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Abstract. We analyse the convergence of the proximal gradient algorithm for convex4
composite problems in the presence of gradient and proximal computational inaccura-5
cies. We generalize the deterministic analysis to the quasi-Fejér case and quantify the6
uncertainty incurred from approximate computing and early termination errors. We7
propose new probabilistic tighter bounds that we use to verify a simulated Model Pre-8
dictive Control (MPC) with sparse controls problem solved with early termination,9
reduced precision and proximal errors. We also show how the probabilistic bounds are10
more suitable than the deterministic ones for algorithm verification and more accurate11
for application performance guarantees. Under mild statistical assumptions, we also12
prove that some cumulative error terms follow a martingale property. And conform-13
ing to observations, e.g., in [25], we also show how the acceleration of the algorithm14
amplifies the gradient and proximal computational errors.15
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1. Introduction. Many problems in science and engineering can be posed as18

composite optimization problems:19

minimize
x∈Rn

f(x) := g(x) + h(x) ,(1.1)20
21

where the function g : Rn → R is real-valued and differentiable, and the function22

h : Rn → R ∪ {+∞} is not necessarily differentiable and is possibly infinite-valued,23

enabling the inclusion of hard constraints in (1.1). Examples include various machine24

learning frameworks, e.g., logistic regression and support vector machines [11], sparse25

regression and inference [23, 15, 16], image processing [1], and discrete optimal control26

[17].27

A popular class of algorithms to solve (1.1) is proximal gradient methods [4] which,28

in each iteration, take a gradient step using the function g and, subsequently, evaluate29

the proximal operator of the function h at the resulting point. Such algorithms30

have been widely studied under different contexts, and several guarantees have been31

established, both in the convex [5, 4, 6, 10, 22] and nonconvex [7, 21] cases. Stochastic32

versions of the proximal gradient algorithm have also been proposed and shown to33

converge in convex and nonconvex settings, e.g., [2, 29, 20, 24, 12, 30].34

All of these results, however, assume that computations are performed with near-35

infinite precision, which is unrealistic when the computational platform has limitations36

in power, precision, or both. Examples include applications that are associated with37

sensing and control of autonomous platforms, often using FPGAs or other finite preci-38

sion computational hardware. With these applications in mind, we analyze proximal39

gradient methods when both the gradient and the proximal operator are computed40

approximately at each iteration, and obtain tight performance bounds.41
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2 A. HAMADOUCHE

While standard proximal gradient methods converge to a solution of (1.1) pro-42

vided the stepsize sk is small enough, approximate proximal gradient algorithms re-43

quire, in addition, that the approximation errors ϵk1 and ϵk2 satisfy some additional44

convergence criteria, for example, that they converge to zero along the iterations.45

Our goal is then to characterize the convergence of the approximate proximal46

gradient to a solution of (1.1). Differently from prior work, we assume not only deter-47

ministic errors, but also probabilistic ones, according to models suited to approximate48

computing.49

1.1. Our approach. In the case of deterministic errors, we get inspiration50

from [4] to derive, using simple arguments, upper bounds on f(xk) throughout the51

iterations. The resulting bounds generalize other bounds [25] in the presence of Lip-52

schitz uncertainty and early termination errors under mild assumptions. In the case53

of probabilistic errors, our arguments rely on concentration of measure results for54

martingale sequences and bypass the need to assume that ϵk1 and ϵk2 converge to zero.55

The latter yields tighter bounds, and we believe this line of reasoning is novel in the56

analysis of approximate proximal gradient algorithms.57

1.2. Applications. In order to validate our convergence results, we use the pro-58

posed error bounds to analyse the convergence of proximal gradient when applied to59

solve the optimization problem stemming from each time step of Model Predictive60

Control (MPC) [13] with different levels of injected gradient and proximal computa-61

tion errors.62

1.3. Contributions. We summarize our contributions as follows:63

• We establish convergence bounds for the proximal gradient algorithm with64

deterministic and probabilistic errors. Our deterministic bounds generalize65

prior bounds to the quasi-Fejér case where we consider approximate iterations66

and early termination errors and quantify second-order uncertainties. The67

probabilistic bounds tighten the latter under mild conditions.68

• We conduct experiments on a discrete model predictive control problem to69

verify the sharpness of our bounds and compare them with the bounds in [25].70

The models for the errors are inspired by approximate computing techniques71

suited for low-precision machines, such as reduced-precision accelerators on72

FPGA and battery-operated devices, in which algorithms are typically run73

approximately in order to save processing time and/or power.74

• We propose new models for the proximal and gradient errors that satisfy75

martingale properties in accordance with experimental results.76

1.4. Organization. We start by reviewing prior work in Section 2. We then77

describe our approximate computational model, state our assumptions, and present78

the main results in Section 3. The proofs of the main results are included in Section 4,79

and some auxiliary results are relegated to the appendix. Section 5 describes our80

experimental results.81

2. Related Work. One year after the seminal work in [5], it was shown that82

the same nearly optimal rates can still be achieved when the computation of the83

gradients and proximal operators are approximate [25]. This variant is known as the84

approximate proximal gradient algorithm. The analysis in [25] requires the errors85

ϵk1 and ϵk2 to decrease with iterations k at rates O(1/kς+1) for the basic proximal86

gradient, and O(1/kς+2) for the accelerated proximal gradient, for any ς > 0, in87

order to satisfy the summability assumptions of both error terms. The work in [25]88
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SHARPER BOUNDS FOR PROXIMAL GRADIENT ALGORITHMS WITH ERRORS 3

established the following ergodic convergence bound in terms of function values of the89

averaged iterates for the basic approximate proximal gradient (3.7):90

f

(
1

k

k∑
i=1

xi

)
− f(x⋆) ≤ L

2k

[ ∥∥x⋆ − x0
∥∥
2
+ 2Ak +

√
2Bk

]2
Ak =

k∑
i=1

(∥ϵi1∥2
L

+

√
2ϵi2
L

)
, Bk =

k∑
i=1

ϵi2
L
,

(2.1)91

where x⋆ is an optimal solution of (1.1), L is the Lipschitz constant of the gradient,92

and x0 is the initialization vector. The same work also analyzed the approximate93

accelerated proximal gradient and obtained the following convergence result in terms94

of the function values of the iterates,95

f
(
xi
)
− f(x⋆) ≤ 2L

(k + 1)2

[ ∥∥x⋆ − x0
∥∥
2
+ 2Ãk +

√
2B̃k

]2
Ãk =

k∑
i=1

i
(∥ϵi1∥2

L
+

√
2ϵi2
L

)
, B̃k =

k∑
i=1

i2ϵi2
L

.

(2.2)96

This is the most closely related work to ours; however, our work derives similar, yet97

sharper, convergence bounds. In addition, we derive probabilistic bounds that can98

be estimated before running the algorithm for given bounded proximal and gradient99

errors. Specifically, the constants can be computed from the machine representation100

and software solver tolerances (for the computation of the proximal operator).101

The work in [3] extended the analysis of [25] to a more general momentum pa-102

rameter selection αk = ((k + a− 1)/a)d, where d ∈ [0, 1] and a > max(1, (2d)
1
d ),103

which becomes FISTA [5] when d = 1. The works in [3, 26] also considered two differ-104

ent types of approximation in the proximal operator computation. For example, [3,105

Proposition 3.3] makes assumptions similar to ours, but establishes different bounds.106

The same paper also suggests slowing down the over-relaxations of FISTA to stabilize107

the algorithm and shows how to obtain a better trade-off between acceleration and108

error amplification by controlling the approximation errors. In contrast, we show that109

the basic approximate proximal gradient algorithm (3.7) converges to a constant pre-110

dictable residual without any assumptions on the gradient error terms (see Theorem111

3). We also show that errors in the accelerated proximal gradient method cause the112

algorithm to eventually diverge as O(k) in the worst case scenario, but to converge113

sub-optimally, i.e., to a constant error term, using stronger assumptions on the proxi-114

mal error and under a standard suitable choice of the momentum sequence {βk}. We115

also quantify the uncertainties that result from using an inexact optimal reference116

point (motivated by early termination of practical solvers), inexact Fejér monotonic-117

ity (quasi-Fejér monotonicity) and an inexact version of Lipschitz continuity which is118

associated with approximate gradients with the relative error model 3.8.119

3. Main Results. Before stating our convergence guarantees for the approxi-120

mate proximal gradient algorithm, we specify our assumptions and describe the class121

of algorithms that our analysis covers.122

3.1. Setup and algorithms. Recall that we aim to solve convex composite123

optimization problems with the format of (1.1), repeated here for convenience:124

minimize
x∈Rn

f(x) := g(x) + h(x) .(3.1)125
126
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4 A. HAMADOUCHE

All of our results assume the following:127

Assumption 1 (Assumptions on the problem).128

• The function h : Rn → R ∪ {+∞} is closed, proper, and convex.129

• The function g : Rn → R is convex and differentiable, and its gradient130

∇g : Rn → Rn is Lipschitz-continuous with constant L > 0, that is,131

(3.2)
∥∥∇g(y)−∇g(x)

