
ADMM For Consensus On Colored Networks

João F. C. Mota1,2, João M. F. Xavier2, Pedro M. Q. Aguiar2, and Markus Püschel3

Abstract— We propose a novel distributed algorithm for one
of the most fundamental problems in networks: the average
consensus. We view the average consensus as an optimization
problem, which allows us to use recent techniques and results
from the optimization area. Based on the assumption that
a coloring scheme of the network is available, we derive
a decentralized, asynchronous, and communication-efficient
algorithm that is based on the Alternating Direction Method of
Multipliers (ADMM). Our simulations with other state-of-t he-
art consensus algorithms show that the proposed algorithm is
the one exhibiting the most stable performance across several
network models.

I. I NTRODUCTION

Over the last decade, many algorithms have been proposed
for solving the averaging consensus problem: “given a net-
work of nodes, where each node holds a number, compute
the average of all the numbers and make it available in
all nodes.” The algorithms for this simple yet fundamental
problem are usually provided together with a detailed the-
oretical analysis, for example, convergence guarantees and
rates of convergence. Solving the average consensus problem
in a decentralized way is important in many applications
including sensor networks (e.g., clock synchronization and
parameter estimation), coordination of mobile autonomous
agents, and modeling social networks [1], [2], [3], [4].

One way to address consensus is to solve the following
optimization problem in a distributed way [5], [6]:

minimize
x

1

2

P∑

p=1

(x− θp)
2 , (1)

whereθp is the number held by nodep, as shown in Fig. 1.
The solution to (1) can be easily computed by differentiation
as x⋆ = θ⋆ = (1/P)

∑P

p=1 θp, the average of all the
nodes’ numbers. The goal in consensus is to make this
average available in all nodes, without aggregating data in
any kind of central or special node. The work in [5] applied
an incremental version of the subgradient method to (1),
resulting in a distributed, asynchronous algorithm. In [6], (1)
was solved by applying the Alternating Direction Method of
Multipliers (ADMM) to two different reformulations of (1).

In this paper, we introduce a novel, asynchronous con-
sensus algorithm that is also based on solving (1) in a

*This work was supported by the following grants from Fundação
para a Ciência e Tecnologia (FCT): CMU-PT/SIA/0026/2009, PTDC/EEA-
ACR/73749/2006, PEst-OE/EEI/LA0009/2011, and SFRH/BD/33520/2008
(through the Carnegie Mellon/Portugal Program managed by ICTI).

1Department of Electrical and Computer Engineering, Carnegie Mellon
University, Pittsburgh, USA

2Institute of Systems and Robotics, Instituto Superior Técnico, Technical
University of Lisbon, Portugal

3Department of Computer Science, ETH Zurich, Switzerland

1

θ1

4

θ4

6

θ6

2

θ2

5

θ5

7

θ7
3

θ3

Fig. 1. Example network withP = 7 nodes andE = 10 edges. The
network is colored with the following scheme:C1 = {1, 2, 3}, C2 = {4, 5},
C3 = {6, 7}.

distributed manner. Although we also apply ADMM, our
approach fundamentally differs from [6], since we consider
a different reformulation of (1) and use an extended version
of ADMM. Our reformulation assumes that a node coloring
scheme of the network is available beforehand. Based on
this assumption, we derive an algorithm whose performance
in terms of number of communications is comparable to
that of [1] and [7], the state-of-the-art algorithms for fast
consensus. The reformulation we apply here was originally
proposed in [8] in the context of finding sparse solutions
of linear systems and recently applied to other optimization
problems in [9].

The amount of communication used by a distributed
algorithm is an important measure of performance, since
communicating in a network is usually the most energy-
consuming operation, e.g., in sensor networks, or the slowest
one, e.g., in supercomputing. Our assumption of having a
node coloring available beforehand is realistic in many dis-
tributed scenarios. For example, some medium access (MAC)
protocols such as TDMA [10] already rely on some kind of
node coloring. Node coloring is a well studied problem and
many distributed algorithms are available (see [9] and the
references therein).

