSNR=21.08 dB
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(m) RT3D [14]
PSNR=21.43 dB
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(n) Howland [8]
PSNR=16.17 dB
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(o) CBCS4 -DCT
PSNR=24.31 dB
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(p) CBCS4 -TV
PSNR=25.68 dB
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(q) dSparse4
PSNR=25.94 dB
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Fig. 5: Depth compressive sensing comparison for compressive depth recovery schemes. Scene examples from [38]–[40] - top
to bottom: An indoor scene depicting a living room (a)-(f), a city scene with pedestrians (g)-(l) and a typical automotive scene
with large dynamic range (0-300 m) in (m)-(r). All scenes were reconstructed using prior art and variations of our proposed
framework (CBCS) and dSparse with reconstruction quality indicated in PSNR for each individual scene.

processing times, CBCS4-DCT can achieve 22 Hz and
dSparse4 80 Hz. RT3D [14] runs at 19 Hz for the considered
scenes, assuming a typical line-scan sampling approach in

√
n

steps, due to safety limits in near-infrared (NIR) [6]. Further-
more, dSparse8 and CBCS8-TV achieve optimal performance
with a very low pattern density of only 12.5% pixels active,
which provides a practical low power and low data approach
to LiDAR imaging.

We compare our framework visually with typical scenes
from each source dataset in Fig. 5. It is evident from this
comparison that [8] only works at very short ranges, < 5 m
(Fig. 5(b)), and struggles with noise. At longer range it fails
because of their low surface count assumption. RT3D [14]
performs well with some minor issues for low reflective large
surfaces at long range (e.g. Fig. 5(m)). However, it is also
the most complex algorithm with no compression, requiring
50 times the data volume of CBCS4 with m/n = 0.5, and
20 times more than dSparse with m/n = 1.5 for our outdoor
scenes.

CBCS4-DCT performs accurate depth recovery which re-
tains depth gradients in blocks with minimal blocking effects
in the DCT domain. The blocking primarily occurs in edge
regions where a sudden depth variation occurs, implying a
regularisation problem which favours smooth surfaces. Using
the TV-norm, the block effects are reduced at the cost of
computational effort but with overall excellent reconstruction
performance for a compressive method. When we sparsely
oversample spatially (while keeping compact compressive
measurements aggregating time information with sparse illu-

mination patterns) and reconstruct the scene information from
an overcomplete set of subsamples the reconstruction quality
is, as expected, excellent for dSparse4. This provides a high
quality reconstruction for sparse illumination depth imaging
but at the cost of additional sampling time (see Tab. I).

Real Data Demonstration. Next we demonstrate that our
framework can be readily applied to real histogram data from
other LiDAR sensor systems. We showcase the best overall
compressive scheme (CBCS4-DCT) and the best parallel
sparse method (dSparse4) in Fig. 6.
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(b) CBCS4 -DCT
PSNR=30.28 dB
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(d) dSparse4
PSNR=19.65 dB
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(e) dSparse4
PSNR=33.81 dB
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Fig. 6: Real data demonstration on scenes captured underwater
from [37] with good reconstruction of sparse photon count data
for our parallel sparse imaging methods.
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For this very sparse and low photon count data due to un-
derwater imaging, the framework performs well and especially
dSparse4 recovers details and depth accurately.

De-blocking and global TV-norm. As noted earlier,
CBCS can have some blocking artefacts when hard edges are
present in a block. Further, we try to consolidate the TV-
norm across the entire frame inline with most prior work
stating low total-variation across natural scenes. We apply our
second reconstruction strategy, TVp, utilizing a second TV-
norm pass with initilization of a global TV optimization using
their respective block solutions as priors. We highlight a few
operating regimes in Tab. II and present an example case for
both de-blocking of CBCS4-DCT and full frame TV in Fig. 7.

TABLE II: Block prior total variation for de-blocking and
global TV regularization using TVp. PSNR quality values
versus ground truth are shown with parallel processing time,
t, across the active pixel ratios. Highlighted entries are shown
in Fig. 7.

CBCS4 PSNR, dB t, s

m/n 0.25 0.5
ρ/n 0.125 0.25 0.50 0.125 0.25 0.5 0.125 0.25 0.5

DCT 15.69 20.84 21.96 15.94 21.19 22.01 0.22 0.08 0.04
DCT-TVp 20.65 21.80 22.17 21.29 21.98 22.20 0.67 0.55 0.46

TV 15.87 20.38 22.40 19.39 24.01 25.12 3.01 3.21 3.03
TV-TVp 21.67 22.65 22.88 22.67 22.89 22.98 3.36 3.57 3.60

The second TV pass with prior block information has the
largest effect in very high compression regions with low
illumination density. Improvements of > 5 dB can be achieved
across our dataset. This highlights the large compression
potential of our approach alongside the flexibility to control
illumination density, further increasing system efficiency.