∥∥
2
≤ L

∥∥y − x
∥∥
2
,132

for all x, y ∈ Rn, where ∥ · ∥2 stands for the standard Euclidean norm.133

• The set of optimal solutions of (3.1) is nonempty:134

(3.3) X⋆ :=
{
x ∈ Rn : f(x) ≤ f(z), for all z ∈ Rn

}
̸= ∅ .135

The above assumptions are standard in the analysis of proximal gradient algorithms136

and are actually required for convergence to an optimal solution from an arbitrary137

initialization [4, 6].138

A consequence of (3.2) that we will often use in our results is that [19, Lem. 1.2.3]139

(3.4) g(y) ≤ g(x) +∇g(x)⊤(y − x) +
L

2
∥y − x∥22 ,140

for any x, y ∈ Rn. Also, as h is closed, proper, and convex, the function z 7→ h(z) +141

(1/2)∥z − y∥22 is coercive, which implies that the approximate set-valued proximal142

operator of h : Rn → R ∪ {+∞} at y ∈ Rn, defined as143

proxϵh(y) :=
{
x ∈ Rn : h(x) +

1

2
∥x− y∥22 ≤ ϵ+ inf

z
h(z) +

1

2
∥z − y∥22

}
̸= ∅ ,144

is nonempty for all ϵ ≥ 0, and y ∈ Rn. When ϵ = 0, the proximal operator is computed145

exactly, and it is single-valued (a singleton) for closed, proper convex functions146

(3.5) proxh(y) := argmin
x∈Rn

h(x) +
1

2
∥x− y∥22.147

When ϵ ≥ 0, this set may contain more than a single element, which results in several148

possible instances of the accelerated approximate proximal gradient,149

yk = xk + βk(x
k − xk−1),

xk+1 ∈ prox
ϵk2
skh

[
yk − sk

(
∇g(yk) + ϵk1

)]
,

(3.6)150

whenever there exists a k for which ϵk2 > 0. However, as we establish bounds on151

function values [i.e., f(xk)], this ambiguity does not affect our results. By setting152

βk = 0, (3.6) reduces to the basic approximate proximal gradient scheme, i.e.,153

(3.7) xk+1 ∈ prox
ϵk2
skh

[
xk − sk

(
∇g(xk) + ϵk1

)]
.154

3.2. Error models and assumptions. In what follows we consider a relative155

error model for the gradient error ϵ1.156

Error Model. Under this model, each evaluation of the gradient of g at a point157

x is subject to additive noise ϵ1 whose magnitude is proportional to the magnitude of158

the gradient |∇g(x)|. Specifically, the gradient of g in (3.1) is approximated by159

(3.8) ∇gϵ1(x) = ∇g(x) + ϵ1,160
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SHARPER BOUNDS FOR PROXIMAL GRADIENT ALGORITHMS WITH ERRORS 5

where161

|ϵ1| ≤ δ|∇g(x)|.(3.9)162163

δ is a positive scalar, and |.| stands for the vector componentwise absolute value. This164

can be used, for example, to model errors in floating-point arithmetic [14].165

The parameter δ is known as the machine precision.166

For the above error model, our analysis assumes two different scenarios:167

1. The sequences of errors {ϵk1}k≥1 and {ϵk2}k≥1 are deterministic, or168

2. The sequences of errors {ϵk1}k≥1 and {ϵk2}k≥1 are random, in which case we169

use ϵk1Ω and ϵk2Ω to denote the respective random vectors/variables of errors at170

iteration k, where Ω denotes the sample space of a given probability measure.171

In scenario 2, the sequences {xk}k≥1 and {yk}k≥1 become random as well. And we172

also use xk
Ω
and yk

Ω
to denote the respective random vectors at iteration k. We make173

the following assumptions in this case:174

Assumption 2. In scenario 2, we assume that each random vector ϵk1Ω , for k ≥ 1,175

satisfies176

E
[
ϵk1Ω
∣∣ ϵ11Ω , . . . , ϵk−1

1Ω

]
= E

[
ϵk1Ω
]
= 0 ,(3.10a)177

P
(
|ϵk1Ω | ≤ δ|∇g(xk

Ω
)|) = 1,(3.10b)178

E
[
ϵk1Ω

⊤
xk

Ω

∣∣ ϵ11Ω , . . . , ϵk−1
1Ω

, x1
1Ω , . . . , x

k−1
1Ω

]
= E

[
ϵk1Ω

⊤
xk

Ω

]
= 0,(3.10c)179

or E
[
ϵk1Ω |x

k
Ω

]
= E

[
ϵk1Ω
]
,180181

where δ > 0 is the machine precision.182

Assumption 3. Let {xk} denote the sequence produced by (3.6) or (3.7). We183

define the residual error vector at iteration k as184

(3.11) rk = xk − xk,185

where xk stands for the proximal error-free iterate186

(3.12) xk+1 := proxsh

(
xk − s

(
∇g(xk) + ϵk1

))
.187

In scenario 2, we assume188

E
[
rk
Ω

∣∣ r1
Ω
, . . . , rk−1

Ω

]
= E

[
rk
Ω

]
= 0 ,(3.13a)189

E
[
rk
Ω

⊤
xk

Ω

∣∣ r1
Ω
, . . . , rk−1

Ω
, x1

1Ω , . . . , x
k−1
1Ω

]
= E

[
rk
Ω

⊤
xk

Ω

]
= 0 ,(3.13b)190191

Remark 3.1. Lemma 1, stated in the appendix, bounds the norm of the residual192

vector
∥∥rk∥∥

2
as a function of ϵk2 ; therefore, bounding ϵk2 implies bounding

∥∥rk∥∥
2
.193

3.3. Approximate proximal gradient. In this section, we consider the ap-194

proximate proximal gradient algorithm in (3.7), i.e., without acceleration. We start195

by considering deterministic error sequences {ϵk1}k≥1 and {ϵk2}k≥1, and then we con-196

sider the case in which these sequences are random, as in Assumption 2.197

3.3.1. Deterministic errors. Our first result provides a bound on the ergodic198

convergence of the sequence of function values, and decouples the contribution of the199

errors in the computation of gradient, ϵk1 , and in the computation of the proximal200

operator, ϵk2 and rk.201
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6 A. HAMADOUCHE

Theorem 1. Consider problem (3.1) and let Assumption 1 hold. Suppose we202

run the approximate proximal gradient in (3.7) with a fixed stepsize sk := s satis-203

fying s ≤ 1/(L + δ), for all k, and under the relative error model in (3.8). Let204

the following stopping criteria hold for k ≥ k0: ϵk2 ≤ c2
∥∥xk+1 − xk

∥∥
2
≤ c2ρ and205

∥ϵk1∥2 ≤ c1
∥∥∇g(xk+1)−∇g(xk)

∥∥
2
where ρ, c1, c2 and k0 are constants. Then, for206

any x⋆ ∈ X⋆ and k ≥ k0, the sequence generated by the approximate proximal gradient207

in (3.7) satisfies208

f

(
1

k + 1

k∑
i=0

xi+1

)
− f(x⋆) ≤ 1

k + 1

[
k∑

i=0

ϵi2 +

k∑
i=0

(∥∥ϵi1∥∥2 +
√

2ϵi2
s

)∥∥x⋆ − x0
∥∥
2

+
1

2s

∥∥x⋆ − x0
∥∥2
2

]
+

1

k + 1

k∑
i=0

(∥∥ϵi1∥∥2 +
√

2ϵi2
s

)( i∑
j=1

Ej + iCρ

)
,

(3.14)

209

where Ej =

√
2ϵj2
s + s

∥∥∥ϵj−1
1

∥∥∥
2
and Cρ =

√
2Lc2ρ+ c1ρ.210

Proof. See Section 4.1.211

Theorem 1 improves over (2.1) by quantifying the uncertainties associated with the212

Lipschitz and Féjer properties in addition to the ones that stem from proximal and213

gradient errors.214

Remark 3.2. For small perturbations and very small stopping criteria, i.e., ρ ≈ 01,215

(3.14) can be approximated by216

f

(
1

k + 1

k∑
i=0

xi+1

)
− f(x⋆) ⪅

1

k + 1

[
k∑

i=0

ϵi2 +

k∑
i=0

(
∥ϵi1∥2 +

√
2ϵi2
s

)
∥x⋆ − x0∥2

+
1

2s
∥x⋆ − x0∥22

]
− 1

2s

k∑
i=0

∥∥ri+1
∥∥2
2
,

(3.15)

217

where we have dropped the second order error terms and kept the residual error218

vector explicitly, i.e., − 1
2s

∑k
i=0

∥∥ri+1
∥∥2
2
, which improves the bound progressively with219

iterations.220

This result implies that the O(1/k) convergence rate is still guaranteed with221

weaker summability assumptions on {ϵk2}k≥1 and {
∥∥ϵk1∥∥2}k≥1. For instance, con-222

sider the case where both proximal and gradient errors decrease as O(1/k) (i.e., non-223

summable). Then Theorem 1 yields an overall convergence rate of O(log k/k) which224

is less conservative than what would have been obtained from (2.1), i.e, O(log2 k/k).225

