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Abstract—We address the problem of Compressed Sensing
(CS) with side information. Namely, when reconstructing a
target CS signal, we assume access to a similar signal. This
additional knowledge, the side information, is integrated into
CS via ℓ1-ℓ1 and ℓ1-ℓ2 minimization. We then provide lower
bounds on the number of measurements that these problems
require for successful reconstruction of the target signal. If the
side information has good quality, the number of measurements
is significantly reduced via ℓ1-ℓ1 minimization, but not so much
via ℓ1-ℓ2 minimization. We provide geometrical interpretations
and experimental results illustrating our findings.

Index Terms—Compressed sensing, basis pursuit, ℓ1-ℓ1 mini-
mization, ℓ1-ℓ2 minimization, Gaussian width.

I. INTRODUCTION

Consider an unknown signal x⋆ ∈ R
n that is s-sparse,

i.e., at most s entries are nonzero. Assume we take m < n
linear measurements of x⋆: y = Ax⋆, where A ∈ R

m×n.

Compressed Sensing (CS) [1] answers two fundamental ques-

tions: How to reconstruct x⋆ from y? And how many mea-

surements m do we need for successful reconstruction? If A
satisfies the RIP [2] or a null-space property [3], CS establishes

that x⋆ can be reconstructed by solving basis pursuit [4]:

minimize
x

‖x‖1
subject to Ax = y .

(1)

In particular, when the entries of A are i.i.d. Gaussian,

then m > 2s log(n/s) + (7/5)s measurements guarantee

that x⋆ is the unique solution of (1) with high probability [3],

a bound known to be tight for Gaussian matrices [5].

CS with side information. Suppose we have access to side

information, a vector w ∈ R
n that is similar to x⋆. This occurs

when reconstructing sequences of signals (e.g., video [6]

and estimation problems [7]), or when we have access to

prior similar signals (e.g., sensor networks [8], multiview

cameras [9], and medical imaging [10]). Our goal is to answer

the same questions that CS does, but with the additional

knowledge of side information: How to reconstruct x⋆ from the

measurements y and the side information w? And how many

measurements m do we need for successful reconstruction?

Our strategy. Let g : Rn −→ R be a function that models

similarity between w and x⋆: the smaller g(x⋆−w), the higher

the similarity. A natural approach to integrate w into (1) is to

minimize
x

‖x‖1 + β g(x− w)

subject to Ax = y ,

(2)
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where β > 0. We consider two models for g: g1(·) := ‖ · ‖1
and g2(·) = (1/2)‖ · ‖22; and refer to (2) with g = g1 as ℓ1-ℓ1
minimization and to (2) with g = g2 as ℓ1-ℓ2 minimization.

Although instances and variations of (2) with g1 and g2 have

appeared in the literature (see Related work below), to the best

of our knowledge, no CS-like recovery guarantees have ever

been provided.

Assuming the entries of A are i.i.d. Gaussian, we compute

bounds on the number of measurements above which ℓ1-ℓ1
and ℓ1-ℓ2 minimization reconstruct x⋆ perfectly, with high

probability. When the side information is “good enough,” our

bound for ℓ1-ℓ1 minimization is much smaller than the bounds

both for ℓ1-ℓ2 minimization and for classical CS. In addition,

our experiments confirm that ℓ1-ℓ1 minimization requires in

general less measurements for successful reconstruction than

both ℓ1-ℓ2 minimization and classical CS. We explain this

phenomenon using the underlying geometry of the problem.

Proofs of the results presented in this paper can be found

in [11]. For succinctness, we consider here only the case β = 1
in (2), but results for β 6= 1 can be found in [11].

