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SHARPER BOUNDS FOR PROXIMAL GRADIENT ALGORITHMS
WITH ERRORS*

ANIS HAMADOUCHE', YUN WU, ANDREW M. WALLACE', AND JOAO F. C. MOTAf

Abstract. We analyse the convergence of the proximal gradient algorithm for convex
composite problems in the presence of gradient and proximal computational inaccura-
cies. We generalize the deterministic analysis to the quasi-Fejér case and quantify the
uncertainty incurred from approximate computing and early termination errors. We
propose new probabilistic tighter bounds that we use to verify a simulated Model Pre-
dictive Control (MPC) with sparse controls problem solved with early termination,
reduced precision and proximal errors. We also show how the probabilistic bounds are
more suitable than the deterministic ones for algorithm verification and more accurate
for application performance guarantees. Under mild statistical assumptions, we also
prove that some cumulative error terms follow a martingale property. And conform-
ing to observations, e.g., in [25], we also show how the acceleration of the algorithm
amplifies the gradient and proximal computational errors.
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1. Introduction. Many problems in science and engineering can be posed as
composite optimization problems:

(1.1) mi&ig}}ze f(x):=g(x) + h(x),

where the function ¢ : R® — R is real-valued and differentiable, and the function
h:R"™ — RU {400} is not necessarily differentiable and is possibly infinite-valued,
enabling the inclusion of hard constraints in (1.1). Examples include various machine
learning frameworks, e.g., logistic regression and support vector machines [11], sparse
regression and inference [23, 15, 16], image processing [1], and discrete optimal control
[17].

A popular class of algorithms to solve (1.1) is prozimal gradient methods [4] which,
in each iteration, take a gradient step using the function g and, subsequently, evaluate
the proximal operator of the function h at the resulting point. Such algorithms
have been widely studied under different contexts, and several guarantees have been
established, both in the convex [5, 4, 6, 10, 22] and nonconvex [7, 21] cases. Stochastic
versions of the proximal gradient algorithm have also been proposed and shown to
converge in convex and nonconvex settings, e.g., [2, 29, 20, 24, 12, 30].

All of these results, however, assume that computations are performed with near-
infinite precision, which is unrealistic when the computational platform has limitations
in power, precision, or both. Examples include applications that are associated with
sensing and control of autonomous platforms, often using FPGAs or other finite preci-
sion computational hardware. With these applications in mind, we analyze proximal
gradient methods when both the gradient and the proximal operator are computed
approximately at each iteration, and obtain tight performance bounds.
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2 A. HAMADOUCHE

While standard proximal gradient methods converge to a solution of (1.1) pro-
vided the stepsize si is small enough, approximate proximal gradient algorithms re-
quire, in addition, that the approximation errors €} and e} satisfy some additional
convergence criteria, for example, that they converge to zero along the iterations.

Our goal is then to characterize the convergence of the approrimate proximal
gradient to a solution of (1.1). Differently from prior work, we assume not only deter-
ministic errors, but also probabilistic ones, according to models suited to approximate
computing.

1.1. Our approach. In the case of deterministic errors, we get inspiration
from [4] to derive, using simple arguments, upper bounds on f(x*) throughout the
iterations. The resulting bounds generalize other bounds [25] in the presence of Lip-
schitz uncertainty and early termination errors under mild assumptions. In the case
of probabilistic errors, our arguments rely on concentration of measure results for
martingale sequences and bypass the need to assume that € and €5 converge to zero.
The latter yields tighter bounds, and we believe this line of reasoning is novel in the
analysis of approximate proximal gradient algorithms.

1.2. Applications. In order to validate our convergence results, we use the pro-
posed error bounds to analyse the convergence of proximal gradient when applied to
solve the optimization problem stemming from each time step of Model Predictive
Control (MPC) [13] with different levels of injected gradient and proximal computa-
tion errors.

1.3. Contributions. We summarize our contributions as follows:

e We establish convergence bounds for the proximal gradient algorithm with
deterministic and probabilistic errors. Our deterministic bounds generalize
prior bounds to the quasi-Fejér case where we consider approximate iterations
and early termination errors and quantify second-order uncertainties. The
probabilistic bounds tighten the latter under mild conditions.

e We conduct experiments on a discrete model predictive control problem to
verify the sharpness of our bounds and compare them with the bounds in [25].
The models for the errors are inspired by approximate computing techniques
suited for low-precision machines, such as reduced-precision accelerators on
FPGA and battery-operated devices, in which algorithms are typically run
approximately in order to save processing time and/or power.

e We propose new models for the proximal and gradient errors that satisfy
martingale properties in accordance with experimental results.

1.4. Organization. We start by reviewing prior work in Section 2. We then
describe our approximate computational model, state our assumptions, and present
the main results in Section 3. The proofs of the main results are included in Section 4,
and some auxiliary results are relegated to the appendix. Section 5 describes our
experimental results.

2. Related Work. One year after the seminal work in [5], it was shown that
the same nearly optimal rates can still be achieved when the computation of the
gradients and proximal operators are approximate [25]. This variant is known as the
approzimate proximal gradient algorithm. The analysis in [25] requires the errors
€% and €5 to decrease with iterations k at rates O(1/k°*!) for the basic proximal
gradient, and O(1/k<*2) for the accelerated proximal gradient, for any ¢ > 0, in
order to satisfy the summability assumptions of both error terms. The work in [25]
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SHARPER BOUNDS FOR PROXIMAL GRADIENT ALGORITHMS WITH ERRORS 3

established the following ergodic convergence bound in terms of function values of the
averaged iterates for the basic approximate proximal gradient (3.7):

1o L 2
f(k;x> — 1) < = fa* = a0, + 244 + V2B

=2k

€ 2¢€ €’
w=3 (58 3). =32
i i=1

(2.1)

where z* is an optimal solution of (1.1), L is the Lipschitz constant of the gradient,
and z° is the initialization vector. The same work also analyzed the approzimate
accelerated proximal gradient and obtained the following convergence result in terms
of the function values of the iterates,

2L

1) = 1) < e o7 =l + 20+ 28]

N A 1 2 LIRS
=i VT) B=E T
p L L 1 L

1=

(2.2)

This is the most closely related work to ours; however, our work derives similar, yet
sharper, convergence bounds. In addition, we derive probabilistic bounds that can
be estimated before running the algorithm for given bounded proximal and gradient
errors. Specifically, the constants can be computed from the machine representation
and software solver tolerances (for the computation of the proximal operator).

The work in [3] extended the analysis of [25] to a more general momentum pa-
rameter selection ay = ((k+a—1)/a)?, where d € [0,1] and a > max(1,(2d)7),
which becomes FISTA [5] when d = 1. The works in [3, 26] also considered two differ-
ent types of approximation in the proximal operator computation. For example, [3,
Proposition 3.3] makes assumptions similar to ours, but establishes different bounds.
The same paper also suggests slowing down the over-relaxations of FISTA to stabilize
the algorithm and shows how to obtain a better trade-off between acceleration and
error amplification by controlling the approximation errors. In contrast, we show that
the basic approximate proximal gradient algorithm (3.7) converges to a constant pre-
dictable residual without any assumptions on the gradient error terms (see Theorem
3). We also show that errors in the accelerated proximal gradient method cause the
algorithm to eventually diverge as O(k) in the worst case scenario, but to converge
sub-optimally, i.e., to a constant error term, using stronger assumptions on the proxi-
mal error and under a standard suitable choice of the momentum sequence {3;}. We
also quantify the uncertainties that result from using an inexact optimal reference
point (motivated by early termination of practical solvers), inexact Fejér monotonic-
ity (quasi-Fejér monotonicity) and an inexact version of Lipschitz continuity which is
associated with approximate gradients with the relative error model 3.8.