Consequently, as a necessary condition for convergence, we only require the partial226

sums
∑k

i=1 ϵ
i
2 and

∑k
i=1 ∥ϵi1∥2 to be in o(k) as compared to the stronger condition227

o(
√
k) that is implied by (2.1). If we set both errors to zero for all k ≥ 1, we recover228

the error-free optimal upper bound 1
2sk

∥∥x⋆ − x0
∥∥2
2
[4].229

3.3.2. Random errors. Let us now consider the case in which ϵk1 , ϵ
k
2 and there-230

fore xk, are random, and let ϵk1Ω , ϵk2Ω and xk
Ω be the corresponding random vari-231

ables/vectors.232

1Cρ = 0 if the optimum x⋆ is reached.
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Theorem 2 (Random errors). Consider problem (3.1) and let Assumption 1233

hold. Assume that the gradient error {ϵk1Ω}k≥1 and residual proximal error {rk
Ω
}k≥1234

sequences satisfy Assumptions 2, 3 and P
(
ϵk2Ω ≤ ε0

)
= 1, for all k > 0, and for some235

ε0 ∈ R. Let {xi
Ω} denote a sequence generated by the approximate proximal gradient236

algorithm in (3.7) with constant stepsize sk = s ≤ 1/(L+ δ), for all k. Assume that237

there is a positive scalar Dx > 0 such that
∥∥xk

Ω
− x⋆

Ω

∥∥2
2
≤ Dx

∥∥x0
Ω
− x⋆

Ω

∥∥2
2
holds with238

probability p, for all k. Then, for any γ > 0,239

f

(
1

k

k∑
i=1

xi
Ω

)
− f(x⋆) ≤ 1

k

k∑
i=1

ϵi2Ω +
γ√
k

(
√
nM∇g|δ|+

√
2ε0
s

)
Dx

∥∥x⋆ − x0
∥∥
2

+
D2

x

2sk

∥∥x⋆ − x0
∥∥2
2
,

(3.16)

240

with probability at least pk
(
1−2 exp(−γ2

2 )
)
, where x⋆ is any solution of (3.1), M∇g =241

sup
i∈N+

{∥∥∇g(xi)
∥∥
∞

}
.242

Proof. See Section 4.2243

For large scale problems,2 we typically have n ≫ 1
s ≥ L; therefore, we obtain the244

following approximated bound245

(3.17)

f

(
1

k

k∑
i=1

xi
Ω

)
− f(x⋆) ⪅

1

k

k∑
i=1

ϵi2Ω + γM∇gDx

√
n

k
|δ|
∥∥x⋆ − x0

∥∥
2
+

D2
x

2sk

∥∥x⋆ − x0
∥∥2
2
,246

with approximately the same probability. In the absence of computational errors,247

(3.16) reduces to the deterministic noise-free convergence bound for Dx = 1, i.e.,248

1
2sk

∥∥x⋆ − x0
∥∥2
2
.249

The following result applies if we assume statistical stationarity3 of proximal250

errors.251

Theorem 3 (Random stationary errors). Consider problem (3.1), let As-252

sumptions 1 hold and assume that the rounding error {ϵk1Ω}k≥1 and residual error253

{rk
Ω
}k≥1 sequences satisfy Assumptions 2, 3 and that the proximal computation error254

is upper bounded, i.e P
(
ϵk2Ω ≤ ε0

)
= 1 for all k ≥ 1 and stationary with constant mean255

E[ϵ2Ω ]. Let {xi
Ω} denote a sequence generated by the approximate proximal gradient256

algorithm in (3.7) with constant stepsize sk = s ≤ 1/(L+ δ), for all k. Assume that257

there is a positive scalar Dx > 0 such that
∥∥xk

Ω
− x⋆

Ω

∥∥2
2
≤ D2

x

∥∥x0
Ω
− x⋆

Ω

∥∥2
2
holds with258

probability p, for all k. Then, for any γ > 0,259

f

(
1

k

k∑
i=1

xi
Ω

)
− f(x⋆) ≤E

(
ϵ2Ω
)
+

γ√
k

(
ε0
2

+
√
nM∇gDx|δ|

∥∥x⋆ − x0
∥∥
2

)
+
D2

x

2sk

∥∥x⋆ − x0
∥∥2
2
,

(3.18)260

2And for same levels of error magnitudes δ and ε0.
3Whose ensemble mean and variance are time-invariant.
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8 A. HAMADOUCHE

with probability at least pk
(
1−4 exp(−γ2

2 )
)
, where x⋆ is any solution of (3.1), M∇g =261

sup
i∈N+

{∥∥∇g(xi)
∥∥
∞

}
.262

Proof. See Section 4.3263

Remark 3.3. Dx could be taken as large as to satisfy
∥∥xk

Ω
− x⋆

Ω

∥∥2
2
≤D2

x

∥∥x0
Ω
− x⋆

Ω

∥∥2
2

264

almost surely, i.e., with probability 1.265

Once again, if both errors are forced to zero in (3.18) then the optimal convergence266

rate is obtained as in Theorem 1 and Theorem 2. (3.18) also implies that we obtain267

a worst case convergence rate of O(1), i.e., convergence up to a predicted constant268

residual E[ϵ2Ω ].269

3.4. Accelerated Approximate PG.270

3.4.1. Deterministic errors. We now analyze the effect of computational in-271

accuracy on the approximate accelerated PG. In what follows, we establish upper272

bounds on the convergence of the accelerated PG in the presence of deterministic273

errors in the computation of the gradient as well as in the proximal operation step.274

Theorem 4 (Accelerated with deterministic errors). Consider problem275

(3.1) and let Assumption 1 hold. Suppose we run the approximate accelerated proxi-276

mal gradient in (3.6) with a fixed stepsize sk := s satisfying s ≤ 1/(L+ δ), for all k,277

and under the relative error model in (3.8). Let the following stopping stopping criteria278

hold for k ≥ k0: ϵk2 ≤ c2
∥∥xk+1 − xk

∥∥
2
≤ c2ρ and ∥ϵk1∥2 ≤ c1

∥∥∇g(xk+1)−∇g(xk)
∥∥
2

279

where ρ, c1, c2 and k0 are constants. Assume we have summable iterative displace-280

ments
∥∥xk − xk−1

∥∥
2
. Let the momentum sequence βk = (αk−1 − 1)/αk be designed281

such that αk satisfies the following:282

• αk ≥ 1 ∀ k > 0 and α0 = 1283

• α2
k − αk = αk−1284

• {αk}∞k=0 is an increasing sequence and proportional to k (O(k))285

Then, for any x⋆ ∈ X⋆ and k ≥ k0, the sequence generated by the approximate286

accelerated proximal gradient in (3.6) satisfies287

f(xk+1)− f(x⋆) ≤ 1

α2
k

[ k∑
i=0

α2
i ϵ

i
2 +

k∑
i=0

αi

∥∥x0 − x⋆
∥∥
2

(∥∥ϵi1∥∥2 +
√

2ϵi2
s

)
+

1

2s

∥∥x0 − x⋆
∥∥2
2

]
+

1

α2
k

k∑
i=0

αi

(∥∥ϵi1∥∥2 +
√

2ϵi2
s

)
i∑

j=1

αj(E
j + Cρ),

(3.19)288

where x⋆ is any solution of (3.1), Ej =

√
2ϵj2
s + s

∥∥∥ϵj−1
1

∥∥∥
2
and Cρ =

√
2Lc2ρ + c1ρ,289

and Cρ =
√
2Lc2ρ+ c1ρ.290

Proof. See Section 4.4291

Remark 3.4. Ignoring second order error terms (for small square summable per-292

turbations and very small suboptimality stopping criterion, i.e., ρ ≈ 0), (3.19) can be293
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approximated by294

f(xk+1)− f(x⋆) ⪅
1

α2
k

[ k∑
i=0

α2
i ϵ

i
2 +

k∑
i=0

αi

(∥∥ϵi1∥∥2 +
√

2ϵi2
s

)∥∥x0 − x⋆
∥∥
2

+
1

2s

∥∥x0 − x⋆
∥∥2
2

]
.

