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The network flow problem is

minimize > e ij(@ij)
subject to x>0 (1)
Bx =d,

where B is the node-arc incidence matrix and d is the external inflow/outflow vector. This problem
can be written as a distributed optimization problem with a partial variable. Consider the network
in Fig. 1. The function at node 6 would be

Je(w16, 267, 2a6) = P16(216) + Pa6(Ta6) + G67(T67) + i{a15+a16—z67=d6} (T165 T675 Ta6) -

The problem this node has to solve at each iteration is
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Figure 1: Example of a network flow problem. Each edge has a variable and a function of that
variable associated. The goal is to minimize the sum of all functions while satisfying the flow
constraints.
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T16, T46, Te7 > 0.
Consider the multicommodity flow problem [1, Ch.17]:
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subject to BaF =dF, k=1,....K (3)
0< S ok <y, k=1,....K, (i,j) €€,
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where zfj is the flow of commodity k£ on edge (i,j) and z* = {Z‘fj}(i,j)eg, the variable of (3),
is the collection of flows of commodity % along all the network edges. Also, d* is the vector of
input for commodity k. We can address this problem by considering the flows aggregated across
commodities, i.e., the network does not distinguish between different commodities. To do so,

define ¢;; = Zle Oy wij = Zle zf;, and d = Zle d*. Now, simplify (3) to

nginiinize 2 igee Pig (i)
e={zij}.jee
subject to Bx =4d (4)

0<uzi <cy, (i,j)€€,

which is the same as (1), plus the additional constraints x;; < ¢;;. We model this problem as a
congestion control problem by using
ZL'Z'j
) = ——Y
¢ZJ( 1]) Cij . xij )
where ¢;; is the capacity of the (directed) edge (i,j) € £, as a model for the delay at edge (4, j)
as a function of the aggregate rate of commodities at that edge, x;;. This function is convex for
0<z<c
' Cij — Tij + Tij Cij
bii (i) = —
i () (cij — xij)?
. cij
bii(2ii) =2——L
i () (cij —wij)?

which is positive for 0 < z;; < ¢;;. With this function, problem (2), for a generic node p, becomes

minimize > /7 (S5 + viw; + a;z7)
x=(T1,..., Tnp N N
subject to b;z =d, (5)
0<x<ec.
Since the projection onto the set S := {b;x =d,, 0 <z < ¢} is relatively simple, we will use

the Barzilai-Borwein method, which requires the computation of the function and gradient of the
objective (5) at each point and also a function that projects an arbitrary point y onto S.

Projection onto S. Let y € R? be given. The projection of y onto S is

P(y):= argmin gllz -yl (6)
s.t. bTe=d
x>0
x<c.

Associating the Lagrange multipliers A, u, and 71 to the constraints of (6), respectively, the KKT
equations are

T—y+Ab—p+n=0
0<z<e¢

boz=d

>0

n=0

xT,uzo
(z—c)Tn=0

y—Ab=z+n—pu

0<x<e¢

u=0

n=>0 - (7)
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We will now see that all the equations, but the last, imply that x = Py q(y — Ab) and 1 — p =
Pryjo,¢ (¥ — Ab), where Po ¢ (2) is the projection of z onto [0, c], i.e., the ith component of z is given
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To see that, we have to check that
(y = Ab =Py = Ab)) (s = Plog(y = Ab)) <0 <= (y—Ab—x)' (s —x) <0,

for any s € [0,¢]. In fact, the first equation of (7) tells us that y — A\b — 2 = 1 — p. Thus,

- (s—2)=m-p)'s—n'z+p'z

——
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N N——
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This shows that 2 = Py j(y — Ab) in (7). Therefore, that system of equations can be written as

x =Py — \b)
bTe=d

N — i =Pr\jo,(y — Ab)
>0

>0

2 u=0

(z—c)Tn=0

Since we are only interested in finding z, we just need the first two equations.
We will now focus on finding A. For that, replace x into bz = d:

g(A) == 01Pg ¢, (y1 — Ab1) + b2Po, (2 — Ab2) + -+ + bgPo.c,1(yg — Abg) = d.
First, note that each b; is either +1 or —1.

e If b; =1, we have

Ci y A<y — ¢
biPoc (i —Abi) =< vi—=A ,yi—c <A<y
e If b, = —1, we have
0 ’ )‘S —Yi
biPocg(yi —Abi) =< —yi— X , —yi<A<ci—yi
—Ci s A — Y

Note that the range of g is bounded. To find A such that g(A) = d, note that g is a decreasing,
piecewise-linear function. The points where it changes slope are, for all i =1,...,q,

® Y; andyzfczlszzl,

o —; and Ci —Y; if bz =—1.



Let z denote the above points after sorting,
71 Sz < <29,
and compute g for all the above points. Since g is decreasing,

9(z1) = g(z2) = -+ > g(22q) -

If d > g(z1) or g(z24) > d, the problem (6) is not feasible. When feasible, we can find [ such
that g(z;) > d > g(z41). Since g is piecewise linear, we can find A such that g(\) = d by
interpolation:
(Zl+1 - Zl)(d - g(zl))

9(zi41) —g(z)

After finding A as above, the solution to (6) can be easily computed as

P(y) = Ppo,q(y — D).

A=z +
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