Related work. The existing algorithms for average con-
sensus can be divided in two classes: synchronous and asyn-
chronous algorithms. In a synchronous algorithm all nodes
perform the same operations at the same time, including
exchanging their solution estimates. Ifxk

p represents the
estimate (ofθ⋆) of nodep at discrete timek, the canonical
format of a synchronous consensus algorithm is [1], [4]

xk+1
p = appx

k
p +

∑

j∈Np

apjx
k
j , (2)

whereNp is the set of neighbors of nodep and theaij ’s

are positive weights that satisfy
∑

j∈Np∪{p} apj = 1, for
all p. The estimation variablexk

p is initialized with the
value held by nodep : x0

p = θp. Algorithm (2) can be
written in the matrix formatxk+1 = Axk, where xk =
(xk

1 , . . . , x
k
P) is the vector of estimates, and theijth entry

of the matrixA containsaij . Note that when nodesi andj
do not communicate directlyaij is set to zero, which makes
the nonzero pattern ofA reflect the topology of the network.
The convergence of (2) is usually studied through the spectral
properties ofA. While in synchronous algorithms all nodes
exchange estimates in the same time slot, in asynchronous
algorithms only a subset of nodes exchanges estimates
per time slot. Asynchronous algorithms include randomized
gossiping [11], [2] and deterministic gossiping [12], [2].
At each iteration of a canonical gossiping algorithm, two
neighboring nodesi and j are selected to exchange their
estimates and, after their exchange occurs, each estimate
is updated asxk+1

i = xk+1
j = (xk

i + xk
j)/2. Among

all the existing synchronous and asynchronous consensus
algorithms, the algorithms with faster convergences rates
are [1], [7] (see also [6]). The algorithm we propose here
is considered asynchronous (deterministic) and uses as few
communications as [1], [7], for many networks. This will be
shown in our simulations in section III.

Regarding methods for distributed optimization, we point
out the work of [13], which couples consensus algorithms
with subgradient algorithms to solve unconstrained optimiza-
tion problems. The subgradient algorithm, however, makes
the resulting method too slow. Several instances of opti-
mization problems were solved with the algorithms in [14]
and [15], which are also ADMM-based. In particular, both
algorithms were applied to the consensus problem in [6].
An overview and comparison of distributed optimization
algorithms for several problems can be found in [8], [9].

II. PROPOSEDALGORITHM

In this section, we derive and analyze the proposed algo-
rithm. We start by introducing some notation.

Notation. We assume a network withP nodes andE
edges and represent it withG = (V , E), whereV andE are
respectively the set of nodes and the set of edges. See Fig. 1
for an example. Each edge is represented with{i, j} = {j, i},
and {i, j} ∈ E means that nodesi and j communicate
directly and thus can exchange their estimates. We represent
the set of neighbors of nodep with Np and its degree
with Dp = |Np|.

As stated before, we assume a (node) coloring scheme is
available before the execution of the algorithm. A coloring
scheme is an assignment of numbers, called colors, to each
node such that no neighboring nodes have the same color.
Fig. 1 shows a coloring scheme that uses3 colors. If a
network is colored withC colors, we represent the nodes that
have colorc with Cc, c = 1, . . . , C. The number of nodes
in Cc is denoted withCc = |Cc|. Without loss of generality,
we assume the nodes are numbered such that the firstC1

nodes are inC1, the nextC2 nodes are inC2, and so on.
Fig. 1 illustrates this numbering scheme.

Problem manipulation. For simplicity, letfp(x) represent
the term in the cost function of (1) that nodep knows, i.e.,
fp(x) =

1
2 (x− θp)

2. The goal is to solve

minimize
x

P∑

p=1

fp(x) , (3)

in a distributed way. Since nodep only knows fp(x), all
nodes have to cooperate in order to solve (3). Note thatx is
a global variable whose optimal valueθ⋆ every node wants to
know. This motivates us to replicate copies ofx throughout
the entire network: nodep will hold the pth copy,xp, which
will be updated iteratively during the algorithm. We have,
however, to guarantee that all the copies are equal. Among
the several options for doing that, we choose to make it
edge-wise, i.e., if{i, j} ∈ E , we constrainxi = xj , with the
convention thati < j. This yields the following problem

minimize
x̄=(x1,...,xP)

∑P
p=1 fp(xp)

subject to xi = xj , {i, j} ∈ E ,
(4)

where the new variable is the collection of all copies:
x̄ = (x1, . . . , xP) ∈ R

P . Since we assume the network is
connected (it has only one component), all copies are equal
and consequently (3) and (4) are equivalent problems.

