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Abstract— We propose a novel distributed algorithm for one 0
3

of the most fundamental problems in networks: the average /0\®97 °

consensus. We view the average consensus as an optimization

problem, which allows us to use recent techniques and resuit 0, \ /

from the optimization area. Based on the assumption that 4 5
_ a/
/ 0;

a coloring scheme of the network is available, we derive
Fig. 1. Example network withP = 7 nodes andE = 10 edges. The

a decentralized, asynchronous, and communication-effiai¢
algorithm that is based on the Alternating Direction Method of

|. INTRODUCTION network is colored with the following schem@; = {1, 2,3}, C2 = {4, 5},
C3 ={6,7}.

Multipliers (ADMM). Our simulations with other state-of-t he- @
art consensus algorithms show that the proposed algorithmsi 06
the one exhibiting the most stable performance across sewadr
network models.

Over the last decade, many algorithms have been proposed
for solving the averaging consensus problem: “given a net-
work of nodes, where each node holds a number, compute
the average of all the numbers and make it available ifistributed manner. Although we also apply ADMM, our
all nodes.” The algorithms for this simple yet fundamenta®PProach fundamentally differs from [6], since we consider
problem are usually provided together with a detailed the? different reformulation of (1) and use an extended version
oretical analysis, for example, convergence guaranteds aff ADMM. Our reformulation assumes that a node coloring
rates of convergence. Solving the average consensus probfgcheme of the network is available beforehand. Based on
in a decentralized way is important in many applicationgh's assumption, we derive an algorithm whose performance

including sensor networks (e.g., clock synchronizatiod anin terms of number of communications is comparable to
parameter estimation), coordination of mobile autonomod§at of [1] and [7], the state-of-the-art algorithms for tfas

05
2

agents, and modeling social networks [1], [2], [3], [4]. consensus. The _reformulation we a_ppl_y here was origi_nally
One way to address consensus is to solve the followirfOPOSed in [8] in the context of finding sparse solutions
optimization problem in a distributed way [5], [6]: of linear systems and recently applied to other optimizatio
b problems in [9].
minimizeEZ(x—H )2, 1) The amount of communication used by a distributed
z 2 1 P algorithm is an important measure of performance, since

communicating in a network is usually the most energy-
consuming operation, e.g., in sensor networks, or the sfowe
one, e.g., in supercomputing. Our assumption of having a
as z* L 0 = (1/P) Zzlj:l_ep' the average of all the node cgloring a\?ailablepbefo?ehand is reaIiZtic in many dgi]s
nodes ”“m'_“ers- '_I'he goal in CONSensus 1S to_make th_t'ﬁbuted scenarios. For example, some medium access (MAC)
average available in all nodes, without aggregating data otocols such as TDMA [10] already rely on some kind of
any kind of central or special node. The work in [5] applied, e coloring. Node coloring is a well studied problem and

an inprer_nenta_l V(_ersion of the subgradient .method to (1 any distributed algorithms are available (see [9] and the
resulting in a distributed, asynchronous algorithm. In [&) references therein).

was solved by applying the Alternating Direction Method of
y abpyIng v Related work. The existing algorithms for average con-

Multipliers (ADMM) to two different reformulations of (1). . ;
P ( ) @ ;sensus can be divided in two classes: synchronous and asyn-

In this paper, we introduce a novel, asynchronous co ) s
sensus algorithm that is also based on solving (1) in %pronous algorithms. In a synchronous algorithm all nodes

perform the same operations at the same time, including
*This work was supported by the following grants from Furdtag exchanging their solution estimates. df represents the
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whered, is the number held by node as shown in Fig. 1.
The solution to (1) can be easily computed by differentratio

(through the Carnegie Mellon/Portugal Program managedCdy)! format of a synchronous consensus algorithm is [1], [4]
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are positive weights that satistjeNpU{p} ap; = 1, for Problem manipulation. For simplicity, letf,(x) represent
all p. The estimation variabler is initialized with the ~the term in the cost function of (1) that nogeknows, i.e.,
value held by nodep: 2% = 6,. Algorithm (2) can be /[p(z)= 2(z —6,)%. The goal is to solve

written in the matrix formatz*+! = Az*, wherez® = P

(zh,.. .,:c’jg_) is the vector of estimates, and thgh entry minimize 3" f,(z) , ©)

of the matrix A containsa;;. Note that when nodesand j I
do not communicate directly;; is set to zero, which makes . L .
the nonzero pattern of reflect the topology of the network. n 3 dlztnbuied way. Stln(_:e n(édﬁ tonly Iknov:\%/s fﬁ(?’jg”t