(3.20)295

Notice that if we trivially choose βk = 0 we recover back the nonaccelerated basic296

scheme. In the noise-free case, (3.19) reduces to 1
2sα2

k

∥∥x⋆ − x0
∥∥2
2
, which coincides297

with the convergence rate of the accelerated proximal gradient algorithm [4, Thm.298

10.34], i.e., O(1/k2) if αk is in the order of O(k).299

3.4.2. Random errors. The following result gives an estimate of the conver-300

gence rate when both errors are stochastic and bounded following a probabilistic301

analysis approach.302

Theorem 5 (Accelerated with random errors). Consider problem (3.1)303

and let Assumption 1 hold. Suppose that the rounding error {ϵk1Ω}k≥1 and residual304

error {rk
Ω
}k≥1 sequences satisfy Assumptions 2 and 3, respectively. Let the norm of305

the iterative difference
∥∥xk

Ω
− xk−1

Ω

∥∥
2
be summable. Define a new sequence uk

Ω
:=306

x⋆ − xk
Ω
+ (1−αk−1)(x

k
Ω
− xk−1

Ω
). Assume that there is a positive scalar Du > 0 such307

that
∥∥ui

Ω

∥∥2
2
≤ D2

u

∥∥x0 − x⋆
∥∥2
2
holds with probability p. Let ε0 be an upper bound on the308

proximal error, i.e., ϵk2Ω ≤ ε0 for all k. Then, for all γ > 0, the sequence generated309

by the approximate APG in (3.6) with constant stepsize sk := s ≤ 1/(L + δ), for all310

k, under error models (3.10) and (3.13), and with the following choices:311

• βk = αk−1−1
αk

312

• αk ≥ 1 ∀ k > 0 and α0 = 1313

• α2
k − αk = αk−1314

• {αk}∞k=0 increases as o(k)315

satisfies316

(3.21) f(xk+1
Ω

)− f(x⋆) ≤ 1

α2
k

[
Sϵ2Ω

+ Sr
Ω
+ Sϵ1Ω

+
1

2s

∥∥x⋆ − x0
∥∥2
2

]
,317

where318

Sϵ2Ω
= ε0

k∑
i=0

i2 +
γ

2

√√√√ k∑
i=1

i4(ϵi2Ω)
2,(3.22)319

Sϵ1Ω
= γ|δ|M∇gD

2
u

∥∥x0 − x⋆
∥∥2
2

√√√√n

k∑
i=1

i2,(3.23)320

Sr
Ω
= γD2

u

∥∥x0 − x⋆
∥∥2
2

√√√√2

s

k∑
i=1

i2ϵi2(3.24)321

322

with probability at least pk
(
1− 4 exp(−γ2/2)

)
, where x⋆ is any solution of (3.1),323

M∇g = sup
i∈N+

{∥∥∇g(xi)
∥∥
∞

}
, and E[.] stands for the expectation operator.324

Proof. See Section 4.5325
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10 A. HAMADOUCHE

Remark 3.5. Du could be taken as large as to satisfy
∥∥ui

Ω

∥∥2
2
≤ D2

u

∥∥x0 − x⋆
∥∥2
2

326

with probability 1.327

The following corollary results from the substitution of partial sums by their cor-328

responding closed forms and using the worst case upper bound ε0 on ϵi2Ω for all329

i = 1, . . . , k.330

Corollary 5.1 (Accelerated with random errors). Consider problem (3.1)331

and let the assumptions of Theorem 5 hold. Define a new sequence uk
Ω
:= x⋆ − xk

Ω
+332

(1 − αk−1)(x
k
Ω
− xk−1

Ω
). Assume that there is a positive scalar Du > 0 such that333 ∥∥ui

Ω

∥∥2
2
≤ D2

u

∥∥x0 − x⋆
∥∥2
2
holds with probability p. Then we have, for all k. Let ε0 be334

an upper bound on the proximal error, i.e., ϵk2Ω ≤ ε0 for all k. Then we have, for all335

k,336

(3.25) f(xk+1
Ω

)− f(x⋆) ≤ 1

α2
k

[
Sϵ2Ω

+ Sr
Ω
+ Sϵ1Ω

+
1

2s

∥∥x⋆ − x0
∥∥2
2

]
,337

where338

Sϵ2Ω
= ε0

k(k + 1)(2k + 1)

6
+

γ

2
ε0

√
k(k + 1)(2k + 1)(3k2 + 3k − 1)

30
,(3.26)339

Sϵ1Ω
= γ|δ|DuM∇g

∥∥x0 − x⋆
∥∥
2

√
nk(k + 1)(2k + 1)

6
,(3.27)340

Sr
Ω
= γDu

∥∥x0 − x⋆
∥∥
2

√
2sε0k(k + 1)(2k + 1)

6
.(3.28)341

342

with probability at least 1− 4 exp(−γ2/2), where x⋆ is any solution of (3.1), M∇g =343

sup
i∈N+

{∥∥∇g(xi)
∥∥
∞

}
.344

Proof. Substituting345

(3.29)

k∑
i=1

i2 =
k(k + 1)(2k + 1)

6
,346

and substituting347

(3.30)

k∑
i=1

i4 =
k(k + 1)(2k + 1)(3k2 + 3k − 1)

30
,348

and using
∥∥ui

Ω

∥∥
2
≤ Du

∥∥x0 − x⋆
∥∥
2
,
∥∥ϵi1Ω∥∥2 ≤ |δ|M∇g

√
n in Theorem 5 completes the349

proof.350

In the absence of errors, both probabilistic and deterministic analyses lead to the op-351

timal convergence rate of O(1/k2) for the accelerated scheme (3.19)-(3.21). However,352

as stated previously in Theorem 5, under the influence of computational inaccura-353

cies and due to error amplification, acceleration has a counter-effect in the Nesterov’s354

sense [18] and the method becomes more sensitive to gradient and proximal errors355

whenever we want to speed up the algorithm.356

Although computational errors are deterministic in nature [14], probabilistic re-357

sults such as (3.21) give us practical convergence bounds when errors cannot be mea-358

sured or are undetectable but with known upper bounds. If the ensemble mean E[ϵk2Ω ]359
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is constant for all k ≥ 1 in (3.21), i.e., the error sequence {ϵk2Ω} is stationary, then360

(3.21) becomes totally independent from the instantaneous running errors ϵk1Ω , ϵ
k
2Ω as361

well as from the running iterates xk
Ω
and would be only determined by the machine362

precision δ, the tolerance E[ϵ2Ω ] and the given probability parameter γ. The factor363

αk is designed to be proportional to the iteration counter o(k).364

Although boundedness of the gradient error is sufficient for the gradient error term365

Sϵ1Ω
to asymptotically vanish, the algorithm fails to converge without the summability366

of the proximal error term {α2
kE
(
ϵk2Ω
)
}.367

4. Proofs.368

4.1. Proof of Theorem 1. Recall the definition of ϵ-suboptimal proximal op-369

erator in (3.1):370

(4.1) proxϵu(y) :=
{
x ∈ Rn : u(x) +

1

2
∥x− y∥22 ≤ ϵ+ inf

z
u(z) +

1

2
∥z − y∥22

}
.371

Because this is a set, the point xk+1 in approximate proximal gradient (3.7) is not372

defined uniquely. To bound the effect of the error ϵk2 , we will therefore compute its373

difference with respect to the case where ϵk2 = 0, as measured by a function that374

we will define shortly. Recall that xk+1 is the noiseless computation of the proximal375

operator in (3.7) at xk with constant stepsize s:376

xk+1 : = proxsh

[
xk − s

(
∇g(xk) + ϵk1

)]
,(4.2)377

= proxsh

[
xk − s∇ϵk1 g(xk)

]
(4.3)378

= argmin
x

g(xk) +∇ϵk1 g(xk)⊤(x− xk) +
1

2s

∥∥x− xk
∥∥2
2
+ h(x)(4.4)379

:= argmin
x

G
(
x, xk

)
.(4.5)380

381

From (4.2) to (4.3), we used ∇ϵk1 g(xk) := ∇g(xk) + ϵk1 as the inexact gradient of g at382

xk. From (4.3) to (4.4), we developed the squared ℓ2-norm term in the definition of383

the proximal operator [cf. (3.5)] and added g(xk) to the objective function. Finally,384

from (4.4) to (4.5), we defined385

(4.6) G
(
x, xk

)
:= g(xk) +∇ϵk1 g(xk)⊤(x− xk) +

1

2s

∥∥x− xk
∥∥2
2
+ h(x) .386

As h is convex [cf. Assumption 1], the quadratic term in (4.6) makes the function387

G(·, xk) strongly convex with parameter 1/s [4].388

Recall that xk+1 is the optimal solution of (4.5) and that xk+1 is the actual, noisy389

iterate in (3.7). Therefore, according to (3.7) and to the definition of the ϵ-suboptimal390

proximal operator in (4.1),391

h
(
xk+1

)
+

1

2s

∥∥∥xk+1 − xk + s∇ϵk1 g(xk)
∥∥∥2
2
≤ ϵk2 + h

(
xk+1

)
(4.7)392

+
1

2s

∥∥∥xk+1 − xk + s∇ϵk1 g(xk)
∥∥∥2
2

393

⇐⇒ h
(
xk+1

)
+

1

2s

∥∥xk+1 − xk
∥∥2
2
+∇ϵk1 g(xk)⊤

(
xk+1 − xk

)
≤(4.8)394

ϵk2 + h
(
xk+1

)
+

1

2s

∥∥xk+1 − xk
∥∥2
2
+∇ϵk1 g(xk)⊤

(
xk+1 − xk

)
395

⇐⇒ G
(
xk+1, xk

)
−G

(
xk+1, xk

)
≤ ϵk2 .(4.9)396397
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12 A. HAMADOUCHE