We now note that the constraints in (4) can be written
more compactly asB⊤x̄ = 0, whereB ∈ R

P×E is the
node-arc incidence matrix of the given network. InB, each
column is associated to an edge of the network: the column
associated to{i, j} ∈ E has1 in the ith entry and−1 in
the jth entry; the remaining entries have zeros. Given our
assumption on the ordering of the nodes and the coloring
scheme, we can writeB⊤x̄ = B⊤

1 x̄1+B⊤
2 x̄2+ · · ·+B⊤

C x̄C ,
wherex̄c collects the copies of the nodes inCc, i.e.,

x̄ = (x1, . . . , xC1

︸ ︷︷ ︸

x̄1

, . . . , xP−Cp+1, . . . , xP
︸ ︷︷ ︸

x̄C

) ,

andB is partitioned by rows accordingly. Therefore, (4) is
written equivalently as

minimize
x̄=(x̄1,...,x̄C)

∑C
c=1

∑

p∈Cc
fp(xp)

subject to B⊤
1 x̄1 + · · ·+B⊤

C x̄C = 0 .
(5)

Note that in (5) we aggregated the functions of the nodes
in Cc in the sum

∑

p∈Cc
fp(xp). This is the format to which

the Extended ADMM applies, as explained next.
Extended ADMM. The Alternating Direction Method of

Multipliers (ADMM) solves the following problem:

minimize
x1,x2

g1(x1) + g2(x2)

subject to A1x1 +A2x2 = 0 ,
(6)

where g1 and g2 are closed, convex functions, and the
matricesA1 andA2 have full column rank. ADMM consists
of iterating the following equations

xk+1
1 = argmin

x1

Lρ(x1, x
k
2 ;λ

k) (7)

xk+1
2 = argmin

x2

Lρ(x
k+1
1 , x2;λ

k) (8)

λk+1 = λk + ρ(A1x
k+1
1 +A2x

k+1
2) , (9)

where

Lρ(x1, x2;λ) = g1(x1) + g2(x2) + λ⊤(A1x1 +A2x2)

+
ρ

2
‖A1x1 +A2x2‖2 (10)

is the augmented Lagrangian of (6) with parameterρ > 0.
First, the augmented Lagrangian is minimized with respect
to (w.r.t.) the first variablex1 (see (7)); next, using the new
value for x1, Lρ is minimized w.r.t.x2. Finally, the dual
variableλ is updated in a gradient ascent way as (9). The
literature about ADMM is vast: see for example [16], [17]
and the references therein. It is known that the scheme (7)-(9)
converges to a solution of (6) under very mild assumptions.
Moreover, if one is interested only in the optimal value of (6),
not the variablesx1 andx2 solving it, the assumption of the
full column rankness ofA1 and A2 can be dropped. The
same assumption can be dropped in caseg1 andg2 are strictly
convex, since this is enough to guarantee that the sequences
produced by (7)-(9) converge [18].

There is a natural generalization of (7)-(9) for solving an
extension of (6) for the sum ofC ≥ 2 functions in the
objective and for the sum ofC terms in the constraints, i.e.,

minimize
x1,...,xC

∑C

c=1 gc(xc)

subject to
∑C

c=1Acxc = 0 ,
(11)

where each functiongc is closed and convex and each
matrix Ac has full column rank. Iterations (7)-(9) can be
generalized to solve this problem as follows:

xk+1
1 = argmin

x1

Lρ(x1, x
k
2 , . . . , x

k
C ;λ

k) (12)

xk+1
2 = argmin

x2

Lρ(x
k+1
1 , x2, x

k
3 , . . . , x

k
C ;λ

k)

...

xk+1
C = argmin

xC

Lρ(x
k+1
1 , xk+1

2 , . . . , xk+1
C−1, xC ;λ

k) (13)

λk+1 = λk + ρ

C∑

c=1

Acx
k+1
c , (14)

where the augmented Lagrangian is now

Lρ(x1, . . . , xC ;λ) =

C∑

c=1

gc(xc) + λ⊤
(C∑

c=1

Acxc

)

+
ρ

2

∥
∥
∥
∥

P∑

c=1

Acxc

∥
∥
∥
∥

2

. (15)