The convergence of (2) is usually studied through the sabctrno Iets) lave. (t))lcoor?era € '?. orler lgéso ve ( ).d ote tat

properties ofA. While in synchronous algorithms all nodes? 9'0bal variable whose optimal value every node wants to

exchange estimates in the same time slot, in asynchronok ow. tT.h'S mn?vt'ViFeS gs tq"r(:]pl;gagle Cct)r? ms:zofhrougﬁoat
algorithms only a subset of nodes exchanges estimat entire network. nodg will ho € pih copy,z,, Whic

per time slot. Asynchronous algorithms include randomizeﬁ(')\llv:\?e?ﬂgatiir';enrgtévi?;tdzﬁ'?ﬁetzg ?é%og:zrz' 1\1/\:; 2?;’5}]
gossiping [L1], [2] and deterministic gossiping [12], [2]. he seve:ral ?) tions for doing that V\?e chooseqto ;nake itg
At each iteration of a canonical gossiping algorithm, tvvc§d eral options pa 9 't - ith th
neighboring nodes and j; are selected to exchange theirS49e-WISE, "he", 'f{z’,]}_l_ﬁ. ’WTdCO?]S rfa'lrlwi ~ T W:)l €
estimates and, after their exchange occurs, each estimgvention that < j. This yields the following problem

is updated asei™' = 2! = (aF + 2%)/2. Among minimize 25:1 Folay)
all the existing synchronous and asynchronous consensus z=(z1,...,7P) o
algorithms, the algorithms with faster convergences rates subjectto w; =x;, {i,j} €&,

are [1], [7] (see also [6]). The algorithm we propose herevhere the new variable is the collection of all copies:

p=1

(4)

is considered asynchronous (deterministic) and uses as few= (x,,...,2p) € R”. Since we assume the network is
communications as [1], [7], for many networks. This will beconnected (it has only one component), all copies are equal
shown in our simulations in section Ill. and consequently (3) and (4) are equivalent problems.

Regarding methods for distributed optimization, we point \We now note that the constraints in (4) can be written
out the work of [13], which couples consensus algorithmgore compactly as3™z = 0, where B € RP*E s the
with subgradient algorithms to solve unconstrained optEmi node-arc incidence matrix of the given network. ) each
tion problems. The subgradient algorithm, however, makeslumn is associated to an edge of the network: the column
the resulting method too slow. Several instances of optissociated tdi, j} € £ has1 in the ith entry and—1 in
mization problems were solved with the algorithms in [14}he jth entry; the remaining entries have zeros. Given our
and [15], which are also ADMM-based. In particular, bothassumption on the ordering of the nodes and the coloring

algorithms were applied to the consensus problem in [6kcheme, we can writB Tz = Bl %+ By To+- -+ Bl Zc,
An overview and comparison of distributed optimizationyherez, collects the copies of the nodesdy, i.e.,

algorithms for several problems can be found in [8], [9]. -
L= (Il,...,Icl,--.,IP,CP+1,...,IP),

Il. PROPOSEDALGORITHM

1 Tc

ritr!r:ﬂfh\ll\s/esggr?r;),yV\i/ﬁt:)e(jrl;\i:einzngo?:lzétea::;.proposed alg(fzm_dB is pa_irtitioned by rows accordingly. Therefore, (4) is
Notation. We assume a network witt® nodes ande ~ WNten equivalently as

edges gnd represent it with= (V,£), whereV and& are _ lnif‘imige chzl ZPECC fo(zp)
respectively the set of nodes and the set of edges. See Fig. 1 7=(21,...,3C) . . (5)
for an example. Each edge is represented Withi} = {j,4}, subjectto By 2y +---+ Boic =0.
and {i,j} € £ means that nodes and ; communicate Note that in (5) we aggregated the functions of the nodes
directly and thus can exchange their estimates. We represénc, in the sumd_ . f,(z,). This is the format to which
the set of neighbors of node with N, and its degree the Extended ADMM applies, as explained next.
with D, = [N, |. Extended ADMM. The Alternating Direction Method of