From (4.7) to (4.8), we developed the squared-norm terms and cancelled the common398

term. From (4.8) to (4.9), we added the constant g(xk)− s
2

∥∥∇g(xk)
∥∥2
2
to both sides399

and used the definition (4.6). Notice that (4.9) bounds the distance between xk+1400

and xk+1 as measured by G(·, xk).401

Because G(·, xk) is strongly convex, [4, Theorem. 5.25] establishes that402

(4.10) G
(
x, xk

)
−G

(
xk+1, xk

)
≥ 1

2s

∥∥x− xk+1
∥∥2
2
,403

for any x ∈ Rn. In particular, it holds for any optimal solution x⋆ of (3.1).404

Thus, subtracting (4.10) with x = x⋆ from (4.9) yields405

G
(
xk+1, xk

)
−G

(
x⋆, xk

)
≤ ϵk2 − 1

2s

∥∥x⋆ − xk+1
∥∥2
2

(4.11)406

⇐⇒ g(xk) +∇ϵk1 g(xk)⊤
(
xk+1 − xk

)
+

1

2s

∥∥xk+1 − xk
∥∥2
2
+ h
(
xk+1

)
(4.12)407

−G
(
x⋆, xk

)
≤ ϵk2 − 1

2s

∥∥x⋆ − xk+1
∥∥2
2

408

⇐⇒ g(xk) +∇g(xk)⊤
(
xk+1 − xk

)
+ ϵk1

⊤(
xk+1 − xk

)
(4.13)409

+
1

2s

∥∥xk+1 − xk
∥∥2
2
+ h
(
xk+1

)
−G

(
x⋆, xk

)
≤ ϵk2 − 1

2s

∥∥x⋆ − xk+1
∥∥2
2
.410

411

From (4.11) to (4.12), we simply used the definition of G(x, xk) in (4.6) with x = xk+1412

and we also used ∇ϵk1 g(xk) := ∇g(xk) + ϵk1 in (4.13).413

Applying (3.4) to (4.13) (with s ≤ 1/L) and using f := g + h, we obtain414

g
(
xk+1

)
+ h
(
xk+1

)
−G

(
x⋆, xk

)
≤ ϵk2 − 1

2s

∥∥x⋆ − xk+1
∥∥2
2

(4.14)415

+ ϵk1
⊤(

xk − xk+1
)
,416

⇐⇒ f
(
xk+1

)
−G

(
x⋆, xk

)
≤ ϵk2 − 1

2s

∥∥x⋆ − xk+1
∥∥2
2
+ ϵk1

⊤(
xk − xk+1

)
.(4.15)417

418

We now expand G(x⋆, xk) in (4.15) as follows419

f(xk+1)− g(xk)−∇ϵk1 g(xk)⊤(x⋆ − xk)− 1

2s

∥∥x⋆ − xk
∥∥2
2
− h(x⋆)

≤ ϵk2 − 1

2s

∥∥x⋆ − xk+1
∥∥2
2
+ ϵk1

⊤(
xk − xk+1

)
.

(4.16)420

Rearranging and subtracting g(x⋆) from both sides yields421

f(xk+1)− h(x⋆)− g(x⋆) ≤ −g(x⋆) + ϵk2 − 1

2s

∥∥x⋆ − xk+1
∥∥2
2
+ g(xk)

+∇ϵk1 g(xk)⊤(x⋆ − xk) +
1

2s

∥∥x⋆ − xk
∥∥2
2
+ ϵk1

⊤(
xk − xk+1

)
.

(4.17)422

Using the definitions f := g + h and ∇ϵk1 g(xk) = ∇g(xk) + ϵk1 in (4.17), we obtain423

f(xk+1)− f(x⋆) ≤ ϵk2 − g(x⋆) + g(xk) +∇g(xk)⊤
(
x⋆ − xk

)
− 1

2s

∥∥x⋆ − xk+1
∥∥2
2
+

1

2s

∥∥x⋆ − xk
∥∥2
2
+ ϵk1

⊤(
x⋆ − xk

)
+ ϵk1

⊤(
xk − xk+1

)
≤ ϵk2 − 1

2s

∥∥x⋆ − xk+1
∥∥2
2
+

1

2s

∥∥x⋆ − xk
∥∥2
2
+ ϵk1

⊤(
x⋆ − xk+1

)
,

(4.18)424
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where in the second inequality we used the fact that g is convex, i.e., g(x⋆) ≥ g(xk)+425

∇g(xk)⊤(x⋆ − xk). Summing both sides of (4.18) from 0 to k,426

k∑
i=0

[
f(xi+1)− f(x⋆)

]
≤

k∑
i=0

ϵi2 +

k∑
i=0

ϵi1
⊤(

x⋆ − xi+1
)

+
1

2s

k∑
i=0

[∥∥x⋆ − xi
∥∥2
2
−
∥∥x⋆ − xi+1

∥∥2
2

]
,

=

k∑
i=0

ϵi2 +

k∑
i=0

ϵi1
⊤(

x⋆ − xi+1
)
+

1

2s

k∑
i=0

[∥∥x⋆ − xi
∥∥2
2

−
(∥∥x⋆ − xi+1

∥∥2
2
+
∥∥xi+1 − xi+1

∥∥2
2

+ 2(xi+1 − xi+1)⊤(x⋆ − xi+1)
)]
,

=

k∑
i=0

ϵi2 +

k∑
i=0

ϵi1
⊤(

x⋆ − xi+1
)
+

1

2s

k∑
i=0

[∥∥x⋆ − xi
∥∥2
2

−
(∥∥x⋆ − xi+1

∥∥2
2
+
∥∥ri+1

∥∥2
2
+ 2(ri+1)⊤(x⋆ − xi+1)

)]
,

=

k∑
i=0

ϵi2 +

k∑
i=0

(ϵi1 −
1

s
ri+1)⊤

(
x⋆ − xi+1

)
+

1

2s

[∥∥x⋆ − x0
∥∥2
2

−
∥∥x⋆ − xk+1

∥∥2
2

]
− 1

2s

k∑
i=0

∥∥ri+1
∥∥2
2
,

(4.19)

427

where in the second-to-last equality we used the definition of ri in (3.11), and in the428

last equality we noticed that the quadratic terms involving x⋆ formed a telescopic429

sequence. Rearranging and moving negative terms to the left hand side results in430

k∑
i=0

[
f(xi+1)− f(x⋆)

]
+

1

2s

k∑
i=0

∥∥ri+1
∥∥2
2
+

1

2s

∥∥x⋆ − xk+1
∥∥2
2
≤

k∑
i=0

ϵi2

+

k∑
i=0

(ϵi1 −
1

s
ri+1)⊤

(
x⋆ − xi+1

)
+

1

2s

∥∥x⋆ − x0
∥∥2
2
.

(4.20)431

Since f is a convex function, Jensen’s inequality implies432

f

(
1

k + 1

k∑
i=0

xi+1

)
− f(x⋆) ≤ 1

k + 1

k∑
i=0

[
f(xi+1)− f(x⋆)

]
,433

which, applied to (4.20) and together with the fact that the last two terms of the434

left-hand side of (4.20) are nonnegative, yields435

f

(
1

k + 1

k∑
i=0

xi+1

)
− f(x⋆) +

1

2(k + 1)s

k∑
i=0

∥∥ri+1
∥∥2
2
+

1

2(k + 1)s

∥∥x⋆ − xk+1
∥∥2
2
≤436

1

k + 1

[ k∑
i=0

ϵi2 +

k∑
i=0

(ϵi1 −
1

s
ri+1)⊤(x⋆ − xi+1) +

1

2s

∥∥x⋆ − x0
∥∥2
2

]
.(4.21)437

438
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Using Lemma 1 to bound the norm of the residual error rk = xk − xk resulting439

from the proximal error ϵk2 , Cauchy-Schwarz yields440

(ϵi1 −
1

s
ri+1)⊤(x⋆ − xi+1)≤

(∥∥ϵi1∥∥2 + 1

s

∥∥ri+1
∥∥
2

)∥∥x⋆ − xi+1
∥∥
2

≤
(∥∥ϵi1∥∥2 +

√
2ϵi2
s

)∥∥x⋆ − xi+1
∥∥
2
.

(4.22)441

Using (4.22) in (4.21) yields442

f

(
1

k + 1

k∑
i=0

xi+1

)
− f(x⋆) ≤ 1

k + 1

k∑
i=0

ϵi2

+
1

k + 1

k∑
i=0

(∥∥ϵi1∥∥2 +
√

2ϵi2
s

)∥∥x⋆ − xi+1
∥∥
2

+
1

2s(k + 1)

∥∥x⋆ − x0
∥∥2
2

(4.23)443

Applying Quasi-Féjer (Theorem 6 in the appendix) recursively gives444

f

(
1

k + 1

k∑
i=0

xi+1

)
− f(x⋆) ≤ 1

k + 1

k∑
i=0

ϵi2 +
1

2s(k + 1)

∥∥x⋆ − x0
∥∥2
2

+
1

k + 1

k∑
i=0

(∥∥ϵi1∥∥2 +
√

2ϵi2
s

)∥∥x⋆ − x0
∥∥
2

+
1

k + 1

k∑
i=0

(∥∥ϵi1∥∥2 +
√

2ϵi2
s

)
(

i∑
j=1

Ej + iCρ),

(4.24)445

where Ej =
∥∥rj∥∥

2
+ sj−1

∥∥∥ϵj−1
1

∥∥∥
2
and Cρ = 0 if the optimum x⋆ is reached. This446

completes the proof of Theorem 1.447

4.2. Proof of Theorem 2. This result is about the basic version of approximate448

PGD, but with random proximal computation error ϵ2Ω , component-wise bounded449

gradient error ϵ1Ω and bounded residuals
∥∥xk

Ω
− x⋆

∥∥
2
. As the algorithm generates a450

sequence of random vectors {xk
Ω
}, the residual vector sequence {rk

Ω
} will also be a451

random.452

Let Tk denote the second error term in the bound of (3.14) [Theorem 1], i.e.,453

(4.25) Tk =

{
0 , k = 0∑k

i=1(ϵ
i−1
1Ω

− 1
sr

i
Ω
)⊤(x⋆ − xi

Ω
) , k = 1, 2, . . . ,

454

The first step is to show that {Tk} is a martingale. Recall that a sequence of random455

variables T0, T1, . . . is a martingale with respect to the sequence X0, X1, . . . if, for all456

k ≥ 0, the following conditions hold:457

• Tk is a function of X0, X1, . . . , Xk;458

• E[|Tk|] < ∞;459

• E[Tk+1|X0, X1, . . . , Xk] = Tk.460

A sequence of random variables T0, T1, . . . is called a martingale when it is a martin-461

gale with respect to itself. That is, E[|Tk|] < ∞, and E[Tk+1|T0, T1, . . . , Tk] = Tk.462
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Let νk
Ω
= ϵk−1