Although practical evidence suggests that the convergence
results for (7)-(9) may still hold for (12)-(14), that still
remains an open question. Very recently, though, it was
proved that the sequence produced by (12)-(14) solves (11)
under the assumption that all the functions are strongly
convex [18]. This result will guarantee the convergence of the
method we propose, since in our case the objective functions
are strongly convex. The convergence proof in [18] does
not require full column rankness of each matrixAc: strong

Algorithm 1 Consensus On Colored Networks

Initialization: for all p ∈ V, setγ1
p = x1

p = 0 andk = 1
1: repeat
2: for c = 1, . . . , C do
3: for all p ∈ Cc [in parallel] do

4: vkp = γk
p − ρ

∑
j∈Np

j<p

xk+1

j − ρ
∑

j∈Np

j>p

xk
j

5: xk+1
p = (θp − vkp)/(1 + ρDp)

6: Sendxk+1
p to Np

7: end for
8: end for

9: for all p ∈ V [in parallel] do

γk+1
p = γk

p + ρ
∑

j∈Np
(xk+1

p − xk+1

j)

10: end for
11: k ← k + 1
12: until some stopping criterion is met

convexity of all the functions is enough for proving the result.

Applying ADMM. Formulating the consensus problem
as (5) enables us to apply ADMM, since (5) and (11) have the
same format: make the associationgc(x̄c) =

∑

p∈Cc
gp(xp)

andAc = B⊤
c , for c = 1, . . . , C. If we apply iterations (12)-

(14) directly to (5), we see that each update ofx̄c yieldsCc

problems that can be solved in parallel. For example, the first
block variablex̄1 is updated as

x̄k+1
1 = argmin

x̄1=(x1,...,xC1
)

∑

p∈C1

fp(xp) + λk⊤B⊤
1 x̄1

+
ρ

2

∥
∥
∥B⊤

1 x̄1 +

C∑

c=2

B⊤
c x̄k

c

∥
∥
∥

2

, (16)

where we dropped the functions and the linear terms not
depending on̄x1. Developing the squared term in (16),

x̄⊤
1 B1B

⊤
1 x̄1 + 2x̄⊤

1

C∑

c=2

B1B
⊤
c x̄k

c +
∥
∥
∥

C∑

c=2

B⊤
c x̄k

c

∥
∥
∥

2

. (17)

In the first term of (17),B1B
⊤
1 is the first diagonal block

(of size C1 × C1) of the network Laplacian, which is
a diagonal matrix because the firstC1 nodes have the
same color and hence cannot be neighbors; each diagonal
element is the degree of nodep, Dp, and x̄⊤

1 B1B
⊤
1 x̄1 =

∑

p∈C1
Dpx

2
p. Regarding the second term,B1B

⊤
c is an

off-diagonal block of the Laplacian and contains−1 in
the ijth entry if nodesi and j are neighbors. Therefore,
x̄⊤
1

∑C

c=2 B1B
⊤
c x̄k

c = −∑

p∈C1

∑

j∈Np
xpx

k
j . Finally, the

last term of (17) does not depend onx̄1 and can dropped from
the optimization problem. Problem (16) is then simplified to

x̄k+1
1 = argmin

x̄1=(x1,...,xC1
)

∑

p∈C1

(

fp(xp)+
(
γk
p −ρ

∑

j∈Np

xk
j

)
xp

+
ρDp

2
x2
p

)

, (18)

where γk
p :=

∑

j∈Np
λk
{p,j} was obtained from the sec-

ond term in (16):(B1λ
k)⊤x̄1 =

∑

p∈C1

∑

j∈Np
λ{p,j}xp.

We decomposed the dual variableλ as (. . . , λ{i,j}, . . .),
whereλ{i,j} is associated to the constraintxi = xj , i.e.,
to the edge between nodei and j. Clearly, there are not
interdependencies in the cost function of (18) and, therefore,
it decomposes intoC1 problems that can be solved in
parallel. The same applies to the other block variables; the
only difference is that there must be paid attention to the
nodes’ relative numbering in the sum definingγk

p . Its general
definition isγk

p :=
∑

j∈Np
sign(j − p)λk

{p,j}, where sign(a)
gives 1 (resp. −1) if a ≥ 0 (resp. < 0). Algorithm 1
shows the resulting algorithm for the consensus problem,
i.e., with fp(x) =

1
2 (x− θp)

2 for all p.
Note that step 5 of Algorithm 1 contains the (closed-form)

solution of the problem that each node has to solve (see (18)):

xk+1
p = argmin

xp

1

2
(xp − θp)

2 + vkpxp +
ρDp

2
x2
p .