As stated before, we assume a (node) coloring schemensltipliers (ADMM) solves the following problem:
available before the execution of the algorithm. A coloring L
minimize g1 (z1) + go(2)

scheme is an assignment of numbers, called colors, to each o130 (6)
node such that no neighboring nodes have the same color. subjectto Ajxq + Asxs =0,

Fig. 1 shows a coloring scheme that usk<olors. If a
network is colored withC' colors, we represent the nodes tha
have colorc with C., ¢ = 1,...,C. The number of nodes
in C.. is denoted withC,. = |C..|. Without loss of generality,
we assume the nodes are numbered such that theCfirst 2T = argmin L, (21, 25; \F) )
nodes are irCy, the nextC, nodes are inC,, and so on. o
Fig. 1 illustrates this numbering scheme.

where g; and g, are closed, convex functions, and the
hatricesAl and A, have full column rank. ADMM consists
of iterating the following equations

ahtt = argn;izn Ly (ah Tt 2a5 NF) (8)



MNFLZ NP (A i+ Apahtty (9) Algorithm 1 Consensus On Colored Networks
Initialization: for all p € V, sety, =z, =0 andk =1

where

1: repeat
T 2: for c=1,...,C do
Ly(x1,22;\) = g1(w1) + g2(w2) + A" (Ar21 + Aoxa) 3: for all p € C. [in parallel] do
+ g”Al«Tl + AgxgHQ (10) 4: v;f = fy;f — PngNp méﬁl — pzjng mf
I<p j>p
is the augmented Lagrangian of (6) with parameter 0. 5 ekt = (0, —vF)/(1 + pDy)

First, the augmented Lagrangian is minimized with respectG. Sendz"+! to A*
to (w.r.t.) the first variabler; (see (7)); next, using the new P P
value for z1, L, is minimized w.r.t.z,. Finally, the dual 7 end for

variable \ is updated in a gradient ascent way as (9). The®  end for

literature about ADMM is vast: see for example [16], [17] 9:  for all p € V [in parallel] do
and the references therein. It is known that the schemed{j7)-( AL S|
converges to a solution of (6) under very mild assumptions. ? ! 7N
Moreover, if one is interested only in the optimal value of (6 i)f Z“i f]‘;rJr .

not the variables:; andxs solving it, the assumption of the 12 until some stopping criterion is met
full column rankness of4d; and A, can be dropped. The
same assumption can be dropped in gasendg- are strictly
convex, since this is enough to guarantee that the sequences

produced by (7)-(9) converge [18]. convexity of all the functions is enough for proving the fésu

There is a natural generalization of (7)-(9) for solving an Applying ADMM. Formulating the consensus problem
extension of (6) for the sum of’ > 2 functions in the as (5) enables us to apply ADMM, since (5) and (11) have the
objective and for the sum af' terms in the constraints, i.e., same format: make the associatigr(z.) = > pec, 9p(Tp)

minimize ZCCZI ge(we) andA,? =B/!, forc=1,...,C. If we apply |te_rat|pns (12)-
T1,.TC (11) (14) directly to (5), we see that each updaterpfyields C.
subject to chzl Acze =0, problems that can be solved in parallel. For example, the firs

where each functiony. is closed and convex and eachPlock variablez, is updated as

matrix A. has full column rank. Iterations (7)-(9) can be

—k+1 _ . ET _
generalized to solve this problem as follows: = ilf“(iglmlilc ) Z fplap) + A% B
=@1,70y) gy

k1 _ k1
T =2

¥ = argmin L, (1,25, ..., 2k \F) (12) c 9
k " k +BHBl 5714-23355 . (16)
it ::argrnhllw(xl+l,x2,x§,...,Ié;kk) 2 =
) -
where we dropped the functions and the linear terms not
depending orx;. Developing the squared term in (16),
ah = arg Irmlén L (b ab ™t ek e AF)(13) c c ,
c B BB & +22] Y BBl &k + HZ Bl . a7
AL — Ak PZACIIZH 7 (14) c=2 c=2
e=1 In the first term of (17),B, By is the first diagonal block
where the augmented Lagrangian is now (of size C1 x C4) of the network Laplacian, which is
o o a diagonal matrix because the fir6t; nodes have the
Ny T same color and hence cannot be neighbors; each diagonal
Lo(@1, .. w03 A) = Z;gc(xc) +A (Z_; Acxc) element is the degree of noge D,, andz{ B1 B 71 =