1Ω
− 1

sr
k
Ω
and recall the definition of rk

Ω
in (3.11):463

(4.26) rk = xk − xk.464

Rewriting (4.25) in terms of νk
Ω
yields465

(4.27) Tk = Tk−1 + νk
Ω

⊤
(x⋆ − xk

Ω
).466

We now show that Assumptions 2 and 3 imply that {Tk}k≥0 is a martingale. Specif-467

ically, (3.10a) and (3.13a), we have468

E
[
νk
Ω

∣∣ν1
Ω
. . . νk−1

Ω

]
= E[νk

Ω
] = 0.469

And from (3.10c) and (3.13b), we have470

E
[
νk
Ω

⊤
xk

Ω

∣∣ν1
Ω
. . . νk−1

Ω
, x1

Ω
. . . xk−1

Ω

]
= E

[
νk
Ω

⊤
xk

Ω

]
= 0.471

Taking the expected value of both sides of (4.27) conditioned on {Ti}k−1
i=1 gives472

E
[
Tk

∣∣T1 . . . Tk−1

]
= E

[
Tk−1 + νk

Ω

⊤
(x⋆ − xk

Ω
)
∣∣T1 . . . Tk−1

]
473

= E
[
Tk−1

∣∣T1 . . . Tk−1

]
+ E

[
νk
Ω

⊤
(x⋆ − xk

Ω
)
∣∣T1 . . . Tk−1

]
474

= Tk−1 + E
[
νk
Ω

⊤
(x⋆ − xk

Ω
)
∣∣T1 . . . Tk−1

]
475

= Tk−1 + E
[
νk
Ω

⊤
x⋆
∣∣T1 . . . Tk−1

]
− E

[
νk
Ω

⊤
xk

Ω

∣∣T1 . . . Tk−1

]
476

= Tk−1 + E
[
νk
Ω

∣∣T1 . . . Tk−1

]⊤
x⋆ − E

[
νk
Ω

⊤
xk

Ω

∣∣T1 . . . Tk−1

]
477

= Tk−1 + E
[
νk
Ω

∣∣ν1
Ω
. . . νk−1

Ω
, x1

Ω
. . . xk−1

Ω

]⊤
x⋆(4.28)478

− E
[
νk
Ω

⊤
xk

Ω

∣∣ν1
Ω
. . . νk−1

Ω
, x1

Ω
. . . xk−1

Ω

]
479

= Tk−1 + E
[
ϵk−1
1Ω

− 1

s
rk
Ω

]⊤
x⋆ − E

[
(ϵk−1

1Ω
− 1

s
rk
Ω
)⊤xk

Ω

]
(4.29)480

= Tk−1 + E
[
ϵk−1
1Ω

− 1

s
rk
Ω

]⊤
x⋆ − E

[
E
[
ϵk−1
1Ω

− 1

s
rk
Ω

∣∣xk
Ω

]⊤
xk

Ω

]
(4.30)481

= Tk−1 − E
[
ϵk−1
1Ω

− 1

s
rk
Ω

]⊤
xk

Ω
(4.31)482

= Tk−1.(4.32)483484

From (4.28) to (4.29), we used the error mean independence assumption, i.e.,485

E
[
νk
Ω

∣∣ν1
Ω
. . . νk−1

Ω

]
= E

[
νk
Ω

]
as well as the data mean independence assumption (or486

the less restrictive statistical orthogonality in high dimensional problems), i.e.,487

E
[
νk
Ω

⊤
xk

Ω

∣∣ν1
Ω
. . . νk−1

Ω
, x1

Ω
. . . xk−1

Ω

]
= E

[
νk

⊤
xk

Ω

]
. From (4.31) to (4.32), we used the488

zero mean error assumption, i.e., E
[
νk
Ω

]
= 0. Therefore, T1, T2, . . . , Tk is a martingale.489

In what follows, we establish upper bounds on the absolute value of the martingale490

{Tk}. To do that, we use the Azuma-Hoeffding inequality in [27, p. 36], noticing that491 ∣∣Tk − Tk−1

∣∣ = ∣∣νk
Ω

⊤
(x⋆ − xk

Ω
)
∣∣ ≤ (√

nδM∇g +
√

2ϵk2/s
)∥∥x⋆

Ω
− xk

Ω

∥∥
2
, where we have492

used Cauchy-Schwarz, etc. Corollary [27, Corollary 2.20] then yields493

(4.33) Pr

(
|Tk − T0| ≥ γ

√√√√ k∑
i=1

(√
nM∇g|δ|+

√
2ϵi2
s

)2 ∥∥x⋆
Ω
− xi

Ω

∥∥2
2

)
≤ 2 exp(−γ2

2
).494
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Since ϵk2 ≤ ε0, then the following also holds495

(4.34) Pr

(
|Tk − T0| ≥ γ

(√
nM∇g|δ|+

√
2ε0
s

)√√√√ k∑
i=1

∥∥x⋆
Ω
− xi

Ω

∥∥2
2

)
≤ 2 exp(−γ2

2
).496

And since T0 = 0 we obtain497

(4.35) Pr

(
|Tk| ≥ γ

(√
nM∇g|δ|+

√
2ε0
s

)√√√√ k∑
i=1

∥∥x⋆
Ω
− xi

Ω

∥∥2
2

)
≤ 2 exp(−γ2

2
).498

Or, equivalently, that499

(4.36) |Tk| ≤ γ
(√

nM∇g|δ|+
√

2ε0
s

)√√√√ k∑
i=1

∥∥x⋆
Ω
− xi

Ω

∥∥2
2

500

holds for all k ≥ 1 with probability at least 1− 2 exp(−γ2

2 ). Expanding Tk we obtain501

(4.37)

∣∣∣∣ k∑
i=1

(ϵi−1
1Ω

− 1

s
ri
Ω
)⊤(x⋆

Ω
− xi

Ω
)

∣∣∣∣ ≤ γ

(
√
nM∇g|δ|+

√
2ε0
s

)√√√√ k∑
i=1

∥∥x⋆
Ω
− xi

Ω

∥∥2
2
.502

By assumption, we have that
∥∥x⋆

Ω
− xi

Ω

∥∥2
2
≤ Dx

∥∥x⋆
Ω
− x0

Ω

∥∥2
2
holds with probability p,503

for each i. Then,504

(4.38)

∣∣∣∣ k∑
i=1

(ϵi−1
1Ω

− 1

s
ri
Ω
)⊤(x⋆

Ω
− xi

Ω
)

∣∣∣∣ ≤ γ

(
M∇g

√
nk|δ|+

√
2kε0
s

)
Dx

∥∥x⋆
Ω
− x0

Ω

∥∥
2

505

holds with probablity pk
(
1 − 2 exp(−γ2

2 )
)
. Substituting (4.38) into (3.14) completes506

the proof of Theorem 2.507

4.3. Proof of Theorem 3. Here ϵ2Ω is bounded almost surely and has station-508

ary mean. Specifically, we have 0 ≤ ϵk2Ω ≤ ε0, with probability 1. By Hoeffding’s509

inequality ([27, Proposition 2.5]), we can write,510

(4.39) Pr

(
|

k∑
i=1

ϵi2Ω − E

(
k∑

i=1

ϵi2Ω

)
| ≥ t

)
≤ 2 exp

(
−2t2

kε20

)
, for all t > 0.511

Defining the constant mean E[ϵk2Ω ] = E[ϵ2Ω ] and substituting in (4.39) yields512

(4.40) Pr

(
|

k∑
i=1

ϵi2Ω − kE[ϵ2Ω ]| ≥ t

)
≤ 2 exp

(
−2t2

kε20

)
, for all t > 0.513

By choosing t = γ
√
kε0
2 , for some γ > 0, we obtain514

(4.41) Pr

(
|

k∑
i=1

ϵi2Ω − kE[ϵ2Ω ]| ≥
γ
√
kε0
2

)
≤ 2 exp

(
−γ2

2

)
for all γ > 0.515
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Equivalently,516

(4.42)

k∑
i=1

ϵi2Ω ≤ kE[ϵ2Ω ] +
γ
√
kε0
2

517

holds with probability at least 1 − 2 exp(−γ2

2 ). Using the last inequality (4.42) in518

(3.16) and applying the probability union bound completes the proof of Theorem 3.519

4.4. Proof of Theorem 4. Following the same line of proof of Section 4.1 but520

with yk = (1 + βk)x
k − βkx

k−1, where {βk} ∈ [0, 1] is the momentum sequence, and521

using the approximate accelerated PG iteration scheme 3.6, we obtain522

f(xk+1)− f(x) ≤ ϵk2 + ϵk1
⊤
(x− xk+1)− 1

2s

∥∥x− xk+1
∥∥2
2

− 1

2s
(rk+1)⊤(x− xk+1) +

1

2s

∥∥x− yk
∥∥2
2
.