Related work. Several methods improve the performance

of CS by assuming access to side (or prior) information. The

majority, however, uses concepts of side information different

from ours, for example, estimates on the support of x⋆ [12],

or its probability distribution [13]. The first work using side

information in our sense, namely ℓ1-ℓ1 minimization, appears

to be [10]. That work focuses on the application of computed

tomography and does not provide either any type of analysis or

a comparison with standard CS; see [14] for a recent related

approach. In [12], a problem similar to ℓ1-ℓ2 minimization

appears as an extension of the main problem studied in that

paper. Although experimental results are presented, no analysis

is provided for the ℓ1-ℓ2-type problem. Prior work also has

considered the Lagrangian version of (2) where there are

no constraints, but the extra term λ‖y − Ax‖22 is added to

the objective, with λ > 0. For example, [7] estimates the

state of a dynamical system using the previous instant’s state

as side information. The estimation problem is posed as the

Lagrangian version of (2) with both g1 and g2. Although the

experimental results in [7] indicate that ℓ1-ℓ1-type of mini-

mization requires less measurements than ℓ1-ℓ2, no rationale is

given. Our theoretical results and geometrical interpretations

explain this phenomenon in the context of (2). Finally, the

work in [15] analyzes the performance of a message passing

algorithm to solve the Lagrangian version of (2) with g2.



II. DEFINITIONS AND GEOMETRICAL INTERPRETATIONS

As mentioned before, [3] establishes tight bounds for CS.

The main tool is the concept of Gaussian width of a cone C ⊂
R

n, given by w(C) := Eg

[

supz{g⊤z : z ∈ C ∩Bn(0, 1)}
]

,

where g ∈ R
n has i.i.d. zero-mean, unit variance Gaus-

sian entries, and Eg[·] is the expected value w.r.t. g. We

use Bn(0, 1) := {x ∈ R
n : ‖x‖2 ≤ 1} to denote the unit ℓ2-

norm ball in R
n. The Gaussian width was originally proposed

in [16] for measuring the “width” (aperture) of a cone. Related

work using this concept includes [5], [17]–[27].

Theorem 1 (Corollary 3.3 in [3]). Let A ∈ R
m×n be a matrix

whose entries are i.i.d. zero-mean Gaussian random variables

with variance 1/m, and let f : Rn −→ R be a convex function.

Assume y = Ax⋆ and that m ≥ w(Tf (x
⋆))2+1, where Tf (x

⋆)
denotes the tangent cone of f at x⋆. Consider

x̂ ∈ argmin
x

f(x)

s.t. Ax = y .

(3)

Then, x̂ = x⋆ is the unique solution of (3) with probability

at least 1 − exp
(

− 1
2

[

w(Tf (x
⋆)) − λm

]2)
, where λm is the

expected length of a zero-mean, unit-variance Gaussian vector

in R
m.

Recall that the tangent cone of a convex function f at

a point x⋆ is Tf (x
⋆) := cone{x − x⋆ : f(x) ≤ f(x⋆)},

where coneC := {αc : α ≥ 0, c ∈ C} is the cone generated

by the set C. In other words, Tf(x
⋆) is the cone generated

by the sublevel set Sf (x
⋆) := {x ∈ R

n : f(x) ≤ f(x⋆)}
from the point x⋆, i.e., Tf (x

⋆) = cone(Sf (x
⋆) − x⋆). Note

that (3) becomes (1) when f(x) = ‖x‖1 and becomes (2)

when f(x) = ‖x‖1 + g(x,w). Note also that m/
√
m+ 1 ≤

λm ≤ √
m [3]. Theorem 1 states that (3) recovers x⋆ with

high probability if the number of measurements is larger than

the squared Gaussian width of the tangent cone of f at x⋆.

The work in [3] then establishes:

Proposition 2 (Proposition 3.10 in [3]). Let x⋆ 6= 0 be an

s-sparse vector in R
n. Then,

w
(

T‖·‖1
(x⋆)

)2 ≤ 2s log
(n

s

)

+
7

5
s . (4)

By upper bounding the squared Gaussian width

of T‖·‖1
(x⋆), Proposition 2 establishes a lower bound

on the number of measurements that (1) requires to

recover x⋆ with high probability. Note that, since w(Tf (x
⋆))

is usually unknown, Theorem 1 is not very informative

in practice. Proposition 2 instills it with operational

significance by upper bounding w(Tf (x
⋆))2 in terms of

the key signal parameters s and n. Our goal is to do

the same for the functions f1(x) := ‖x‖1 + ‖x − w‖1
and f2(x) := ‖x‖1 + 1

2‖x− w‖22.