3. Main Results. Before stating our convergence guarantees for the approxi-
mate proximal gradient algorithm, we specify our assumptions and describe the class
of algorithms that our analysis covers.

3.1. Setup and algorithms. Recall that we aim to solve convex composite
optimization problems with the format of (1.1), repeated here for convenience:

(3.1) miilei%jze f(x):=g(x)+ h(x).
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4 A. HAMADOUCHE

All of our results assume the following;:
ASSUMPTION 1 (Assumptions on the problem).

e The function h : R™ — RU {+oo} is closed, proper, and convex.
o The function g : R™ — R is convex and differentiable, and its gradient
Vg : R" — R" is Lipschitz-continuous with constant L > 0, that is,

(3.2) [Va(y) = Vg(@)||, < Ly — =],

for all x, y € R™, where || - ||2 stands for the standard Euclidean norm.
e The set of optimal solutions of (3.1) is nonempty:

(3.3) X ={zeR": f(z) < f(z), forallzeR"} #0.

The above assumptions are standard in the analysis of proximal gradient algorithms
and are actually required for convergence to an optimal solution from an arbitrary
initialization [4, 6].

A consequence of (3.2) that we will often use in our results is that [19, Lem. 1.2.3]

(3.4) 9(9) < 9(x) + Vo(@) (s — 2) + oy — 2l

for any z, y € R™. Also, as h is closed, proper, and convex, the function z — h(z) +
(1/2)]|z — y||3 is coercive, which implies that the approximate set-valued proximal
operator of h: R” - RU {+oc0} at y € R™, defined as

1 . 1
proxi,(y) i= {@ € R" : h(w) + 5llz — yll} < e+ inf h(z) + 52—yl } #0,

is nonempty for all e > 0, and y € R™. When € = 0, the proximal operator is computed
exactly, and it is single-valued (a singleton) for closed, proper convex functions

) 1
(3.5) prox, (y) = arg min h(z) + =l — |3
IGR’” 2
When € > 0, this set may contain more than a single element, which results in several
possible instances of the accelerated approximate proximal gradient,

yk _ I'k +6k(l'k _ xk—1)7

(3.6) )
2"t e prox? [y’“ — se(Va(y®) + 6'1“)] ,

whenever there exists a k for which €5 > 0. However, as we establish bounds on

function values [i.e., f(z¥)], this ambiguity does not affect our results. By setting
Br = 0, (3.6) reduces to the basic approximate proximal gradient scheme, i.e.,

(3.7) e proxif]:h [xk — s, (Vg(z®) + e/f)}

3.2. Error models and assumptions. In what follows we consider a relative
error model for the gradient error €;.

ERROR MODEL. Under this model, each evaluation of the gradient of g at a point
x is subject to additive noise €1 whose magnitude is proportional to the magnitude of
the gradient |Vg(z)|. Specifically, the gradient of g in (3.1) is approzimated by

(3-8) Vg (x) = Vg(z) + €1,

This manuscript is for review purposes only.
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SHARPER BOUNDS FOR PROXIMAL GRADIENT ALGORITHMS WITH ERRORS 5

where
(3.9) le1| < 0|Vg(z)|.

d is a positive scalar, and |.| stands for the vector componentwise absolute value. This
can be used, for example, to model errors in floating-point arithmetic [1]].

The parameter ¢ is known as the machine precision.
For the above error model, our analysis assumes two different scenarios:

1. The sequences of errors {€}}r>1 and {e5};>1 are deterministic, or

2. The sequences of errors {€}};>1 and {€5}r>1 are random, in which case we
use e’fn and 6’59 to denote the respective random vectors/variables of errors at

iteration k, where € denotes the sample space of a given probability measure.

In scenario 2, the sequences {z*};>1 and {y*},r>1 become random as well. And we
also use xfz and yé to denote the respective random vectors at iteration k. We make
the following assumptions in this case:

ASSUMPTION 2. In scenario 2, we assume that each random vector e’fn, fork>1,
satisfies

(3.102) Ele}, [€1g, - €hy '] =E[ef,] =0,
(3.10D) P(ler,| < 8|Vg(ah)]) = 1,
(3.100) Eleh, "ok el el ol okl — B[ Tak] =0,

or E[Elfnmi] = E[elfﬂ]’

where § > 0 is the machine precision.

AsSsUMPTION 3. Let {z*} denote the sequence produced by (3.6) or (3.7). We
define the residual error vector at iteration k as

(3.11) b =gk — 7,
where T stands for the prozimal error-free iterate
(3.12) 7h = prox,, (mk —s(Vg(a*) + elf))

In scenario 2, we assume

(3.13a) E[rg [rg,.. e ] =E[ri] =0,
(3.13D) B[k 2k vl b a2k = B[ k] =0,

Remark 3.1. Lemma 1, stated in the appendix, bounds the norm of the residual
vector HrkH2 as a function of €; therefore, bounding €5 implies bounding ||7’k}|2.

3.3. Approximate proximal gradient. In this section, we consider the ap-
proximate proximal gradient algorithm in (3.7), i.e., without acceleration. We start
by considering deterministic error sequences {e}}r>1 and {e5}x>1, and then we con-
sider the case in which these sequences are random, as in Assumption 2.

3.3.1. Deterministic errors. Our first result provides a bound on the ergodic
convergence of the sequence of function values, and decouples the contribution of the
errors in the computation of gradient, €¥, and in the computation of the proximal
operator, €5 and r¥.

This manuscript is for review purposes only.
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6 A. HAMADOUCHE

THEOREM 1. Consider problem (3.1) and let Assumption 1 hold. Suppose we
run the approximate proximal gradient in (3.7) with a fized stepsize s := s satis-
fying s < 1/(L + 0), for all k, and under the relative error model in (3.8). Let
the following stopping cm'tem'a hold for k > ko: e§ < co ka“ —$k||2 < cop and
[eFll2 < 1 ||[Vg(2Ft!) — Vg(a H2 where p, c1, ¢ and ko are constants. Then, for
any r* € X* and k > kg, the sequence generated by the approzimate proximal gradient
in (3.7) satisfies

(3.14)

k k -

7 2e; *
e[Sy (22 oo,
i=0 1=0
) > B +iC,)
j=1

o = |+ o 3 (el 22
2] k1 T
where B = 262 +s 1H2 and C, = /2Lcap + c1p.

Proof. See Section 4.1.

Theorem 1 improves over (2.1) by quantifying the uncertainties associated with the
Lipschitz and Féjer properties in addition to the ones that stem from proximal and
gradient errors.

Remark 3.2. For small perturbations and very small stopping criteria, i.e., p = 0!,
(3.14) can be approximated by

(3.15)
1 & b k , 2€}
(i) 10 % g [ S 3 (2 1o
k+1+ , s
=0 =0 i=0
1 012 L i+1)|2
gzl —a ||2] —%;HT I>-

where we have dropped the second order error terms and kept the residual error
vector explicitly, i.e., —2—15 Zf:() Hr“‘l H;, which improves the bound progressively with
iterations.

This result implies that the O(1/k) convergence rate is still guaranteed with
weaker summability assumptions on {e§}x>1 and {[|€f||,}x>1. For instance, con-
sider the case where both proximal and gradient errors decrease as O(1/k) (i.e., non-
summable). Then Theorem 1 yields an overall convergence rate of O(log k/k) which
is less conservative than what would have been obtained from (2.1), i.e, O(log® k/k).
Consequently, as a necessary condition for convergence, we only require the partial
sums YF | €h and YF_, [|€i]l2 to be in o(k) as compared to the stronger condition
o(Vk) that is implied by (2.1). If we set both errors to zero for all k > 1, we recover
the error-free optimal upper bound 5 H:c* - xOHE [4]

3.3.2. Random errors. Let us now consider the case in which ¥, ¢5 and there-
fore z*, are random, and let elfﬂ, ek and x’fz be the corresponding random vari-

ables/vectors.