(4.43)523

Let us now substitute yk and x by,524

yk = xk + βk(x
k − xk−1)(4.44)525

x = α−1
k x⋆ + (1− α−1

k )xk,(4.45)526527

where (4.44) follows from the definition of the acceleration scheme (3.6), and (4.45)528

is a choice that we make to simplify the analysis.4 {αk}k≥1 is a given parameter529

sequence that satisfies α0 = 1, αk ≥ 1 and βk = αk−1−1
αk

. (4.43) can now be expanded530

as531

f(xk+1)− f(α−1
k x⋆ + (1− α−1

k )xk) ≤ ϵk2 + ϵk1
⊤
(α−1

k x⋆ + (1− α−1
k )xk − xk+1)

− 1

2s

∥∥α−1
k x⋆ + (1− α−1

k )xk − xk+1
∥∥2
2

+
1

2s

∥∥α−1
k x⋆ + (1− α−1

k )xk − yk
∥∥2
2

− 1

2s
(rk+1)⊤(α−1

k x⋆ + (1− α−1
k )xk − xk+1).

(4.46)

532

Since α−1
k ∈]0, 1], and from the convexity of f , we have533

f(xk+1)− f(α−1
k x⋆ + (1− α−1

k )xk) ≥ f(xk+1) + (1− α−1
k )f(x⋆)

− (1− α−1
k )f(xk)− f(x⋆)

= f(xk+1)− f(x⋆)− (1− α−1
k )(f(xk)− f(x⋆)).

(4.47)

534

Let us now define the new sequences {vk} and {uk} by535

uk := x⋆ + (αk − 1)xk − αky
k = x⋆ − (xk + (αk−1 − 1)(xk − xk−1))(4.48)536

vk = f(xk)− f(x⋆).(4.49)537538

4Note that yk → xk as xk → x⋆.
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From these we can obtain539

uk+1 := x⋆ + (αk − 1)xk − αkx
k+1 = x⋆ − (xk+1 + (αk − 1)(xk+1 − xk)),(4.50)540541

by using βk = (αk−1 − 1)/αk and yk = (1 + βk)x
k − βkx

k−1.542

Rewriting (4.46) in terms of the newly defined sequences, {uk} and {vk}, and543

using (4.47) with ck := 1− α−1, as well as (4.48) and (4.50) we obtain544

vk+1 − ckv
k ≤ ϵk2 +

1

αk
ϵk1

⊤
uk+1 − 1

2sα2
k

∥∥uk+1
∥∥2
2
+

1

2sα2
k

∥∥uk
∥∥2
2

− 1

2s

∥∥rk+1
∥∥2
2
− 1

2sαk
(rk+1)⊤uk+1.

(4.51)545

Rearranging (4.51) we obtain546

vk+1 +
1

2s

∥∥rk+1
∥∥2
2
+

1

2sα2
k

∥∥uk+1
∥∥2
2
≤ ϵk2 +

1

αk
ϵk1

⊤
uk+1 + ckv

k

+
1

2sα2
k

∥∥uk
∥∥2
2
− 1

2sαk
(rk+1)⊤uk+1.

(4.52)547

Multiplying both sides by α2
k,548

α2
kv

k+1 +
α2
k

2s

∥∥rk+1
∥∥2
2
+

1

2s

∥∥uk+1
∥∥2
2
≤ α2

kϵ
k
2 + αkϵ

k
1

⊤
uk+1 + α2

kckv
k

+
1

2s

∥∥uk
∥∥2
2
− αk

2s
(rk+1)⊤uk+1.

(4.53)549

Applying (4.53) recursively, and substituting α2
kck = α2

k − αk = αk−1 yields550

α2
kv

k+1 +
α2
k

2s

∥∥rk+1
∥∥2
2
+

1

2s

∥∥uk+1
∥∥2
2
≤ α2

kϵ
k
2 + αkϵ

k
1

⊤
uk+1 + αk−1v

k(4.54)551

+
1

2s

∥∥uk
∥∥2
2
− αk

2s
(rk+1)⊤uk+1,552

. . . ,553

α2
1v

2 +
α2
1

2s

∥∥r2∥∥2
2
+

1

2s

∥∥u2
∥∥2
2
≤ α2

1ϵ
2
2 + α1ϵ

2
1
⊤
u2 + α0v

1(4.55)554

+
1

2s

∥∥u1
∥∥2
2
− α1

2s
(r2)⊤u2.555

556

Adding both sides of all inequalities,557

α2
kv

k+1 +

k∑
i=0

α2
i

2s

∥∥ri+1
∥∥2
2
+

1

2s

∥∥uk+1
∥∥2
2
+

k∑
i=0

(α2
i−1 − αi−1)v

i

≤
k∑

i=0

α2
i ϵ

i
2 +

1

2s

∥∥u1
∥∥2
2
+

k∑
i=0

αiϵ
i
1

⊤
ui+1 + α0v

1 −
k∑

i=0

αi

2s
(ri+1)⊤ui+1.

(4.56)558

Substituting α2
i−1 − αi−1 = α2

i−2 and α0 = 1 gives,559

α2
kv

k+1 +

k∑
i=0

α2
i

2s

∥∥ri+1
∥∥2
2
+

1

2s

∥∥uk+1
∥∥2
2
+

k∑
i=0

αi−2v
i

≤
k∑

i=0

α2
i ϵ

i
2 +

k∑
i=0

αiϵ
i
1

⊤
ui+1 + v1 +

1

2s

∥∥u1
∥∥2
2
−

k∑
i=0

αi

2s
(ri+1)⊤ui+1.

560
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For a positive sequence {αk}k≥0 and because x⋆ is a (global) minimizer,
∑

αi−2v
i ≥ 0561

is always satisfied; hence the following holds562

α2
kv

k+1 ≤ α2
kv

k+1 +

k∑
i=0

α2
i

2s

∥∥ri+1
∥∥2
2
+

1

2s

∥∥uk+1
∥∥2
2
+

k∑
i=0

αi−2v
i

≤
k∑

i=0

α2
i ϵ

i
2 +

k∑
i=0

αi

(
ϵi1 −

1

s
ri+1

)⊤

ui+1 + v1 +
1

2s

∥∥u1
∥∥2
2
.

(4.57)563

From (4.43) with k = 0 and x = x⋆, we have564

v1 = f(x1)− f(x⋆) ≤ ϵ02 +

(
ϵ01 −

1

2s
r1
)⊤

(x⋆ − x1)− 1

2s

∥∥x⋆ − x1
∥∥2
2

+
1

2s

∥∥x⋆ − x0
∥∥2
2
,

(4.58)565

since y0 = x0. From the definition of {uk} in (4.50) we have566

1

2s

∥∥u1
∥∥2
2
=

1

2s

∥∥x⋆ + (α0 − 1)x0 − α0x
1
∥∥2
2
,

=
1

2s

∥∥x⋆ − x1
∥∥2
2
,

(4.59)567

where we have used the initialization α0 = 1. Substituting for vk+1 and combining568

(4.58) and (4.59) with (4.57) yields569

α2
k(f(x

k+1)− f(x⋆)) ≤
k∑

i=0

α2
i ϵ

i
2 +

k∑
i=0

αi

(
ϵi1 −

1

s
ri+1

)⊤

ui+1 +
1

2s

∥∥x⋆ − x0
∥∥2
2
.