9 Zpecl Dpr,. Regarding the second terni3; B is an

P
ZACIC (15) off-diagonal block of the Laplacian and containsl in
g the ijtch entry if nodesi and j are neighbors. Therefore,
i i IS, BiBlzk = =Y o > .cn mpah. Finally, the
Although practical evidence suggests that the convergenf:ai!-:ét torm of (17) does notdgpelnd;%pa’ﬁd can dropped from

result_s for (7)-(9) may .St'” hold for (12)-(14), that.s'ull the optimization problem. Problem (16) is then simplified to
remains an open question. Very recently, though, it was

p
+2

proved that the sequence produced by (12)-(14) solves (11)_x+1 . ( K k
under the assumption that all the functions are strongly o1 _flj(igﬁlj?cl) ; f”(xp)_i_(% P GZN xﬂ)x”
convex [18]. This result will guarantee the convergencéef t P D I=r
method we propose, since in our case the objective functions + p_;xg) ., (18)

are strongly convex. The convergence proof in [18] does
not require full column rankness of each matrdx: strong where 7,’,? = ZjeNp /\’{“p,j} was obtained from the sec-



TABLE |

: : YT =
ond term in (16):(BiX") 21 = Ypec, 2jen, Mpi} - NETWORK PARAMETERS

We decomposed the dual variable as (..., Ag j3,...),
where \y; ;1 is associated to the constraint = z;, i.e.,

to the edge between nodeand j. Clearly, there are not Number Model Parameters
interdependencies in the cost function of (18) and, theegfo 1 Erdbs-Rényi 0.25

it decomposes intoC; problems that can be solved in 2 ErdSs-Renyi 0.75
parallel. The same applies to the other block variables; the 3 Watts-Strogatz (2,0.8)
only difference is that there must be paid attention to the 4 Watts-Strogatz (4,0.6)
nodes’ relative numbering in the sum defininfy Its general S Barabasi-Albert —
definition isyj := Y=, Sign(j — p)Af, ;,, where sigiia) ;5 f:tglet“c i

gives 1 (resp. —1) it a > 0 (resp. < 0). Algorithm 1
shows the resulting algorithm for the consensus problem,
i.e., with f,(z) = 3(z — 6,)? for all p.
Note that step 5 of Algorithm 1 contains the (closed-formall the nodes in the network have updated their estimates
solution of the problem that each node has to solve (see:(183@nd exchanged them with their neighbors. Since all the
1 ) . pD, algorithms we compare consist of a single Iloop containing
= arg H;gl 5(% —0p)" tupap + 5 - these operations, the number of communication steps will be
. equal to the number of iterations. However, we use the term
Also, the update of the dual yariables correspondmgtp@tep.communicaﬂon steps” instead of “number of iterations”
was simplified. The reason is because npdenly requires pecause one iteration of Algorithm 1 may take longer than
the sum of theA; ;)'s associated to its edges; see the)ne jteration of either [1] or [7]. The reason is because Algo

k+1
ZCp

. . . 1 . . R
definition of ;. Therefore, if we replace the updat®'s =  rithm 1 is asynchronous, while [1] and [7] are synchronous,
N iy Fpsign(j — i) (T — 21 into the definition ofy*  i.e., all nodes perform at the same time. Hence, in networks
we obtain the expression of step 9. that allow all nodes to communicate at the same time, an

Algorithm 1 is asynchronous in the sense that nodeigeration of [1], [7] is faster than an iteration of Algorith1.
operate in a color-based order. First, the nodes with cblorWe do not take into account the cost of coloring the network
perform steps 4 and 5 and obtain new estimaf§§1, for two reasons. First, the coloring can be done offline lfor
which are immediately sent to their neighbors. Next, nodesny data arrives, and it needs to be done only once. Second,
with color 2 repeat the same tasks, and so on. Althougtue to packet collisions, no algorithm can be implemented
in Algorithm 1 all nodes with the same color operate ain a wireless network without using a MAC protocol [19,
the same time, in practice they do not need to, assumir@h.6]. A schedule-based MAC protocol, for example TDMA
each node knows the colors of its neighbors. In that case, @t FDMA, requires computing an interference scheme of
a given iteration, once a node has received the estimatég network beforehand; an interference scheme is a valid
from all the neighbors with lower color, it has all thecoloring scheme and thus can be used in Algorithm 1.
information for computing a new estimate. According toContention-based MAC protocols, on the other hand, make
the same reasoning, step 9 also need not be carried outainy synchronous algorithm become asynchronous, besides
parallel: if a given node has received the estimazt:§§1 being less energy-efficient.
from all its neighbors, it can updatg independently of the  Network models. To compare all algorithms, we gener-
other nodes. The conclusion is that, provided the nodes knaswed networks according t@ different models, shown in
the colors of their neighbors, a color-based operation @n fTable |. The used models and the role of its parameters
carried out without any global coordination. are explained in Table Il. For each network in Table I, we

