
Network Flow as a Partial Variable Problem

João Mota

October 26, 2014

The network flow problem is

minimize
∑

(i,j)∈E φij(xij)

subject to x ≥ 0
Bx = d ,

(1)

where B is the node-arc incidence matrix and d is the external inflow/outflow vector. This problem
can be written as a distributed optimization problem with a partial variable. Consider the network
in Fig. 1. The function at node 6 would be

f6(x16, x67, x46) = φ16(x16) + φ46(x46) + φ67(x67) + i{x16+x46−x67=d6}(x16, x67, x46) .

The problem this node has to solve at each iteration is

1

2

3

4

5

6

7

φ12(x12)

φ23(x23)

φ24(x24)

φ45(x45)

φ46(x46)

φ57(x57)

φ34(x34)

φ16(x16)

φ67(x67)

Figure 1: Example of a network flow problem. Each edge has a variable and a function of that
variable associated. The goal is to minimize the sum of all functions while satisfying the flow
constraints.

minimize
(x16,x46,x67)

φ16(x16) + φ46(x46) + φ67(x67) +
[
v1 v2 v3

]





x16

x46

x67



+
[
x16 x46 x67

]





a1
a2

a3









x16

x46

x67





subject to
[
1 1 −1

]





x16

x46

x67



 = d6

x16, x46, x67 ≥ 0 .
(2)

Consider the multicommodity flow problem [1, Ch.17]:

minimize
x={xk}K

k=1

∑K

k=1

∑

(i,j)∈E φ
k
ij(x

k
ij)

subject to Bxk = dk , k = 1, . . . ,K

0 ≤
∑K

k=1 x
k
ij ≤ cij , k = 1, . . . ,K, (i, j) ∈ E ,

(3)

1



where xk
ij is the flow of commodity k on edge (i, j) and xk = {xk

ij}(i,j)∈E , the variable of (3),

is the collection of flows of commodity k along all the network edges. Also, dk is the vector of
input for commodity k. We can address this problem by considering the flows aggregated across
commodities, i.e., the network does not distinguish between different commodities. To do so,
define φij =

∑K

k=1 φ
k
ij , xij =

∑K

k=1 x
k
ij , and d =

∑K

k=1 d
k. Now, simplify (3) to

minimize
x={xij}(i,j)∈E

∑

(i,j)∈E φij(xij)

subject to Bx = d

0 ≤ xij ≤ cij , (i, j) ∈ E ,

(4)

which is the same as (1), plus the additional constraints xij ≤ cij . We model this problem as a
congestion control problem by using

φij(xij) =
xij

cij − xij

,

where cij is the capacity of the (directed) edge (i, j) ∈ E , as a model for the delay at edge (i, j)
as a function of the aggregate rate of commodities at that edge, xij . This function is convex for
0 ≤ x ≤ c:

φ̇ij(xij) =
cij − xij + xij

(cij − xij)2
=

cij

(cij − xij)2

φ̈ij(xij) = 2
cij

(cij − xij)3
,

which is positive for 0 ≤ xij ≤ cij . With this function, problem (2), for a generic node p, becomes

minimize
x=(x1,...,xnp)

∑np

i=1(
xi

ci−xi
+ vixi + aix

2
i )

subject to b⊤p x = dp
0 ≤ x ≤ c .

(5)

Since the projection onto the set S := {b⊤p x = dp , 0 ≤ x ≤ c} is relatively simple, we will use
the Barzilai-Borwein method, which requires the computation of the function and gradient of the
objective (5) at each point and also a function that projects an arbitrary point y onto S.

Projection onto S. Let y ∈ R
q be given. The projection of y onto S is

P(y) := argmin
x

1
2‖x− y‖2

s.t. b⊤x = d

x ≥ 0
x ≤ c .

(6)

Associating the Lagrange multipliers λ, µ, and η to the constraints of (6), respectively, the KKT
equations are







x− y + λb− µ+ η = 0
0 ≤ x ≤ c

b⊤x = d

µ ≥ 0
η ≥ 0
x⊤µ = 0
(x− c)⊤η = 0

⇐⇒







y − λb = x+ η − µ

0 ≤ x ≤ c

µ ≥ 0
η ≥ 0
x⊤µ = 0
(x − c)⊤η = 0
b⊤x = d

. (7)

We will now see that all the equations, but the last, imply that x = P[0,c](y − λb) and η − µ =
PR\[0,c](y−λb), where P[0,c](z) is the projection of z onto [0, c], i.e., the ith component of z is given

2



by: 





ci , zi ≥ ci
0 , zi ≤ 0
zi , otherwise

.

To see that, we have to check that

(y − λb − P[0,c](y − λb))⊤(s− P[0,c](y − λb)) ≤ 0 ⇐⇒ (y − λb− x)⊤(s− x) ≤ 0 ,

for any s ∈ [0, c]. In fact, the first equation of (7) tells us that y − λb − x = η − µ. Thus,

(η − µ)⊤(s− x) = (η − µ)⊤s− η⊤x
︸︷︷︸

=c⊤η

+µ⊤x
︸︷︷︸

=0

= (η − µ)⊤s− c⊤η

= η⊤s− µ⊤s
︸︷︷︸

≥0

−c⊤η

≤ η⊤
︸︷︷︸

≥0

(s− c)
︸ ︷︷ ︸

≤0

≤ 0 .

This shows that x = P[0,c](y − λb) in (7). Therefore, that system of equations can be written as







x = P[0,c](y − λb)
b⊤x = d

η − µ = PR\[0,c](y − λb)
µ ≥ 0
η ≥ 0
x⊤µ = 0
(x− c)⊤η = 0

.

Since we are only interested in finding x, we just need the first two equations.
We will now focus on finding λ. For that, replace x into b⊤x = d:

g(λ) := b1P[0,c1](y1 − λb1) + b2P[0,c2](y2 − λb2) + · · ·+ bqP[0,cq](yq − λbq) = d .

First, note that each bi is either +1 or −1.

• If bi = 1, we have

biP[0,ci](yi − λbi) =







ci , λ ≤ yi − ci
yi − λ , yi − ci ≤ λ ≤ yi
0 , λ ≥ yi

.

• If bi = −1, we have

biP[0,ci](yi − λbi) =







0 , λ ≤ −yi
−yi − λ , −yi ≤ λ ≤ ci − yi
−ci , λ ≥ ci − yi

.

Note that the range of g is bounded. To find λ such that g(λ) = d, note that g is a decreasing,
piecewise-linear function. The points where it changes slope are, for all i = 1, . . . , q,

• yi and yi − ci if bi = 1;

• −yi and ci − yi if bi = −1.

3



Let z denote the above points after sorting,

z1 ≤ z2 ≤ · · · ≤ z2q ,

and compute g for all the above points. Since g is decreasing,

g(z1) ≥ g(z2) ≥ · · · ≥ g(z2q) .

If d > g(z1) or g(z2q) > d, the problem (6) is not feasible. When feasible, we can find l such
that g(zl) ≥ d ≥ g(zl+1). Since g is piecewise linear, we can find λ such that g(λ) = d by
interpolation:

λ = zl +
(zl+1 − zl)(d − g(zl))

g(zl+1)− g(zl)
.

After finding λ as above, the solution to (6) can be easily computed as

P(y) = P[0,c](y − λb) .

4



References

[1] R. Ahuja, T. Magnanti, and J. Orlin, Network flows: Theory, algorithms, and applications,
Prentice Hall, 1993.

5