Q

10, = 0 if the optimum z* is reached.
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SHARPER BOUNDS FOR PROXIMAL GRADIENT ALGORITHMS WITH ERRORS 7

THEOREM 2 (Random errors). Consider problem (3.1) and let Assumption 1
hold. Assume that the gradient error {€} }i>1 and residual prozimal error {r¥};>,
sequences satisfy Assumptions 2, 3 and P(elgn < 50) =1, for all k > 0, and for some
g0 € R. Let {zy} denote a sequence generated by the approximate proximal gradient
algorithm in (3.7) with constant stepsize s, = s < 1/(L +9), for all k. Assume that

there is a positive scalar Dy > 0 such that ||xé — x:ZHZ <D, Hacg — xé”i holds with
probability p, for all k. Then, for any v > 0,

(3.16)
f<1ifi)—f<x*><1i' R P B
kizl Q -k gt \f Vg z 2
Dz, 2
e 2 o),

2

with probability at least pk(l —2exp(—%)), where x* is any solution of (3.1), My, =

e {190 )

Proof. See Section 4.2

For large scale problems,? we typically have n > % > L; therefore, we obtain the
following approximated bound

(3.17)

LS, Iy n D2
f(kzxﬁz> égg +’7MV9D$\/;|5|":C*_$0"2+ 282

i=1

* 0)12
- T Hz’

with approximately the same probability. In the absence of computational errors,
(3.16) reduces to the deterministic noise-free convergence bound for D, = 1, i.e
1 0|2
37 |77 = 2°5- ,
The following result applies if we assume statistical stationarity® of proximal
errors.

THEOREM 3 (Random stationary errors). Consider problem (3.1), let As-
sumptions 1 hold and assume that the rounding error {€} }r>1 and residual error
{Té}kzl sequences satisfy Assumptions 2, 3 and that the proximal computation error
is upper bounded, i.e ]P)(GIQCQ < 50) =1 for all k > 1 and stationary with constant mean
Elea,]. Let {z} denote a sequence generated by the approzimate prozimal gradient
algorithm in (3.7) with constant stepsize s = s < 1/(L +9), for all k. Assume that

there is a positive scalar D, > 0 such that ||:cfZ < D? Hx :;H; holds with

QH2 -

probability p, for all k. Then, for any v > 0,
1 b v (€
i * 0
f(k2x9> — f(2*) <E(es,) + \/E< + VMg D,ld] ||z* — 2|, )
(3.18) i=1

0112
T

2And for same levels of error magnitudes ¢ and &o.

3Whose ensemble mean and variance are time-invariant.

This manuscript is for review purposes only.
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2
04

with probability at least pk(l 74exp(77)), where x* is any solution of (3.1), My, =

2 170l |

Proof. See Section 4.3

Remark 3.3. D, could be taken as large as to satisfy ||x§ -} H;gDi ng -} Hz
almost surely, i.e., with probability 1.

Once again, if both errors are forced to zero in (3.18) then the optimal convergence
rate is obtained as in Theorem 1 and Theorem 2. (3.18) also implies that we obtain
a worst case convergence rate of O(1), i.e., convergence up to a predicted constant
residual E[ea,,].

3.4. Accelerated Approximate PG.

3.4.1. Deterministic errors. We now analyze the effect of computational in-
accuracy on the approximate accelerated PG. In what follows, we establish upper
bounds on the convergence of the accelerated PG in the presence of deterministic
errors in the computation of the gradient as well as in the proximal operation step.

THEOREM 4 (Accelerated with deterministic errors). Consider problem
(3.1) and let Assumption 1 hold. Suppose we run the approximate accelerated proxi-
mal gradient in (3.6) with a fized stepsize sy := s satisfying s < 1/(L + 9), for all k,
and under the relative error model in (3.8). Let the following stopping stopping cm’tem’a
hold for k > ko: €5 < ¢y ||zt — 2¥||, < cop and ||€f]|2 < 1 || Vg(zFT1) — Vg(ah)]],
where p, c1, co and ko are constants. Assume we have summable iterative displace-
ments ka — xk_lHQ. Let the momentum sequence By, = (ax—1 — 1)/ay, be designed
such that ay, satisfies the following:

e qap,>1 V kE>0andayg=1

(] OZ% — O = Op—1

o {ar}2, is an increasing sequence and proportional to k (O(k))
Then, for any z* € X* and k > ko, the sequence gemerated by the approrimate
accelerated prozimal gradient in (3.6) satisfies

k k .
1 . 2€l,
F = 7)< o | Yo+ el = ekl + y/22)
(3.19) - o
1 , 265 \ « :
sl = 2] 4 2y 3o Bl +28) St )
Y% im0 j=1
where x* is any solution of (3.1), BI = 262 + s 1H2 and Cy, = /2Lcop + crp,

and C, = \/2Lcap + c1p.
Proof. See Section 4.4

Remark 3.4. Ignoring second order error terms (for small square summable per-
turbations and very small suboptimality stopping criterion, i.e., p = 0), (3.19) can be

This manuscript is for review purposes only.
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approximated by
flattt) —

1,5 2
o —x*uz]-

Notice that if we trivially choose 5 = 0 we recover back the nonaccelerated basic

22/\

1 2¢€5
%[Zaeﬁzaz(uelu? 22 o ),

(3.20)

scheme. In the noise-free case, (3.19) reduces t *— xOH; which coincides

with the convergence rate of the accelerated proximal gradient algorithm [4, Thm.
10.34], i.e., O(1/k?) if ay is in the order of O(k).

3.4.2. Random errors. The following result gives an estimate of the conver-
gence rate when both errors are stochastic and bounded following a probabilistic
analysis approach.

THEOREM 5 (Accelerated with random errors). Consider problem (3.1)
and let Assumption 1 hold. Suppose that the rounding error {Elfﬂ}kzl and residual
error {7" te>1 sequences satisfy Assumptions 2 and 3, respectively. Let the norm of
the iterative difference Hx —gck 1H2 be summable. Define a new sequence uk =
¥ —af + (1 — 1) (zF — 2k~ 1), Assume that there is a positive scalar D,, > 0 such
that ||u§2 ||§ < D? ||x0 — J}*H; holds with probability p. Let €y be an upper bound on the
prozimal error, i.e., e’gg < gg for all k. Then, for all v > 0, the sequence generated
by the approzimate APG in (3.6) with constant stepsize s := s < 1/(L + 9), for all
k, under error models (3.10) and (3.13), and with the following choices:

o B = Ll*l

° ozk>1 V k>0 and ag =1

L O% — Qo = g1

o {a}72, increases as o(k)
satisfies

Q

1 1
(3.21) f(a:kH) — f(z*) < el {5629 +Sr, + 5, + % ||x* — xOHz
oy,

where

k
(3.22) Z
=0

(3.23) S, =6|MyyD3 ||2° —

61Q

2
(3.24) STQ = VDi on — x*”2

with probability at least p* (1 f4exp(772/2)), where x* s any solution of (3.1),
Myg4 = sup { HVg || }, and E[.] stands for the expectation operator.
1€ENL

Proof. See Section 4.5
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10 A. HAMADOUCHE

Remark 3.5. D, could be taken as large as to satisfy Hué”i < D? on — x*Hz
with probability 1.

The following corollary results from the substitution of partial sums by their cor-
responding closed forms and using the worst case upper bound ¢ on €5, for all
i=1,...,k.