Convergence guaranteesAlgorithm 1 is guaranteed to generatedS networks of different sizes, ranging fron
converge due to the recent result in [18], which states thattio 2000 nodes. The values for the parameters shown in
all the functions in (11) are strongly convex, then the gerfable | represent just an average, since every time we create
eralized ADMM iterations (12)-(14) solve (11). In our casea non-connected network, we would create another with the

eachg. in (11) is given by)" . g,(z,) = 3 >_pec,(@» —  parameters slightly changed in the direction to make the new
6,)%, which is strongly convex. The convergence is themetwork connected with larger probability.
assured by the equivalence between (1) and (5). Experimental setting. For each network realization, we

drewd,, randomly and independently from a Gaussian distri-

) . ] ) bution with mearl0 and standard deviatiol00. We chosey
We now provide experimental comparison of Algorithm 1y Algorithm 1 from the set{10=%,5 x 10~%,1073,5 x

with [1], [7], which are known to be state-of-the-art f0r1073’1072’5 x 1072,0.1,0.5,1,5, 10,50, 102}, since there

fast consensus. We leave [6] out because it performs slowgrnot a simple way of choosing the besfor an ADMM-

than [7] in the scenarios considered here (noise-free).  pased algorithm.Therefore, for each network configuration
Performance measure: communication stepsWe will

compare the algorithms usmg the measmmmun'ca“ons 1An exception is [6]. In fact, analyzing Algorithm 1 within ¢hsame
steps. We say that a communication step occurred aftetamework as [6] seems to be a promising direction of researc

Ill. SIMULATION RESULTS
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Communication steps
100

75

10 50 100 200 500 700 1000 2000
Number of nodes

(c) Network 3: Watts-Strogatz(n, p) = (2,0.8)
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Table I. Note that (e), (f) and (g) have a scale for the vdriiods different from the other plots.



TABLE Il
NETWORK MODELS

Name Parameters Description
Erd6és-Rényi P Every pair of nodeq, j} is connected or not with probability
Watts-Strogatz (n,p) First, it creates a lattice where every node is connectec tnodes; then, it rewires every link with

probability p. If link {z, 5} is to be rewired, it removes the link, and connects nbdenode; (chosen with
equal probability) to another node in the network, choseifotmly.

Barabasi-Albert —_— It starts with one node. At each step, moge is added to the network by connecting iRtexisting nodes:
the probability to connect it to node is proportional toD,,.

Geometric d It drops P points, corresponding to the nodes of the network, randoméy|[0, 1]2 square; then, it connects
nodes whose (Euclidean) distance is less tthan

Lattice o Creates a lattice of dimensions x n; m andn are chosen to make the lattice as square as possible.

we ran Algorithm 1 for all thep’s and chose the best result.the optimization area. The proposed algorithm assumes a
Regarding algorithm [1], we ran its fastest version, undemetwork coloring is available, which is realistic in many
the equal neighbor model, which assumes the sum of alktworks. We compared our algorithm with the fastest con-
nodes’ degreeszfz1 D,, is known by all the nodes. For sensus algorithms and concluded that, while having a perfor
algorithm [7], we chose the optimal value for a parametemance similar to those algorithms, the proposed algorithm
on which it depends, which is a function of the second largesppears to be the stablest across different network models.
eigenvalue of the weighing matrix; as in the simulations

of [7], we used a Metropolis-Hastings weighing matrix.
All algorithms stopped after achieving either18@—2% [1] A. Olshevsky and J. Tsitsiklis, “Convergence speed istributed

. . k « B nx 4 consensus and averaging’AM Review, vol. 53, no. 4, 2011.
solution accuracy, I.e.|,|:v — 1p0 ||/| Py | < 1077, or [2] A. Dimakis, S. Kar, J. Moura, M. Rabbat, and A. Scagliot®pssip

the maximum number o500 communication steps. algorithms for distributed signal processind?toc. |EEE, vol. 98,
Results. Fig. 2 shows the results of our experiments.  no. 11, 2010.