Also, the update of the dual variables corresponding to step9
was simplified. The reason is because nodep only requires
the sum of theλ{i,j}’s associated to its edges; see the
definition ofγk

p . Therefore, if we replace the updateλk+1
{i,j} =

λk
{i,j} + ρ sign(j− i)(xk+1

i −xk+1
j) into the definition ofγk

p

we obtain the expression of step 9.
Algorithm 1 is asynchronous in the sense that nodes

operate in a color-based order. First, the nodes with color1
perform steps 4 and 5 and obtain new estimatesxk+1

p ,
which are immediately sent to their neighbors. Next, nodes
with color 2 repeat the same tasks, and so on. Although
in Algorithm 1 all nodes with the same color operate at
the same time, in practice they do not need to, assuming
each node knows the colors of its neighbors. In that case, at
a given iteration, once a node has received the estimates
from all the neighbors with lower color, it has all the
information for computing a new estimate. According to
the same reasoning, step 9 also need not be carried out in
parallel: if a given node has received the estimatesxk+1

j

from all its neighbors, it can updateγp independently of the
other nodes. The conclusion is that, provided the nodes know
the colors of their neighbors, a color-based operation can be
carried out without any global coordination.

Convergence guarantees.Algorithm 1 is guaranteed to
converge due to the recent result in [18], which states that if
all the functions in (11) are strongly convex, then the gen-
eralized ADMM iterations (12)-(14) solve (11). In our case,
eachgc in (11) is given by

∑

p∈Cc
gp(xp) =

1
2

∑

p∈Cp
(xp −

θp)
2, which is strongly convex. The convergence is then

assured by the equivalence between (1) and (5).

III. S IMULATION RESULTS

We now provide experimental comparison of Algorithm 1
with [1], [7], which are known to be state-of-the-art for
fast consensus. We leave [6] out because it performs slower
than [7] in the scenarios considered here (noise-free).

Performance measure: communication steps.We will
compare the algorithms using the measurecommunications
steps. We say that a communication step occurred after

TABLE I

NETWORK PARAMETERS

Number Model Parameters

1 Erdős-Rényi 0.25

2 Erdős-Rényi 0.75

3 Watts-Strogatz (2, 0.8)

4 Watts-Strogatz (4, 0.6)

5 Barabasi-Albert ——

6 Geometric 0.2

7 Lattice ——

all the nodes in the network have updated their estimates
and exchanged them with their neighbors. Since all the
algorithms we compare consist of a single loop containing
these operations, the number of communication steps will be
equal to the number of iterations. However, we use the term
“communication steps” instead of “number of iterations”
because one iteration of Algorithm 1 may take longer than
one iteration of either [1] or [7]. The reason is because Algo-
rithm 1 is asynchronous, while [1] and [7] are synchronous,
i.e., all nodes perform at the same time. Hence, in networks
that allow all nodes to communicate at the same time, an
iteration of [1], [7] is faster than an iteration of Algorithm 1.
We do not take into account the cost of coloring the network
for two reasons. First, the coloring can be done offline before
any data arrives, and it needs to be done only once. Second,
due to packet collisions, no algorithm can be implemented
in a wireless network without using a MAC protocol [19,
Ch.6]. A schedule-based MAC protocol, for example TDMA
or FDMA, requires computing an interference scheme of
the network beforehand; an interference scheme is a valid
coloring scheme and thus can be used in Algorithm 1.
Contention-based MAC protocols, on the other hand, make
any synchronous algorithm become asynchronous, besides
being less energy-efficient.

Network models. To compare all algorithms, we gener-
ated networks according to7 different models, shown in
Table I. The used models and the role of its parameters
are explained in Table II. For each network in Table I, we
generated8 networks of different sizes, ranging from10
to 2000 nodes. The values for the parameters shown in
Table I represent just an average, since every time we created
a non-connected network, we would create another with the
parameters slightly changed in the direction to make the new
network connected with larger probability.