COROLLARY 5.1 (Accelerated with random errors). Consider problem (3.1)

and let the assumptions of Theorem 5 hold. Define a new sequence ug =z — fz +

(1 — 1) (aF — aF=1). Assume that there is a positive scalar D, > 0 such that

||u§z||z < D? ||fr0 — x*”i holds with probability p. Then we have, for all k. Let eq be

an upper bound on the proximal error, i.e., e’gn < gg for all k. Then we have, for all
k,

* 1< <l Il 1 * 2
B2) S5 = S0 % g [y 45y By g [

where

- k(k+1)(2k+1) ~ \/k(k +1)(2k 4 1)(3k2 + 3k — 1)
.2 = _— —_

(3.26) Ses, = €0 5 +5¢0 30 ;
— N nk(k+1)(2k + 1

(3.27) Se, = 7|6\Dqug||x0 - Hz\/ ( (2( )’
— 2seok(k +1)(2k + 1

(328) ST‘Q _ ,YDU ||LE0 o I*||2\/ SEQ ( +6 )( + )

with probability at least 1 — 4exp(—v%/2), where x* is any solution of (3.1), My, =

ap{ Ivsl J-

Proof. Substituting

(3.29) e k(k+1)6(2k+1)7

and substituting

(3.30)

Z 4 _ k(k+1)(2k +1)(3k* + 3k — 1)

1 )
‘ 30
=1

B

and using |uf ||, < Dy [|2° — 2*||,, ||€l,, ]|, < 16|Mvgy/n in Theorem 5 completes the
proof. 0

In the absence of errors, both probabilistic and deterministic analyses lead to the op-
timal convergence rate of O(1/k?) for the accelerated scheme (3.19)-(3.21). However,
as stated previously in Theorem 5, under the influence of computational inaccura-
cies and due to error amplification, acceleration has a counter-effect in the Nesterov’s
sense [18] and the method becomes more sensitive to gradient and proximal errors
whenever we want to speed up the algorithm.

Although computational errors are deterministic in nature [14], probabilistic re-
sults such as (3.21) give us practical convergence bounds when errors cannot be mea-
sured or are undetectable but with known upper bounds. If the ensemble mean E[eég]
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is constant for all k& > 1 in (3.21), i.e., the error sequence {e} } is stationary, then
(3.21) becomes totally independent from the instantaneous running errors e’fﬂ, e’gn as
well as from the running iterates xé and would be only determined by the machine
precision d, the tolerance E[e, ] and the given probability parameter . The factor
ay, is designed to be proportional to the iteration counter o(k).

Although boundedness of the gradient error is sufficient for the gradient error term
Se,,, to asymptotically vanish, the algorithm fails to converge without the summability

of the proximal error term {a?E (€5 )}.
4. Proofs.

4.1. Proof of Theorem 1. Recall the definition of e-suboptimal proximal op-
erator in (3.1):

(41)  proxi(y) = {z €B" : u(@) + Lz~ yl3 < e+ inf u(z)+ 5z —ylB} .
Because this is a set, the point 2**! in approximate proximal gradient (3.7) is not
defined uniquely. To bound the effect of the error €%, we will therefore compute its
difference with respect to the case where ¢5 = 0, as measured by a function that
we will define shortly. Recall that Z**! is the noiseless computation of the proximal
operator in (3.7) at ¥ with constant stepsize s:

(4.2) zFH ;= prox,, [xk —s(Vg(z*) + e’f)},

(4.3) = prox,, [g;k — sV g(xk)}

(4.4) = argmin g(«") + V()T (2 — 2*) + 2—18||x — 2|5 + h(z)
(4.5) i= arg min G(z, z¥).

From (4.2) to (4.3), we used Vflfg(xk) := Vg(z¥) + €} as the inexact gradient of g at
oF. From (4.3) to (4.4), we developed the squared f3-norm term in the definition of
the proximal operator [cf. (3.5)] and added g(z*) to the objective function. Finally,
from (4.4) to (4.5), we defined

(4.6) G(z, 2%) == g(a¥) + Velfg(xk)T(ac — ") + %Hx - kaz + h(x).

As h is convex [cf. Assumption 1], the quadratic term in (4.6) makes the function
G(-, x¥) strongly convex with parameter 1/s [4].

Recall that 78! is the optimal solution of (4.5) and that z**! is the actual, noisy
iterate in (3.7). Therefore, according to (3.7) and to the definition of the e-suboptimal
proximal operator in (4.1),

2

(4.7) h(zFt1) + 2—18Hmk+1 —aF 4+ sVelfg(ask)H2 < eb+h(@)
1 2
+ %kaﬂ —aF 4+ sVelfg(ask)H2

(4.8) = b+ QLSH;E’“H — 2| 4 V(M) T (5 — k) <

es+h(@ ) + Qisuf’fﬂ — 2|2+ Vg ()T (@ - o)

(4.9) = G2t 2%) — G (@, 2F) < €.
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From (4.7) to (4.8), we developed the squared-norm terms and cancelled the common
term. From (4.8) to (4.9), we added the constant g(z*) — %HVg(mk)Hi to both sides
and used the definition (4.6). Notice that (4.9) bounds the distance between x*+!
and 78! as measured by G(-, 2*).

Because G(-, z¥) is strongly convex, [4, Theorem. 5.25] establishes that

(410 6o a¥) - G a4) > 5o~ 7

for any « € R™. In particular, it holds for any optimal solution x* of (3.1).
Thus, subtracting (4.10) with = 2* from (4.9) yields

(3.11) G, oh) — e, 4) < & — [l 74
(112) = g(oh) + V)T (@ —ab) 4 o a2 ()

1 12
G, ) < - ol 7
(413) = g(a*) + Vg(ah)T (@ —aF) 4o (FF! —a")

Lokt k1|2 k+1 k k k1|2
b Lt b ne ) - Gt o) < - L e
From (4.11) to (4.12), we simply used the definition of G(z, z¥) in (4.6) with x = z*+!
and we also used V€’fg(xk) = Vg(2F) + €k in (4.13).

Applying (3.4) to (4.13) (with s < 1/L) and using f := g + h, we obtain

(414 (@) + h(a*1) — G(a", 2¥) < o - o [l 741
+ elfT(xk — :ckH),
@15) = @) -G ) < - Lt P (- ).

We now expand G(z*, z¥) in (4.15) as follows

FR ) — g(a*) - Vilfg(xk)T(x* — ) - in* - ka§ — h(z¥)
(4.16) 28 .
<€k_7||x*_fk+1||§+ellc (xk_karl)'

Rearranging and subtracting g(z*) from both sides yields

Qisnx* 7fk+1“§ +g(xk)

+ Vg T (2* — 2%) + Qflsnm* - kaZ + e’fT(xk — M.

F@*h) = h(z*) - g(a*) < —g(a*) + &5 —
(4.17)

Using the definitions f := g+ h and Velfg(xk) = Vg(z¥) + €} in (4.17), we obtain
F@ ) = f(a*) < & — g(a*) + g(a*) + Vg(a*) T (a* — 2")
1 = 2 1 2 T T
(118) gl =T gl — My el (@r o) e (@F -t

in* _ xkﬂz + e’fT(x* . xk+1) :

1
<& — oot =T+ o

2s
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where in the second inequality we used the fact that g is convex, i.e., g(z*) > g(z*) +
Vg(z*)T (z* — 2¥). Summing both sides of (4.18) from 0 to k,

(4.19)
Z z+1 LE*)] < Zeé + Zell (.’t* _ :L,H»l)
i=0 =0 =0
1 & , .
5o [l =l ~ ot =),
=0
k ‘z k . ‘ 1 F -
=S @ +>d (@ -2 gz[|yx*_xzy|2
=0 =0