. T ] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus armpecation
Each p|0t depICtS the number of communication steps as in networked multi-agent systems?toc. |IEEE, vol. 95, no. 1, 2007.

function of the number of nodes in the network. It can be[4] M. DeGroot, “Reaching a consensus,” American Statistical Associ-
seen that all algorithms require about the same number of ation, vol. 69, no. 345, pp. 118-121, 1974.

[5] M. Rabbat and R. Nowak, “Distributed optimization in sen net-
iterations in the networks of Figs. 2(a), 2(b), 2(c), and)2(d works,” in Proc. IPSN'04, 2004, pp. 20-27.

and, curiously, that number seems to be independent g6] T. Erseghe, D. Zennaro, E. DallAnese, and L. Vangelisteast
the size of the network. While our Algorithm 1 performed consensus by the alternating direction multipliers methd&EE

- . Trans. Sg. Proc., vol. 59, no. 11, 2011.
worse than the other algorithms for BxtRényi networks [7] B. Oreshkin, M. Coates, and M. Rabbat, “Optimization awhlysis

(Figs. 2(a) and 2(b)), it performed best in Barabasi net@ork ~ of distributed averaging with short node memonEEE Trans. Sig.
(Fig. 2(e)). For the remaining networks, the behavior of  Proc. vol. 58, no. 5, 2010.

. . .o . [8] J. Mota, J. Xavier, P. Aguiar, and M. Pischel, “Distribdt basis
the proposed algorithm is similar to the best of either [1] pursuit” 1EEE Trans. Sig. Proc., vol. 60, no. 4, 2012.

or [7]. In particular, for Watts-Strogatz networks with pa- [9] —, “D-ADMM: A communication-efficient distributed atyyithm
rameters(2, 0.8), Fig. 2(c), Algorithm 1 required the least fobr ?eparable optimization,” 2012, submitted, [Onlineptifarxiv.org/
. . . abs/1202.2805.

number of communication steps 0% of the cases, the ] S. Ergen and P. Varaiya, “TDMA scheduling algorithms ¥areless

same percentage as [7]. For the other type of Watts-Strogatz’ sensor networks,Wreless Netw,, vol. 16, pp. 985-997, 2010.

networks, i.e., Fig. 2(d), Algorithm 1 was the best only gncelll Sl Bf?t);‘d, A. IEEES?, B. 'Tféfltharlfafv fli”gzD- Shgh,z;%zndmmsm
. P . . algorithms,” rans. Info. Th., vol. 52, no. 6, .

while [7] was the peSt for the re_mam'ng scenarios. ThIS Wi ] L. Xiao and S. Boyd, “Fast linear iterations for distrted averaging,”

exactly the opposite case of Fig. 2(e), where Algorithm in IEEE Conf. Dec. Control, vol. 5, 2003.

required more communications than [7] only for the smalledi3] A. Nedi¢ and A. Ozdaglar, “Distributed subgradient methods fortimul

agent optimization,"EEE Tran. Aut. Contr., vol. 54, no. 1, 2009.
network. Regardmg FIgS Z(f) and 2(9) Algorlthm 1 was th‘7?14] H. Zhu, G. Giannakis, and A. Cano, “Distributed in-net channel

best, respectively, i15% and29% of the cases. decoding,”|EEE Trans. Sg. Proc., vol. 57, no. 10, 2009.
Overall, we can say that Algorithm 1 has a performanci:l5] I. Schizas, A. Ribeiro, and G. Giannakis, “Consensusath hoc

L . wsns with noisy links - part i: Distributed estimation of eehinistic
very similar to [7], and slightly better than [1]. Moreover, signals,” IEEE Trans. Sig. Proc., vol. 56, no. 1, pp. 350-364, 2008.

from the plots of Fig. 2 we can conclude that our Algoq1i6] D. Bertsekas and J. Tsitsikligarallel and Distributed Computation:
rithm 1, among all, exhibits a near-optimal (or optlmal) Numerical Methods. ~ Athena Scientific, 1997.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstdhsttibuted
performance for all tested network types. optimization and statistical learning via the alternatingethod of
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