Good and bad components. Naturally, our bounds for ℓ1-

ℓ1 and ℓ1-ℓ2 minimization are a function of the “quality” of

the side information w. A way to measure the quality of

each component of w arises naturally in the proofs of our

results, but it can be motivated geometrically, as we do next.

First, recall that the relation Tf(x
⋆) = cone(Sf (x

⋆) − x⋆)
means that Tf (x

⋆) is composed of all the half-lines that

join x⋆ to a point of the sublevel set Sf (x
⋆). Therefore, the

width of Tf(x
⋆) can be estimated by looking at the sublevel

set Sf (x
⋆). Fig. 1 shows the sublevel sets of f1 and f2

for n = 2. In those plots, x⋆ is always x⋆ = (0, 1), and we

consider four different w’s: w(a) = (0, 1.6), w(b) = (0, 1.3),
w(c) = (0, 0.5), and w(d) = (0,−0.5). In Figs. 1(a) and 1(b)

the side information is w(a) and w(b), and in Figs. 1(c)

and 1(d) it is w(c) and w(d). Figs. 1(a) and 1(c) show the

sublevel sets of f1, while Figs. 1(b) and 1(d) show the sublevel

sets of f2. For reference, we show in all plots the sublevel

set of the ℓ1-norm ball S‖·‖1
:= B2(0, ‖x⋆‖1). To represent

all the other sublevel sets, we use the notation S
(j)
fi

:= {x :

‖x‖1 + gi(x − w(j)) ≤ ‖x⋆‖1 + gi(x
⋆ − w(j))}, for i = 1, 2

and j = a, b, c, d. For example, the sublevel sets in Fig. 1(a)

are the line segments S
(a)
f1

= {(0, x2) : 0 ≤ x2 ≤ 1.6}
and S

(b)
f1

= {(0, x2) : 0 ≤ x2 ≤ 1.3}. The tangent cone

they generate is the line {(0, x2) : x2 ∈ R}, which has

zero Gaussian width. This means that the nonzero components

of w(a) and w(b) do not contribute “any width” to Tf1(x
⋆).

A careful inspection of the remaining figures reveals that the

tangent cones in Figs. 1(a) and 1(b) have smaller “geometrical

widths” (and thus Gaussian widths) than the cone generated

by S‖·‖1
. In Figs. 1(c) and 1(d), in contrast, the tangent cones

have either the same width as the cone generated by S‖·‖1

(Fig. 1(c)), or larger widths (Fig. 1(d)). Note, in particular that,

in Fig. 1(c), S
(c)
f1

, S
(d)
f1

, and S‖·‖1
all generate the same tangent

cone. In Fig. 1(d), S
(c)
f2

and S
(d)
f2

generate tangent cones with

widths larger than the cone generated by S‖·‖1
. Since we want

small widths, we say that w2, the nonzero component of w, is a

good component in Figs. 1(a) and 1(b) and is a bad component

in Figs. 1(c) and 1(d). The generic definition is:

Definition 1 (Good and bad components). Let x⋆ ∈ R
n be the

vector to reconstruct and let w ∈ R
n be the side information.

For i = 1, . . . , n, a component wi is considered good if

x⋆
i > 0 and x⋆

i < wi or x⋆
i < 0 and x⋆

i > wi ,

and wi is considered bad if

x⋆
i > 0 and x⋆

i > wi or x⋆
i < 0 and x⋆

i < wi .

Fig. 1 gives the intuition why ℓ1-ℓ1 minimization requires

less measurements than standard CS and ℓ1-ℓ2 minimization:

its good components induce less width in Tf1(x
⋆), and its

bad components never induce more width in Tf1(x
⋆) than the

absence of side information. Although Fig. 1 shows the impact

only of the components wi for which x⋆
i 6= 0 and x⋆

i 6= wi,

the components for which wi = x⋆
i 6= 0 and for which wi 6=

x⋆
i = 0 also impact the Gaussian width, as shown next.