= (o =2l + [l =

4 2(z2+1 _fiJrl)T(x* _ xi+1)>]7

koo k - ‘ 1 & .
:;e;+zeg (2" =2 + o= 3 [l = 2|

i=0 =0
= ([la" - x”lHﬁHr”lHﬁ? Tt -2t ),
d - 1 i+1 1 01(2
zge;+; T (@ =) 4 o[l - a0
2 1 & 12
~|lo” - kaHQ} - 5= 2 [
=0

where in the second-to-last equality we used the definition of 7% in (3.11), and in the
last equality we noticed that the quadratic terms involving x* formed a telescopic
sequence. Rearranging and moving negative terms to the left hand side results in

k 1 k _ ) 1 ) koo
DI ICAR O R Bl el R ] I B
(420) =0 1=0 1=0
2 i 1 iFINT (% i+1 1 * 012
+Z(el—gr ) (a2 -z )—|—%Hx -z H2
i=0

Since f is a convex function, Jensen’s inequality implies
k

f(lc«lklngl) ) Z £~ f@)]

which, applied to (4.20) and together with the fact that the last two terms of the
left-hand side of (4.20) are nonnegative, yields

1 a 7 * i 2
() -se an% sl -~ <
(4 21) 1{zk:6i +zk:(€i o lri+1)—r($* _mi+1)+ i ||x* _I'OHZ}
' E+1 —~ 2 —~ Lo 2s 2]
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Using Lemma 1 to bound the norm of the residual error r* = 2% — Z* resulting
from the proximal error €5, Cauchy-Schwarz yields
1, , . 1, . .
(6 = 2T = (el + ) et -2
(4.22) ¥
i € i
< (lleill, +/=2) llz = 2™+,
Using (4.22) in (4.21) yields
1< 1 &
it+1 i
f<k+1zx+ ) e <2 e
i=0 =0
(4.23) 1< ; 2¢b ;
' g o (letlly + 4/ 52) fla =2
1 . 2
Ttk 1) l* =],
Applying Quasi-Féjer (Theorem 6 in the appendix) recursively gives
1 & R 1 2
_ - i+1) _ * L i s x .0
f<k+1§x > f@) < k+1;62+25(k‘+1) = = =%l
LI 2\ |1,
(420 #rr 2 (el + 22 I -1,
1§ i 260\ "= g L
g 2 (el + 52 S B + i),
=0 j=1
where £ = ||7’7'H2 + 81 He{_luz and C, = 0 if the optimum z* is reached. This

completes the proof of Theorem 1.

4.2. Proof of Theorem 2. This result is about the basic version of approximate
PGD, but with random proximal computation error ey, component-wise bounded
gradient error €;, and bounded residuals ||x§ — :C*H ,- As the algorithm generates a
sequence of random vectors {z"}, the residual vector sequence {r*} will also be a
random.

Let T}, denote the second error term in the bound of (3.14) [Theorem 1], i.e.,

0 k=
4.2 T, = . . ) ’
( 5) g { Zf:l(ellgl —%r;)T(m*_I;) ’ k= 1a2a"' ’

The first step is to show that {7} is a martingale. Recall that a sequence of random
variables Ty, T1, ... is a martingale with respect to the sequence Xy, X1, ... if, for all
k > 0, the following conditions hold:

e T} is a function of Xg, X1,..., X;

o E[|Ti]] < oo;
o E[Tk11|X0, X1, .., Xi] = Tk
A sequence of random variables Ty, T1, . .. is called a martingale when it is a martin-

gale with respect to itself. That is, E[|Tk|] < oo, and E[Ty4+1|To, T4, - - ., Tk] = Tk.
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Let v" = e’f;1 — 1pk and recall the definition of r¥ in (3.11):
(4.26) rk =gk — 7k,
Rewriting (4.25) in terms of v/* yields

(4.27) Th=Thoy + 08 (2% — 2b).

Q

We now show that Assumptions 2 and 3 imply that {T}}r>0 is a martingale. Specif-
ically, (3.10a) and (3.13a), we have

]E[I/S’§|1/32 . 1/’“*1] =E[vf] =o.

Q

And from (3.10c) and (3.13b), we have

]E[yngfl |1/é .. .yg_l,xé .. .scg_l] = E[VST.TZ] =0.

Taking the expected value of both sides of (4.27) conditioned on {Ti}f:_ll gives
E[Ty|Ty ... Thr] = E[Thy + 18 (0% —2)|Ty .. T 4]
—B[Th [Ty ... Toa] +E[vF (2" —2)|Ty ... Th ]
=Ty + B[ (2" = 25)|Th .. Ty ]
=Ty + B[ |1 T —B[F 2k Ty T )
=Ty + BT Th] To* —EB[F 2k Ty T )

_ 11T
(4.28) =Tk +E[V§|Vé...l/£ Lal .2k e
kT k|1 k—1 1 k—1
_]E[VQ xn}yn...yg 1 Lg e Ty ]
- 4T
1 1
(4.29) =T, 1+E elfS;l — grg T — E[(e’fnl — Srg)—rxg]
a T T
1 . 1
(4.30) =Ty B[ | e IE[IE {e’fnl _ Srg\xg] xg}
- 4T
_ 1
(4.31) =Tp1—E|ey ' — ;rg z”
(4.32) = Th_s.

From (4.28) to (4.29), we used the error mean independence assumption, i.e.,
E[z/g’yé ...vF71 = E[v*] as well as the data mean independence assumption (or
the less restrictive statistical orthogonality in high dimensional problems), i.e.,

E[Vngé‘l/sll R el I E[I/kafl]. From (4.31) to (4.32), we used the
zero mean error assumption, i.e., £ [z/slﬂ = 0. Therefore, T1, T3, . . ., T} is a martingale.
In what follows, we establish upper bounds on the absolute value of the martingale

{T}}. To do that, we use the Azuma-Hoeffding inequality in [27, p. 36], noticing that
T *

|Tk - Tk,1| = ‘V!’; (x* — ;vg)| < (\/ﬁdeg + 26’2“/8) ng —xé} 9

used Cauchy-Schwarz, etc. Corollary [27, Corollary 2.20] then yields

where we have

i=1

k :
2€h\ 2 4 2
(4.33) Pr<|Tk —Tol > 74| D (VnMyyld] + \/E) ||z — x}le) < 2exp(—%).
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16 A. HAMADOUCHE
Since €5 < &g, then the following also holds

2

12
(4.34) Pr(|Tk —To| > 'y(vang + io) Z Hx* gt H ) < 2exp _%)

And since Ty = 0 we obtain

(4.35) Pr<|Tk| > (vnMy,|d] + \/E)

Or, equivalently, that

2

Z ||z — i | > < Zexp(f%).

k
2¢e .
(4.36) Tl < (VMo + 1/ =2) | 3 llag — i[5
=1

holds for all k£ > 1 with probability at least 1 — 2exp(—72—2). Expanding T} we obtain

k

7 1 i * 2e
>t - gTQ)T(% )’<’7<\7Mw|5|+ 80>

i=1

(4.37)

; 2
PO A s
i=1

By assumption, we have that H:U:Z — xf} Hz <D, ||:L’; - x?) ||§ holds with probability p,
for each 7. Then,

k
) 2k
Z et —fr ) (a, —x;)‘ S7<MVgV”k|5|+\/TO>D 25, = 2l

2

holds with probablity p* (1 — 2exp(—2-)). Substituting (4.38) into (3.14) completes
the proof of Theorem 2.

(4.38)

4.3. Proof of Theorem 3. Here €y, is bounded almost surely and has station-
ary mean. Specifically, we have 0 < 6’59 < g9, with probability 1. By Hoeffding’s
inequality ([27, Proposition 2.5]), we can write,

2

k k
i i —2t
(4.39) Pr<| ;:1 €5, — E <;1 eQQ> | > t> < 2exp ( e >, for all t> 0.