20 40 60 80 100 120

20

40

60

80

100

120

0

0.5

1

1.5

2

2.5

3

3.5

4

Distance, m

(a) DCT (0.5, 0.125)
PSNR=20.16 dB

20 40 60 80 100 120

20

40

60

80

100

120

0

0.5

1

1.5

2

2.5

3

3.5

4

Distance, m

(b) DCT-TVp (0.5, 0.125)
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Fig. 7: De-blocking via global total variation regularisation and
block solution prior applied to CBCS4. In brackets are CBCS
conditions (m/n, ρ/n) with quality improvement indicated by
PSNR.

For the scene shown in Fig. 7, we can observe a clear
de-blocking and de-noising effect for CBCS4-DCT when pre-
sented with a very low illumination density of 12.5%. Mean-
while, when applied to 25% spatial compression and 12.5%

illumination density using TV, the reconstruction improves
dramatically with usable results with a significant reduction
in block artefacts.

Background Noise Performance. CBCS and dSparse can
sample the scene more rapidly, which in turn can allow for
longer exposure times if required, e.g. in high noise scenarios
to improve the signal-to-noise ratio (SNR), with the fully
compressive scheme allowing for the longest exposure times.
In terms of noise, the framework can maintain sufficient
reconstruction quality for up to 50 klux with modest increases
in exposure time illustrated in Fig. 8. For longer exposures the
reconstruction quality is likely to increase.

20 40 60 80 100 120

20

40

60

80

100

120

0

50

100

150

200

250

Distance, m

(a) 1 klux (0.3) - 0.77 ms
CBCS4 -DCT

PSNR=18.99 dB

20 40 60 80 100 120

20

40

60

80

100

120

0

50

100

150

200

250

Distance, m

(b) 10 klux (18) - 7.68 ms
CBCS4 -DCT

PSNR=18.67 dB

20 40 60 80 100 120

20

40

60

80

100

120

0

50

100

150

200

250

Distance, m

(c) 50 klux (181) - 15.36 ms
CBCS4 -DCT

PSNR=17.85 dB

20 40 60 80 100 120

20

40

60

80

100

120

0

50

100

150

200

250

Distance, m

(d) 1 klux (0.3) - 2.30 ms
dSparse4

PSNR=19.79 dB

20 40 60 80 100 120

20

40

60

80

100

120

0

50

100

150

200

250

Distance, m

(e) 10 klux (18) - 23.04 ms
dSparse4

PSNR=19.86 dB

20 40 60 80 100 120

20

40

60

80

100

120

0

50

100

150

200

250

Distance, m

(f) 50 klux (181) - 46.08 ms
dSparse4

PSNR=19.71 dB

Fig. 8: Noise effects on CBCS and dSparse for an automotive
B-Road scene at 3 noise levels and their respective simulated
sample time. Values in parenthesis after illuminance indicate
mean ambient photon count per bin.

Summary. The results show that our proposed frame-
works are competitive in terms of reconstruction quality and
comparable precision to the non-compressive approaches, as
shown by the plotted root mean squared error, RMSE=√
MSE, at distances up to 250 m in Fig. 9.
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Fig. 9: RMSE as a function of range for our dataset, binned
in 10 m increments. CBCS and dSparse outperform [8] dra-
matically with comparable performance to a full histogram
processing approach [14] across this challenging dataset com-
prised of varying scene type.

Our framework can achieve 20 Hz with high sampling
compression and 80 Hz for modest oversampling with flexible
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illumination density running on 8 logical cores in parallel.
Taking full advantage of the system architecture, we can
theoretically reach extremely high processing rates of 1 kHz,
while enabling long exposure times for robust performance
even in challenging situations. The framework performs well
in all the presented scenarios, without any obvious degradation
even at long distances, and no constraints on scene content or
surface counts across the entire frame.

VI. CONCLUSION

We have presented a practical approach to real-time
compressive depth sensing with an efficient sparse sampling
scheme for long range LiDAR. The major limitations of prior
art, namely the constraint to simple scenarios and very few
surfaces and/or slow processing times are overcome by the
use of a novel small-scale compressive depth framework.

A parallel block sparse LiDAR system architecture was
presented to distribute the small-scale compressive depth re-
construction across a large solid-state photon detector array
with a parallel processing architecture to enable effective
exploitation of future large solid-state LiDAR arrays for high-
resolution depth imaging. This architecture can scale well with
resolution, as performance is block-size bound rather than tied
to the problem size of the final frame resolution. Further, it
accommodates a flexible random sparse illumination scheme
allowing very low laser power per pattern exposure.

Our approach is capable of excellent depth reconstruction
performance even at long range with scope for noise suppres-
sion and frame rates per block of over 80 Hz with very low
processing latency of 10 ms without any major constraints
on the application scope with a theoretical potential of < 1
ms processing time with dedicated per block processing logic.

The compressive sensing depth framework makes the major
assumption of few surface returns in a small field-of-view
and only returns a single depth value per pixel. It would be
beneficial to extend this sparse depth framework to multi-
return recovery. The basis transforms considered in this work
were chosen primarily for speed and efficiency, but other
basis functions, e.g. total generalized variation, may perform
better and should be explored alongside efforts to reduce their
computational and resource impact on the proposed system,
for example with greedy optimization algorithms.
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