III. BOUNDS FOR ℓ1-ℓ1 AND ℓ1-ℓ2 MINIMIZATION

To state our results for ℓ1-ℓ1 minimization, we need to define

h :=
∣

∣{i : x⋆
i > 0, x⋆

i > wi} ∪ {i : x⋆
i < 0, x⋆

i < wi}
∣

∣

ξ :=
∣

∣{i : wi 6= x⋆
i = 0}

∣

∣−
∣

∣{i : wi = x⋆
i 6= 0}

∣

∣ ,
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Figure 1. Sublevel sets S
(j)
fi

:= {x : ‖x‖1 + gi(x − w(j)) ≤ ‖x⋆‖1 + gi(x⋆ − w(j))}, for i = 1, 2 and j = a, b, c, d, where w(a) = (0, 1.6),

w(b) = (0, 1.3), w(c) = (0, 0.5), and w(d) = (0,−0.5). In both (a) and (b), w is w(a) and w(b), whose nonzero components are good. In both (c) and

(d), w is w(c) and w(d), whose nonzero components are bad. The ℓ1-norm sublevel set S‖·‖1 at x⋆ is also shown in all figures, and is associated with (1).

where | · | denotes the cardinality of a set. Note that h is the

number of bad components of w. Naturally, h ≤ s, where the

difference s−h = h+ r is the number of good components h
plus r := |{i : wi = x⋆

i 6= 0}|. The quantity ξ is the

number of components where w overestimates the support

of x⋆ minus r. Our bound for ℓ1-ℓ1 minimization depends

on these two key parameters.

Theorem 3 (ℓ1-ℓ1 minimization). Let x⋆ ∈ R
n be the vector

to reconstruct and let w ∈ R
n be the side information.

Let f1(x) = ‖x‖1 + ‖x − w‖1, and assume h > 0 and that

there exists at least one index i for which x⋆
i = wi = 0. Let

the entries of A ∈ R
m×n be i.i.d. Gaussian with zero mean

and variance 1/m. Then,

w
(

Tf1(x
⋆)
)2 ≤ 2h log

( n

s+ ξ/2

)

+
7

5

(

s+
ξ

2

)

. (5)

Namely, if m ≥ 2h log
(

n/(s + ξ/2) + (7/5)(s + ξ/2) + 1,

then x⋆ is the unique solution of (2) with g = g1 and β = 1,

with probability at least 1− exp
(

− 1
2 (λm −m)2

)

.

By upper bounding the squared Gaussian width of the

tangent cone of f1, Theorem 3 provides a number of mea-

surements above which ℓ1-ℓ1 minimization reconstructs x⋆

with high probability. The assumption that there is at least

one bad component, h > 0, is necessary to guarantee that

the subdifferential ∂f1(x
⋆) equals the normal cone of f1

at x⋆ [28], a relation used in the proof. When β 6= 1, the

assumption h > 0 can be relaxed; see [11]. It can be shown

that if, contrary to the theorem’s assumptions, there is no

index i for which x⋆
i = wi = 0, we can have n = s + ξ/2,

making the right-hand side of (5) evaluate to −∞ [11].

Notice that (4) and (5) have the same format and both

provide reconstruction guarantees with probability at least

1 − exp
(

− 1
2 (λm − m)2

)

. To compare (4) and (5), assume

first that ξ = 0. In that case, both bounds are equal, apart

from the terms multiplying the log’s: 2s in (4) and 2h in (5).

Since s − h = h + r ≥ 0, the larger the number of good

components, h, and the larger r (number of components

where x⋆ and w coincide on the support of x⋆), the smaller

is (5) with respect to (4). This confirms the interpretation

given in Fig. 1 and complements it with the intuitive fact

that a large r should decrease the number of measurements.1

In general, however, ξ 6= 0. In that case, if n is much larger

than ξ and s, if h, r > 0, and if ξ is larger than a small negative

number, then 2h log(n/(s+ ξ/2)), the dominant term of (5),

is smaller than 2s log(n/s), the dominant term of (4). That is,

(5) is asymptotically smaller than (4).