Experimental setting. For each network realization, we
drewθp randomly and independently from a Gaussian distri-
bution with mean10 and standard deviation100. We choseρ
in Algorithm 1 from the set{10−4, 5 × 10−4, 10−3, 5 ×
10−3, 10−2, 5 × 10−2, 0.1, 0.5, 1, 5, 10, 50, 102}, since there
is not a simple way of choosing the bestρ for an ADMM-
based algorithm.1 Therefore, for each network configuration

1An exception is [6]. In fact, analyzing Algorithm 1 within the same
framework as [6] seems to be a promising direction of research.

Number of nodes

(a) Network1: Erdős-Rényi,p = 0.25

Communication steps

0

25

50

75

100

10 50 100 200 500 700 1000 2000

Alg. 1[7]

[1]

Number of nodes

(b) Network2: Erdős-Rényi,p = 0.75

Communication steps

0

25

50

75

100

10 50 100 200 500 700 1000 2000

Alg. 1

[1], [7]

Number of nodes

(c) Network3: Watts-Strogatz,(n, p) = (2, 0.8)

Communication steps

0

25

50

75

100

10 50 100 200 500 700 1000 2000

Alg. 1

[7]

[1]

Number of nodes

(d) Network4: Watts-Strogatz,(n, p) = (4, 0.6)

Communication steps

0

25

50

75

100

10 50 100 200 500 700 1000 2000

Alg. 1

[7]

[1]

Number of nodes

(e) Network5: Barabasi

Communication steps

0

100

200

300

10 50 100 200 500 700 1000 2000

Alg. 1

[7]

[1]

Number of nodes

(f) Network 6: Geometric,d = 0.2

Communication steps

0

100

200

300

400

500

10 50 100 200 500 700 1000 2000

Alg. 1

[7]

[1]

Number of nodes

(g) Network7: Lattice

Communication steps

0

100

200

300

400

500

10 50 100 200 500 700 1000 2000

Alg. 1

[7]

[1]

Fig. 2. Number of communication steps to achieve a10−2% precision as a function of the number of nodes. The networks were generated according to
Table I. Note that (e), (f) and (g) have a scale for the vertical axis different from the other plots.

TABLE II

NETWORK MODELS

Name Parameters Description

Erdős-Rényi p Every pair of nodes{i, j} is connected or not with probabilityp

Watts-Strogatz (n, p) First, it creates a lattice where every node is connected ton nodes; then, it rewires every link with
probability p. If link {i, j} is to be rewired, it removes the link, and connects nodei or nodej (chosen with
equal probability) to another node in the network, chosen uniformly.

Barabasi-Albert —— It starts with one node. At each step, onenode is added to the network by connecting it to2 existing nodes:
the probability to connect it to nodep is proportional toDp.

Geometric d It dropsP points, corresponding to the nodes of the network, randomlyin a [0, 1]2 square; then, it connects
nodes whose (Euclidean) distance is less thand.

Lattice —— Creates a lattice of dimensionsm× n; m andn are chosen to make the lattice as square as possible.

we ran Algorithm 1 for all theρ’s and chose the best result.
Regarding algorithm [1], we ran its fastest version, under

the equal neighbor model, which assumes the sum of all
nodes’ degrees,

∑P

p=1 Dp, is known by all the nodes. For
algorithm [7], we chose the optimal value for a parameter
on which it depends, which is a function of the second largest
eigenvalue of the weighing matrix; as in the simulations
of [7], we used a Metropolis-Hastings weighing matrix.

All algorithms stopped after achieving either a10−2%
solution accuracy, i.e.,‖xk − 1P θ

⋆‖/|
√
Pθ⋆| ≤ 10−4, or

the maximum number of500 communication steps.
Results. Fig. 2 shows the results of our experiments.