Defining the constant mean E[e§_] = E[e,,] and substituting in (4.39) yields

k
, —2t?
(4.40) Pr<| Z €5, — kE[ea,]] > t) < 2exp (2>, for all ¢ >0.

k
i=1 €0

By choosing t = @, for some v > 0, we obtain

= ke —?
(4.41) Pr(| Zeén — kE[e2,]| > 5 ) < 2exp (2> for all > 0.

i=1
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Equivalently,
" ke
(4.42) 2% < KE[eag] +
holds with probability at least 1 — Qexp(—l;). Using the last inequality (4.42) in

(3.16) and applying the probability union bound completes the proof of Theorem 3.

4.4. Proof of Theorem 4. Following the same line of proof of Section 4.1 but
with y, = (14 Br)z* — Bra®~1, where {Bx} € [0, 1] is the momentum sequence, and
using the approximate accelerated PG iteration scheme 3.6, we obtain

1

f@) = f@) <+ e @—at) = o fla—
S

1

2s

(4.43) k+1\T k+1 1 k|2
()@ =2 + ol — o5

Let us now substitute y* and z by,

(4.44) y* = aF 4 B (ak — 2P

(4.45) r=a; v* 4+ (1 —ayt)z",

where (4.44) follows from the definition of the acceleration scheme (3.6), and (4.45)
is a choice that we make to simplify the analysis.* {ax}r>1 is a given parameter

sequence that satisfies ag = 1, ap > 1 and [ = %;72_1 (4.43) can now be expanded
as

(4.46)
f($k+1) _ f(alzlx* + (1 _alzl)xk) < 6]5 +6]fT(Oél;1$* + (1 _alzl)wk _xk+1)

— L it 4 (1 o)t — ok

1
b oo e + (1 o —
1

o 278<Tk+1)T(a;11,* + (1 o a;l)xk o (Ek+1).

Since a;l €]0, 1], and from the convexity of f, we have

(4.47)
F@* ) = flagte™ + (1= agh)a?) > f@) + (1 - o) f(27)
— (1= ) f (=) = f(a)
= f(@") = fa*) = (1= o H(f (") = f(a).
Let us now define the new sequences {v*} and {u*} by
(4.48) uf =+ (ap — 1)af — apy® = 2% — (@F + (g1 — 1) (2 — 2F71))
(4.49)  o* = f(a¥) = f(@*).

k5 g,
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18 A. HAMADOUCHE

From these we can obtain
(4.50)  wFTl =2 4 (ap — D — gt = 2 — (@ 4+ (ap — 1) (M — 2F)),
by using B = (ar—1 — 1)/ay, and y* = (1 + Bi)z* — Brpa* !

Rewriting (4.46) in terms of the newly defined sequences, {u*} and {v*}, and
using (4.47) with ¢, :=1 — a1, as well as (4.48) and (4.50) we obtain

1,7 1 2
et AT g ol L
4.51

i k112 1 k4+1\T, k+1
||T HQ 2sak(r ) U .
Rearranging (4.51) we obtain
VI g I < e T
(4.52) 1 k L k1T, k41
250l || I; - Tea )
Multiplying both sides by a3,
2
sy TSI g e < ol et T et
. —|—21fSHUkHZ_;7§(Tk+1)Tuk+1‘

Applying (4.53) recursively, and substituting afc, = af — a = a1 yields

2
(4.54) ot 4 %HTHIHZ || k+1||2 < a2ek + apel TuFt 4 qo®
o I = ST,
20 OFy o 2 2T
(4.55) ajve + 7“ ||2 + ||u ||2 < ajes+ares u? 4 agut
i 12 Y1, 2\T 2
b 2= 22T
Adding both sides of all inequalities,
koaZ, . :
A+ S i Y -
(4.56) . .
1 T . A
< ;afe; + 55 Itz + gaiefw + agv! - ; Se () T,

Substituting a?_l — 1 = a?_Q and ag = 1 gives,

2 k+1 : 0‘12 i+11|2 1 k+11|2 . i
R Dh [ L D
1=0 1=0
k k

k
. . . 1 i )
S R I A el 0 M W G M

1=0 1=0 =0
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561 For a positive sequence {ay }>0 and because z* is a (global) minimizer, Y a;_ov" > 0
562 is always satisfied; hence the following holds

k
2 1 2 .
b oo+ S L e
563 (4.57) . . .
< Za?eé + Zai (621 — iriH) w4t —|— H 1H2
564 From (4.43) with k = 0 and = = z*, we have
I 1 >
ot = fah) - f@) < e+ (60— r1> (z* —2') — —||z* — 2!
565 (4.58) ’ . Lo 25” £
* _ .0 2
+ 55l =2,
566 since y° = 2°. From the definition of {u*} in (4.50) we have
2 1, ., 2
Ll = L ot + (0 - Da? - a2,

567 (4
o ( 59) _ 1 * 112
e
568 where we have used the initialization ag = 1. Substituting for v**! and combining
569 (4.58) and (4.59) with (4.57) yields
(4.60)

k T
S T B TR S S R TR
=0

571 Dividing both sides by a3 and applying Cauchy-Schwarz inequality yields

o g0 - e < [ St [l L) B,

i=

) 1 * 0112
573 +g||£€ - ||2]
574
575 We have by definition 4.48 and 4.50

576 (4.62)  uF = 2" + (g — D)a¥ — apy® = 2" — (2% + (ap_y — 1)(z¥ — 2F7Y)),

571 (4.63) uFt = 2" 4 (o — 1)2* — apaf Tt = 27 — (@ 4 (o — 1) (2T = 2F)).
579 By triangle inequality of the vector norm, we have

580 [, < [lCex = D) @* = 27|, + o [ly* — 2],

k+1 I*H2

583 By the nonexpansivity of the displacement operator, i.e., I — sVg, where I is the
584 identity operator, we obtain

582 |, < ok — 1] [Ja* = 2*]|, + ax ||2

w5 (464) [l =ty < e [l =2, = 1" -2l

)

586 < ay, , Vs < —,

P4 ]+ s flexlly + Cron,
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where we have used inequality (A.18). Rearranging and taking into account that all
the terms inside the absolute value are nonnegative, we obtain

1
469 [y < bl o o b+ o, ) 1

Using the bound Hr“‘lHQ < /2s€, from Lemma 1, by induction and backward sub-
stitution

k
, , 1
(4.66) H“k-HHz < Hu0H2 +;aj( 2se) + s HG{H2 +C ’Sko)’ Vs; < I
where ||uOH2 = [|2° — 2*||2. By multiplying we obtain the bound of Theorem 4.

4.5. Proof of Theorem 5. This result is about the accelerated version of ap-
proximate PGD, but with random proximal computation error es,,, component-wise
bounded gradient error €;,, and bounded residuals ||:r§ — (E*HZ. As the algorithm gen-
erates a sequence of random vectors {z* }, the residual vector sequence {r¥} will also
be a random. Let v, = /™' — 1r and let {T}} denote the second error term in (3.14)
[Theorem 4], i.e.,

(4.67) =47 k=0

’ B Ziil aiué—rué, k=12, ,
where
(4.68) ul, =" —a + (1—a;1) (2!, — 2l h).

The first step is to show that {7} } is a martingale. Recall that a sequence of random
variables Ty, T1, ... is a martingale with respect to the sequence Xy, X1, ... if, for all
k > 0, the following conditions hold:

e T} is a function of Xy, Xq,..., Xk;

o E[|Ty]] < oo;
o E[Tit1|Xo0, X1,..., Xi] = T
A sequence of random variables Ty, 17, ... is called a martingale when it is a martin-

gale with respect to itself. That is, E[|Tx|] < oo, and E[Ty+1|T0, T4, - ., Tk] = T. We
now show that Assumptions 2 and 3 imply that {T }x>0 is a martingale. Specifically,
(3.10a) and (3.13a), we have

E[Vglﬂuflz .. I/k_l] = E[I/k} =0.