To present our results on ℓ1-ℓ2 minimization, we define

I :=
{

i : x⋆
i 6= 0

}

J :=
{

j : x⋆
j 6= wj

}

I+ :=
{

i : x⋆
i > 0

}

I− :=
{

i : x⋆
i < 0

}

, ,

and K := |{i ∈ Ic ∩ J : |wi| ≥ 1}|, where Ic is the comple-

ment of I . We also define q := |I∪J | and w := maxi∈Ic |wi|.
Note that w ≤ ‖w‖∞.

Theorem 4 (ℓ1-ℓ2 minimization). Let x⋆, w ∈ R
n be as in

Theorem 3. Let f2(x) = ‖x‖1+ 1
2‖x−w‖22 and assume x⋆ 6= 0,

q < n, and that either w < 1 or that there exists i ∈ I ∩ J
such that β 6= sign(x⋆

i )/(wi − x⋆
i ). Assume also that

q − s

n− q
≤ |1− w| exp

(

2w log
(n

q

)(w

2
− 1

))

. (6)

Then,

w
(

Tf2(x
⋆)
)2 ≤ 2v log

(n

q

)

+ s+ 2K +
4

5
q , (7)

where

v :=
∑

i∈I+

(1+x⋆
i−wi)

2+
∑

i∈I
−

(1+wi−x⋆
i )

2+
∑

i∈I∩Jc

(|wi|−1)2 .

Theorem 4 not only requires assumptions stronger than the

ones in Theorem 3, but also provides a larger bound. The

assumption q < n makes the right-hand sides of (6) and (7)

finite. The assumption that w < 1 or that there exists i ∈ I∩J
such that β 6= sign(x⋆

i )/(wi − x⋆
i ) guarantees that ∂f2(x

⋆)
equals the normal cone of f2 at x⋆ [28]. The case where

assumption (6) does not hold is also addressed in [11]. Note,

1Given that s − h = h + r, we could have defined the good components
as the components i for which x⋆

i > 0 and x⋆
i ≤ wi, or x⋆

i and x⋆
i ≥ wi. In

that case, s−h would be exactly the number of good components. This was
not done in [11] for technical reasons, and we kept the same notation here.
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Figure 2. Reconstruction rate of standard CS (1), ℓ1-ℓ1 minimization, and
ℓ1-ℓ2 minimization. The vertical lines are the bounds in (4), (5), and (7).

however, that it is easy to satisfy (6) in practice: its left-hand

side can be shown to equal |Ic∩J |/|Ic∩Jc|, i.e., the number

of components in which x⋆ and w differ outside I divided by

the number of components in which x⋆ and w are both zero;

if x⋆ and w are sparse enough, this number is smaller than 1.

And the right-hand side of (6) can be large whenever w 6= 1.

The bound in (7) has the same format as (4) and (5). The

parameter v in (7), however, depends on the magnitude of

the components of both x⋆ and w. This is contrast with (4)

and (5), whose parameters depend only on the signs of x⋆

and x⋆ − w, but not on the magnitudes of their components.

This was expected from the interpretation of Fig. 1: the widths

of the tangent cones in Figs. 1(a) and 1(c) do not vary with

the magnitude of the nonzero component of w, whereas the

widths in Figs. 1(b) and 1(d) do. It is not clear when (7) is

smaller than (4), but note that the term inside log(·) is smaller

in (7), and v is always larger than s (e.g., if wi = x⋆
i for all

i ∈ I , v = s+
∑

I∩Jc(|wi| − 1)2 ≥ s).