Each plot depicts the number of communication steps as a
function of the number of nodes in the network. It can be
seen that all algorithms require about the same number of
iterations in the networks of Figs. 2(a), 2(b), 2(c), and 2(d)
and, curiously, that number seems to be independent of
the size of the network. While our Algorithm 1 performed
worse than the other algorithms for Erdős-Rényi networks
(Figs. 2(a) and 2(b)), it performed best in Barabasi networks
(Fig. 2(e)). For the remaining networks, the behavior of
the proposed algorithm is similar to the best of either [1]
or [7]. In particular, for Watts-Strogatz networks with pa-
rameters(2, 0.8), Fig. 2(c), Algorithm 1 required the least
number of communication steps in40% of the cases, the
same percentage as [7]. For the other type of Watts-Strogatz
networks, i.e., Fig. 2(d), Algorithm 1 was the best only once,
while [7] was the best for the remaining scenarios. This was
exactly the opposite case of Fig. 2(e), where Algorithm 1
required more communications than [7] only for the smallest
network. Regarding Figs. 2(f) and 2(g), Algorithm 1 was the
best, respectively, in75% and29% of the cases.

Overall, we can say that Algorithm 1 has a performance
very similar to [7], and slightly better than [1]. Moreover,
from the plots of Fig. 2 we can conclude that our Algo-
rithm 1, among all, exhibits a near-optimal (or optimal)
performance for all tested network types.

IV. CONCLUSIONS

We proposed a new algorithm for the average consensus
problem. The algorithm resulted from applying ADMM to
an optimization problem formulation of consensus, and its
convergence is guaranteed by recent results coming from

the optimization area. The proposed algorithm assumes a
network coloring is available, which is realistic in many
networks. We compared our algorithm with the fastest con-
sensus algorithms and concluded that, while having a perfor-
mance similar to those algorithms, the proposed algorithm
appears to be the stablest across different network models.

REFERENCES

[1] A. Olshevsky and J. Tsitsiklis, “Convergence speed in distributed
consensus and averaging,”SIAM Review, vol. 53, no. 4, 2011.

[2] A. Dimakis, S. Kar, J. Moura, M. Rabbat, and A. Scaglione,“Gossip
algorithms for distributed signal processing,”Proc. IEEE, vol. 98,
no. 11, 2010.

[3] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation
in networked multi-agent systems,”Proc. IEEE, vol. 95, no. 1, 2007.

[4] M. DeGroot, “Reaching a consensus,”J. American Statistical Associ-
ation, vol. 69, no. 345, pp. 118–121, 1974.

[5] M. Rabbat and R. Nowak, “Distributed optimization in sensor net-
works,” in Proc. IPSN’04, 2004, pp. 20–27.

[6] T. Erseghe, D. Zennaro, E. Dall’Anese, and L. Vangelista, “Fast
consensus by the alternating direction multipliers method,” IEEE
Trans. Sig. Proc., vol. 59, no. 11, 2011.

[7] B. Oreshkin, M. Coates, and M. Rabbat, “Optimization andanalysis
of distributed averaging with short node memory,”IEEE Trans. Sig.
Proc., vol. 58, no. 5, 2010.

[8] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Distributed basis
pursuit,” IEEE Trans. Sig. Proc., vol. 60, no. 4, 2012.

[9] ——, “D-ADMM: A communication-efficient distributed algorithm
for separable optimization,” 2012, submitted, [Online] http://arxiv.org/
abs/1202.2805.

[10] S. Ergen and P. Varaiya, “TDMA scheduling algorithms for wireless
sensor networks,”Wireless Netw., vol. 16, pp. 985–997, 2010.

[11] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Trans. Info. Th., vol. 52, no. 6, 2006.

[12] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
in IEEE Conf. Dec. Control, vol. 5, 2003.

[13] A. Nedíc and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,”IEEE Tran. Aut. Contr., vol. 54, no. 1, 2009.

[14] H. Zhu, G. Giannakis, and A. Cano, “Distributed in-network channel
decoding,”IEEE Trans. Sig. Proc., vol. 57, no. 10, 2009.

[15] I. Schizas, A. Ribeiro, and G. Giannakis, “Consensus inad hoc
wsns with noisy links - part i: Distributed estimation of deterministic
signals,” IEEE Trans. Sig. Proc., vol. 56, no. 1, pp. 350–364, 2008.

[16] D. Bertsekas and J. Tsitsiklis,Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, 1997.

[17] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternatingmethod of
multipliers,” Found. Trends Mach. Learning, vol. 3, no. 1, 2011.

[18] D. Han and X. Yuan, “A note on the alternating direction method of
multipliers,” J. Optim. Theory Appl., vol. 152, 2012.

[19] B. Krishnamachari,Networking Wireless Sensors. Cambridge Uni-
versity Press, 2005.