Q

And from (3.10c) and (3.13b), we have
]E[VS’:T:EfZ |1/é .. .ngl,xl .. .:kal] = E[Vkak] = 0.

We have from (4.67),

(4.69) T =Th_1+ Ozkus—rug.

Substituting for u* using (4.68) gives,

T * T * —
(4.70) Ty = Too1 + apop—1v" (2 —2F) + ap(1 — a1 )vf (2 —2F71).
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Taking the conditional expectation from both sides and proceeding as in Section 4.2,
we obtain E[Tk|T1 ... Tk—l] =Tk 1, ie., T1,Ts, ..., T} is a martingale.
In what follows, we establish upper bounds on the absolute value of the martingale

{T}}. By noticing that |Tk — Tk,1| = |1/£Tu§| < ak(\/ﬁéMvg + 26’5/8) HugHQ,
where we have used Cauchy-Schwarz, etc. [27, Corollary 2.20] then yields

(4.71) |T| < || My,

k k
w32 [l |2 4+ 9v2s | 3 a2 fui | e
=1 =1
< A8\ Mugv/n S i, + V2 S [, /b
=1 =1

where My, = sup { HVg(xl) HOO } is the upper bound on the elements of the gradient.
1€NL

Let {Sk} denote the first error term in (4) [Theorem 4] i.e.,
k .
(4.72) Sk=) ojeh,.
i=1

If 0 < 5 < &g and ap <k, then applying [27, Proposition 2.5] to Sy, = Zle oZely
with 0 < egn < eg and ag < k yields

v |2

k
(4.73) Sk <E[Y ale),] +
=1

k k
Zi4(e§ﬂ)2 < E[Z 0%26%9] + % Zi2€ész’
i=1 i=1

=1

with probability at least 1 — 2 exp(—’é—z). Applying the probability union bound and

assuming that ||u? ||> < D2 ||2° — 2*||> holds with probability p completes the proof
g all2 u 2
of Theorem 5.

5. Experimental Results. We now experimentally assess the proposed bounds
on an {-regularized model predictive control (MPC) problem. We consider a discrete
linear time invariant (LTT) state space model of a spacecraft [13]. The approximation
errors are simulated error sequences generated from a truncated Gaussian distribution.

5.1. Model Predictive Control (MPC). The ¢;-regularized MPC can be
formulated as

(5.1) minimize f(x):=g(z)+ h(x),

r€eR™

where g : R™ — R is the following real-valued, convex and differentiable function,
9(@) = [(@7Q® + R) 'z — (27Q® + R) F@TQ(R, — Wa(k)) Hz ,
and h: R™ — RU {400} is the nondifferentiable convex ¢;-norm
h(@) == Azl ,

with z € RP*NeX1 being the vectorized differential control Au = u¥ — u*F=1 € RP*Ne,
where p is the input dimension of the system and N, is the control horizon. The
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regularization parameter A\ € R¥ is a positive scalar. Q € RNe™*™No and R €
RP-Nexp-Ne are positive semi-definite design matrices where m is the output dimension
and N, is the prediction horizon. R € R™ N»x1 is the vectorization of the matrix that
is constructed by N, times stacking of the set-point vector r(k). @ € R™ Npxp-Ne and
U € R™NeX" are augmented matrices which can be obtained from the spacecraft LTI
discrete state-space model (A4, B, C) of [13] using a standard formula [28, Eq. 1.12].
For simulation, we select the problem’s matrices as follows,

Q = diag(500.0, 500.0, 500.0,10~7, 1.0, 1.0, 1.0, 500.0, 500.0, 500.0, 10~7, 1.0, 1.0, 1.0);
R = diag(200.0, 200.0, 200.0, 1.0, 200.0, 200.0, 200.0, 1.0),

and set the regularization parameter A = 2.5021. The control and prediction horizons
are set to N, = N, = 5. The quadratic term of the ¢;-regularized MPC problem,
g(x), has a gradient’s Lipschitz constant of L = 11539, and therefore, a stepsize of
s = % is adopted.

For the simulated errors, we use i, = Vg(z*) © trand(—4, §) where trand(a, b) is
the doubly truncated normal distribution [8] with lower and upper truncation points
a and b, respectively. ¢ is the gradient element-wise precision, which is a scalar upper
bound on the gradient error. € = trand(0,¢y) where ¢, is a scalar upper bound on
the proximal computation error. The output of the distribution function trand(l, u)
is a vector randomly generated from the standard multivariate normal distribution
truncated over the region [I,u].

5.2. Results. The deterministic and probabilistic bounds are plotted and super-
imposed with the bound (2.1) of [25] in Figure 1 and Figure 2. The latter is denoted by
Schmidt_1 (Schmidt_2 in the accelerated case) and the proposed bounds are denoted
by Thrm_1 and Thrm_2 (Thrm_4 and Thrm_5 in the accelerated case), respectively.

Notice that we expect the effect of ¢} to be negligible near the optimum since,
according to model (3.8), €¥ is proportional to the magnitude of the gradient. How-
ever, depending on the choice of the upper bound of € in the proximal operation step
(3.7), the effect of the error €5 can still be significant and sometimes permanent even
near the optimum as we will see next.

In the presence of small gradient and proximal computation errors, the bounds
in Theorem 1, Theorem 2 practically coincide with (2.1). Therefore, in order to
emphasize the sharpness of the proposed bounds, we run the simulation with |e¥|
2.2x10; €5 < 10 for the nonaccelerated case (Figure 1), and with |e}| < 2.2x1074; €&
10~* for the accelerated case (Figure 2).

<
<
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Fig. 1: Upper bounds based on Theorems 1 & 3 vs Proposition 1 ((2.1)) in Schmidt
et al. 2010 [25] (with § = 2.2 x 10';¢o = 101).
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Fig. 2: Upper bounds based on Theorems 4 & 5 vs Proposition 2 in Schmidt et al.
2010 [25] (with 6 = 2.2 x 107%; ¢g = 107%).

691 Figure 1 suggests that by using the proposed probabilistic bounds, we can predict
692 the suboptimality, i.e., f — f*, more accurately and the improvement is more signif-
693 icant with lower values of + (with lower probabilities). Note that the probabilistic
694 bounds can possibly drop below the suboptimality plot (f — f*) during some itera-
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tions; however, this would not present any conflict with the theory as this is what can
be expected from probabilistic statements (dependent on the parameter «) which do
not hold 100% of the algorithm’s execution time.

From Figure 2, we can see that none of the bounds can successfully estimate
the function values suboptimality in the accelerated case, however, the probabilistic
bound of Theorem 5 gives the best estimate and the slowest divergence rate. The
bound of Corollary 5.1 slightly improves on Theorem 5 but still diverges, although at
the slowest rate.

6. Conclusions. We have analysed the convergence of the proximal gradient de-
scent under computational errors. We derived deterministic and probabilistic upper
bounds on the objective function value which we used as an assertion for convergence
test. We considered the special case in which the gradient Vg(z*) of g is computed
with errors as well as the proximal operator prox;, (with respect to h) is evaluated
approximately. We also considered accelerated versions of the proximal gradient de-
scent, which is known to converge faster in the error-free case, but we have shown that
this comes at a price of amplified perturbations, which may lead to divergence. We
proved that the effect of each contributing error term can be decoupled under mild
assumptions. We also obtained probabilistic bounds with three main advantages:

e The bounds are sharper (i.e., reflect practical performance better);

e The bounds are simpler to interpret and predict a priori;

e The contribution of each error term is decoupled.
We have also shown that some error terms follow martingale sequences when error
conditional mean independence and data conditional mean independence assumptions
both hold. Finally, we have perceived that in the accelerated case, the algorithm actu-
ally converges to some suboptimal level around the optimum, however, the latter could
not be determined using the current convergence bounds. This opens the possibility
of other types of analyses with different error models.