IV. EXPERIMENTAL RESULTS

Our results are illustrated in two types of experiments whose

results are shown in Figs. 2 and 3. For Fig. 2, we generated a

70-sparse x⋆ ∈ R
n and a 28-sparse w ∈ R

n, where n = 1000;

see [11] for how they were generated. Although the supports

of x⋆ and w coincided in 22 entries (and differed in 6), they

were significantly different: ‖w − x⋆‖2/‖x⋆‖2 ≃ 0.45 and

‖w − x⋆‖1/‖x⋆‖1 ≃ 0.25. This yielded h = h = 11, r = 48,

ξ = −42, v ≃ 103.1, q = 76, and K = 1. Replacing these

parameters in the bounds (4), (5), and (7), we have that, for

perfect recovery with high probability, standard CS requires

at least 472 measurements, ℓ1-ℓ1 minimization requires at

least 136 measurements, and ℓ1-ℓ2 minimization requires at

least 666 measurements, respectively. These values are marked

by vertical lines in Fig. 2, which shows the experimental

performance of standard CS and ℓ1-ℓ1 and ℓ1-ℓ2 minimization.

Specifically, it depicts the success rate of each scheme as a

function of the number of measurements m. For a fixed m, we

ran each algorithm 50 times, each time for a different (Gaus-

sian) matrix A. The success rate is the number of successful

reconstructions over 50, the total number of trials. Successful
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Figure 3. Solid lines: performance of ℓ1-ℓ1 minimization for 5 different
matrices versus β. Dotted line: bounds in [11], of which (5) gives the particular
case β = 1 (vertical line). Horizontal line: bound in (4) for classical CS.

reconstruction here means ‖x̂−x⋆‖2/‖x⋆‖2 ≤ 10−2, where x̂
is a solution of (1) or (2). We see that ℓ1-ℓ1 minimization

required less measurements for successful reconstruction than

standard CS or ℓ1-ℓ2 minimization. The performance curves

of the last two, in fact, almost coincide, with ℓ1-ℓ2 (line

with triangles) having a slightly sharper phase transition. The

figure also shows that, while the ℓ1-ℓ2 bound (7) can be quite

loose, the ℓ1-ℓ1 bound (5) is quite sharp. In other, unreported

experiments, where w was not sparse, but ‖w−x⋆‖2 was small,

a situation apparently very favorable to ℓ1-ℓ2 minimization, we

noticed that ℓ1-ℓ2 minimization still has a performance similar

to CS; of course, in this case, ℓ1-ℓ1 performs worse than both.

Fig. 3 considers ℓ1-ℓ1 minimization only. There, x⋆ ∈ R
500

is a 50-sparse vector and w was generated such that h = 11
and ξ = −30; see [11] for details. We proceeded as follows:

we generated a Gaussian matrix A ∈ R
500×500 and computed

y = Ax⋆. For a fixed β, we solved ℓ1-ℓ1 minimization using

only the first row of A (and of y). If the relative error of

the solution was larger than 10−2, we then used the first two

rows of A, and so on, until we found a minimal number of

measurements m(β) such that ℓ1-ℓ1 minimization with the first

m(β) rows of A yielded a relative error smaller than 10−2.

Fig. 3 shows m(β) versus β. The solid lines correspond to 5
different realizations of (A, y), and the dotted line corresponds

to the theoretical ℓ1-ℓ1 bounds in [11]. Note that (5) is the

bound for β = 1. The plot shows that β = 1 minimizes both

the theoretical curve and the experimental ones. Also, β = 1
is the value for which the theoretical bound is the sharpest.

V. CONCLUSIONS

We integrate side information in CS via ℓ1-ℓ1 and ℓ1-ℓ2
minimization and establish bounds on the number of measure-

ments that guarantee successful reconstruction, for Gaussian

measurement matrices. Our bound for ℓ1-ℓ1 minimization is

sharp and indicates that if the side information has reasonable

quality, ℓ1-ℓ1 minimization requires much less measurements

than both standard CS and ℓ1-ℓ2 minimization. The underlying

geometry of the problem provides an explanation of this

phenomenon, and our experimental results also confirm it.
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