Appendix A. Supplementary results. The following Lemma establishes
bounds on the norm of the residual error vector due to proximal error (forward error).

LEMMA 1. Consider problem (3.1) and let Assumption 1 hold. For L,s > 0,
define G: R™ x R™ — (—o00, 00| as the proper, closed, and L-strongly convex function

Gly, ) = 9ly) + Vo) (&~ v) + 5 1z~ yl} + hz),

Define y* := arg min G(y, x) as the minimizer of G with respect to y when x is fized,
and y* € {y : G(y,z) — G(y*,z) < €3} as an ez-approzimate solution of the same
problem. Then,

17" =]l < vasea.

THEOREM 6 (Quasi-Fejér monotonicity of the sequence generated by the
proximal gradient method). Let {2*};>0 be the sequence generated by the ap-
prozimate prozimal gradient (3.7) for solving problem (3.1) under Assumption 1 and
with s, < % Assume that, for k > ko, we have 6’5 < ¢g ||x’chrl kaHQ < cop and
[€¥]l2 < e1 || Vg(ah+h) — Vg(zk)Hz. Then for any x* € X* and k > 0 we have

(A1) |27 — [l < [l = @[l + [l ], + se lexll, + Coye

where Cp, 1/, = \2Leap + c1p. If EFFL = Hrk“H2 + sp ||e’f||2 is a positive and
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absolutely summable sequence, then {$k}k20 is a quasi-Féjer sequence relative to the
set X*.

Proof. we have
(A.2)

o+t — kot 2!
T — " o=

k k
proxiih(xk - skve’fg(xk)) - pronioh(xko — Sko Velog(xko))

2

k
Writing proxiih(m) as prox,, ,(z) +r" and Vsllcg(x) as Vg(x) + €¥ for any suboptimal
solution 20 of (3.1), we obtain
Hmkﬂ — kaHHQ = H proxSkh(xk — 5, Vg(z") — speb)
(A.3)
- pI‘OXSkOh(LEkO - Skov9($k0) - Skoellco) + Tk+1 - rko

2

By assumption we have €§ < ¢, Hl’k+1 — kaQ, or equivalently,

||7"k+1||2 < \/202 [zF+1 — 2|, /s and € < ¢; ||Vg(xk+1) — Vg(xk)||2
<cL ka“ — kaz for k > kg. By the triangle inequality we have

(A.4)

||:::’“Jrl - xkOHHQS p1"0>(5kh(xlc — 5, Vg(z®) — speb)

- pI‘OXSth([,CkO — Sko v.g(xko) — Sko elfo)

|l
2

< || prox,, ,(z" — si Vg(z") — siep)
2cop
*proxskoh(xko - Skovf](xko) - Skoellco) ‘ + ||Tk+1H2 + s
2
where we have used ||zFot! — zko|| < p.
By the nonexpansivity of the proximal operator we have
(A.5)
k41 ko+1 k k ko ko 1 2c9p
Hx -z ||2§ % — 5, Vg(z®)] — [27° — s, Vg(z™)]|| + Hr ||2 + ”
2 0

s [lex ], + sk,

|
2

< ||[#* — sk Vg(a®)] — [27 — 55, Vg (™)

2c
+1 / 2020 + sp,c1Lp
Sko

By the nonexpansivity of the gradient descent operator, i.e., I — sVg, we obtain

1 sl
2

(A6) [+ —aoH ], < [l — aoll, + [, 4 s bl + G VoS T

(A.7) = ||z* — z™|, + E*' + C,,
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(A.8) [+ — ko — (ot — gho)|| < ||lak — 2k, + B+ G,

where C), = ,/230720’) + sg,c1Lp and ERL = Hrk+1H2 + Sk HGIICHQ

By the triangle difference inequality we have

A9) [t g = a1 = bl | < ot = R, + 5+
For akotl = gko = 2* we have
(410 a4t =], < flat o], + B4 +

From (A.10) and by [9, Definition 1.1], the sequence {x*};>1 is quasi-Féjer relative
to the set X* if {E¥};>; is positive and absolutely summable.
0

THEOREM 7 (Quasi-Fejér monotonicity of the sequence generated by the
accelerated proximal gradient method). Let {:L'k}kzo be the sequence generated
by the approzimate accelerated prozimal gradient (3.6) for solving problem (3.1) under
Assumption 1 and with s, < % Assume we have summable iterative displacements
|zF — xk_1H2 and that, for k > ko, we have €§ < ¢y [|z*+! — kaZ < cap and ||€F|2 <

c1 HVg(xk+1) — Vg(xk)HQT, then for any x*o € X% and k > 0 we have
(A.11) 4 = o], < fla® = afol], + [|la* = 25T, + BF 4 Gy

where Cyyys = 2Lezp + erp, BV = 41, b [kl I BV = 1], +
Sk He’f H2 18 a positive and absolutely summable sequence, then {xk};@o is a quasi-Féjer
sequence relative to the set X*o.

Proof. For any optimal solution z*° of (3.1), we have

(A.12)
k41 o kotl|| _ T R = S ® ko T o (k0
(| et = lprox ), (" — sV g(y")) — prox? (a0 — s,V g(2™))
2
k
Rewriting prox;?, (y) as prox,,,(y) + r* and Ve g(y) as Vg(y) + €* we obtain
ot = kot | prox, (s~ sx Vs k)
(A.13)
o (5 51, V') = sy ) 4 b
2

By assumption we have €5 < ¢y H:I:’C+1 — kaQ and

& < e ||[Vg(aht) = Vg(aF)||, < erL|ja*™ —a*||, for k > ko. By the triangle
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787 inequality we have
(A.14)

kaﬂ _ xk0+1||2 < ‘proxskh(yk — 5k, Vg(y*) — sped)

—prox,, (2" — 55, V() — sp,€1°) ‘ [+ e,
788 2
< ‘ pI‘OXSkh(yk - Skvg(yk) - Skelf)
2c
—proxSkOh(xk" — sk, Vg(a'©) — SkOEIfO)H + ||7'k+1H2 + ;p
2

789  where we have used ka”l — gho H2 <p.
790 By the nonexpansivity of the proximal operator we have

||l,k+1 -~ xko+1||2g H[yk ~ sk Vg(y®)] — [zF — Skovg(ﬁﬂko)mz + Hrk+1||2

2
Ty i

< H[y’“ — s, Vg(y*)] = [z* — Skovg(ﬂﬁko)]HQ + ”rk—HHz

2
ol + 222 + su,en

792 By the nonexpansivity of the gradient descent operator, i.e., I — sVg, we obtain

ko
€1

791 (A.15)

1
5 =2t <l = aolly + Pl + s ety + Congr Vi < 7
703 (A.16) _ sz — ko 4 By (et — xk71)|}2 L ERL o

= [la* —atolly + [la* =", + B 4 G

»Skq

791 where C, 5, = 28%:’ + spoc1Lp, BFL = Hrk‘HHQ + s He’fH2 and we used B

IA
—

795 By the triangle difference inequality we have

(A.17)

796 E+1_, k ko+1 k k k k k—1 k+1
[[[o* T =atoll, = [ttt = afo [ < [la* — ool + [l =" 7H|, + M 4+ G,

797 For zFotl ~ zFo = 2* we have
s (A18) 24 =, =@l + flat =], + BR 4 Gy,
799 From (A.18) and by [9, Definition 1.1], the sequence {z*};>1 is quasi-Féjer relative
800 to the set X* if {E*};>1 is positive and absolutely summable provided we have
801 summable iterative displacements ka — gkt ||2 ]
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