(4.60)

570

Dividing both sides by α2
k and applying Cauchy-Schwarz inequality yields571

f(xk+1)− f(x⋆) ≤ 1

α2
k

[
k∑

i=0

α2
i ϵ

i
2 +

[ k∑
i=0

αi

(∥∥ϵi1∥∥2 + 1

s

∥∥ri+1
∥∥
2

)] ∥∥ui+1
∥∥
2

(4.61)572

+
1

s

∥∥x⋆ − x0
∥∥2
2

]
.573

574

We have by definition 4.48 and 4.50575

uk = x⋆ + (αk − 1)xk − αky
k = x⋆ − (xk + (αk−1 − 1)(xk − xk−1)),(4.62)576

uk+1 = x⋆ + (αk − 1)xk − αkx
k+1 = x⋆ − (xk+1 + (αk − 1)(xk+1 − xk)).(4.63)577578

By triangle inequality of the vector norm, we have579 ∥∥uk
∥∥
2
≤
∥∥(αk − 1)(xk − x⋆)

∥∥
2
+ αk

∥∥yk − x⋆
∥∥
2
,580 ∥∥uk+1

∥∥
2
≤ |αk − 1|

∥∥xk − x⋆
∥∥
2
+ αk

∥∥xk+1 − x⋆
∥∥
2

581582

By the nonexpansivity of the displacement operator, i.e., I − s∇g, where I is the583

identity operator, we obtain584 ∥∥uk+1
∥∥
2
−
∥∥uk

∥∥
2
≤ αk

∣∣∣∣ ∥∥xk+1 − x⋆
∥∥
2
−
∥∥yk − x⋆

∥∥
2

∣∣∣∣,(4.64)585

≤ αk

∣∣∣∣ ∥∥rk+1
∥∥
2
+ sk

∥∥ϵk1∥∥2 + Cρ,sk0

∣∣∣∣, ∀sk ≤ 1

L
,586

587
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where we have used inequality (A.18). Rearranging and taking into account that all588

the terms inside the absolute value are nonnegative, we obtain589 ∥∥uk+1
∥∥
2
≤
∥∥uk

∥∥
2
+ αk

(∥∥rk+1
∥∥
2
+ sk

∥∥ϵk1∥∥2 + Cρ,sk0

)
, ∀sk ≤ 1

L
.(4.65)590

591

Using the bound
∥∥ri+1

∥∥
2
≤
√
2sϵi2 from Lemma 1, by induction and backward sub-592

stitution593

∥∥uk+1
∥∥
2
≤
∥∥u0
∥∥
2
+

k∑
j=1

αj

(√
2sϵj2 + sj

∥∥∥ϵj1∥∥∥
2
+ Cρ,sk0

)
, ∀sj ≤

1

L
.(4.66)594

595

where
∥∥u0
∥∥
2
= ∥x0 − x⋆∥2. By multiplying we obtain the bound of Theorem 4.596

4.5. Proof of Theorem 5. This result is about the accelerated version of ap-597

proximate PGD, but with random proximal computation error ϵ2Ω , component-wise598

bounded gradient error ϵ1Ω and bounded residuals
∥∥xk

Ω
− x⋆

∥∥
2
. As the algorithm gen-599

erates a sequence of random vectors {xk
Ω
}, the residual vector sequence {rk

Ω
} will also600

be a random. Let ν
Ω
= ϵi−1

1 − 1
sr

i and let {Tk} denote the second error term in (3.14)601

[Theorem 4], i.e.,602

(4.67) Tk =

{
0, k = 0∑k

i=1 αiν
i
Ω

⊤
ui

Ω
, k = 1, 2, . . . ,

603

where604

(4.68) ui
Ω
= x⋆ − xi

Ω
+ (1− αi−1)(x

i
Ω
− xi−1

Ω
).605

The first step is to show that {Tk} is a martingale. Recall that a sequence of random606

variables T0, T1, . . . is a martingale with respect to the sequence X0, X1, . . . if, for all607

k ≥ 0, the following conditions hold:608

• Tk is a function of X0, X1, . . . , Xk;609

• E[|Tk|] < ∞;610

• E[Tk+1|X0, X1, . . . , Xk] = Tk.611

A sequence of random variables T0, T1, . . . is called a martingale when it is a martin-612

gale with respect to itself. That is, E[|Tk|] < ∞, and E[Tk+1|T0, T1, . . . , Tk] = Tk. We613

now show that Assumptions 2 and 3 imply that {Tk}k≥0 is a martingale. Specifically,614

(3.10a) and (3.13a), we have615

E
[
νk
Ω

∣∣ν1
Ω
. . . νk−1

Ω

]
= E

[
νk
Ω

]
= 0.616

And from (3.10c) and (3.13b), we have617

E
[
νk
Ω

⊤
xk

Ω

∣∣ν1
Ω
. . . νk−1

Ω
, x1

Ω
. . . xk−1

Ω

]
= E

[
νk
Ω

⊤
xk

Ω

]
= 0.618

We have from (4.67),619

(4.69) Tk = Tk−1 + αkν
k
Ω

⊤
uk

Ω
.620

Substituting for uk
Ω
using (4.68) gives,621

(4.70) Tk = Tk−1 + αkαk−1ν
k
Ω

⊤
(x⋆ − xk

Ω
) + αk(1− αk−1)ν

k
Ω

⊤
(x⋆ − xk−1).622
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Taking the conditional expectation from both sides and proceeding as in Section 4.2,623

we obtain E
[
Tk|T1 . . . Tk−1

]
= Tk−1, i.e., T1, T2, . . . , Tk is a martingale.624

In what follows, we establish upper bounds on the absolute value of the martingale625

{Tk}. By noticing that
∣∣Tk − Tk−1

∣∣ = ∣∣νk
Ω

⊤
uk

Ω

∣∣ ≤ αk

(√
nδM∇g +

√
2ϵk2/s

)∥∥uk
Ω

∥∥
2
,626

where we have used Cauchy-Schwarz, etc. [27, Corollary 2.20] then yields627

|Tk| ≤ γ|δ|M∇g

√√√√n

k∑
i=1

i2
∥∥ui

Ω

∥∥2
2
+ γ

√
2s

√√√√ k∑
i=1

i2
∥∥ui

Ω

∥∥2
2
ϵi2(4.71)628

≤ γ|δ|M∇g

√
n

k∑
i=1

i
∥∥ui

Ω

∥∥
2
+ γ

√
2s

k∑
i=1

i
∥∥ui

Ω

∥∥
2

√
ϵi2629

630

whereM∇g = sup
i∈N+

{∥∥∇g(xi)
∥∥
∞

}
is the upper bound on the elements of the gradient.631

Let {Sk} denote the first error term in (4) [Theorem 4] i.e.,632

(4.72) Sk =

k∑
i=1

α2
i ϵ

i
2Ω .633

If 0 ≤ ϵk2Ω ≤ ε0 and αk ≤ k, then applying [27, Proposition 2.5] to Sk =
∑k

i=1 α
2
i ϵ

i
2Ω634

with 0 ≤ ϵk2Ω ≤ ε0 and αk ≤ k yields635

(4.73) Sk ≤ E
[ k∑
i=1

α2
i ϵ

i
2Ω

]
+

γ

2

√√√√ k∑
i=1

i4(ϵi2Ω)
2 ≤ E

[ k∑
i=1

α2
i ϵ

i
2Ω

]
+

γ

2

k∑
i=1

i2ϵi2Ω ,636

with probability at least 1− 2 exp(−γ2

2 ). Applying the probability union bound and637

assuming that
∥∥ui

Ω

∥∥2
2
≤ D2

u

∥∥x0 − x⋆
∥∥2
2
holds with probability p completes the proof638

of Theorem 5.639

5. Experimental Results. We now experimentally assess the proposed bounds640

on an ℓ1-regularized model predictive control (MPC) problem. We consider a discrete641

linear time invariant (LTI) state space model of a spacecraft [13]. The approximation642

errors are simulated error sequences generated from a truncated Gaussian distribution.643

5.1. Model Predictive Control (MPC). The ℓ1-regularized MPC can be644

formulated as645

minimize
x∈Rn

f(x) := g(x) + h(x) ,(5.1)646
647

where g : Rn → R is the following real-valued, convex and differentiable function,648

g(x) :=
∥∥∥(Φ⊤QΦ+R

) 1
2x−

(
Φ⊤QΦ+R

)− 1
2Φ⊤Q

(
Rs −Ψx(k)

)∥∥∥2
2
,649

650

and h : Rn → R ∪ {+∞} is the nondifferentiable convex ℓ1-norm651

h(x) := λ ∥x∥1 ,652653

with x ∈ Rp·Nc×1 being the vectorized differential control ∆u = uk − uk−1 ∈ Rp×Nc ,654

where p is the input dimension of the system and Nc is the control horizon. The655

This manuscript is for review purposes only.



22 A. HAMADOUCHE

regularization parameter λ ∈ R+ is a positive scalar. Q ∈ RNp·m×m·Np and R ∈656

Rp·Nc×p·Nc are positive semi-definite design matrices where m is the output dimension657

and Np is the prediction horizon. Rs ∈ Rm·Np×1 is the vectorization of the matrix that658

is constructed by Np times stacking of the set-point vector r(k). Φ ∈ Rm·Np×p·Nc and659

Ψ ∈ Rm·Np×n are augmented matrices which can be obtained from the spacecraft LTI660

discrete state-space model (A,B,C) of [13] using a standard formula [28, Eq. 1.12].661

For simulation, we select the problem’s matrices as follows,662

Q = diag(500.0, 500.0, 500.0, 10−7, 1.0, 1.0, 1.0, 500.0, 500.0, 500.0, 10−7, 1.0, 1.0, 1.0);663

R = diag(200.0, 200.0, 200.0, 1.0, 200.0, 200.0, 200.0, 1.0),664665

and set the regularization parameter λ = 2.5021. The control and prediction horizons666

are set to Nc = Np = 5. The quadratic term of the ℓ1-regularized MPC problem,667

g(x), has a gradient’s Lipschitz constant of L = 11539, and therefore, a stepsize of668

s = 1
L is adopted.669

For the simulated errors, we use ϵk1Ω = ∇g(xk)⊙ trand(−δ, δ) where trand(a, b) is670

the doubly truncated normal distribution [8] with lower and upper truncation points671

a and b, respectively. δ is the gradient element-wise precision, which is a scalar upper672

bound on the gradient error. ϵk2 = trand(0, ϵ0) where ϵ0 is a scalar upper bound on673

the proximal computation error. The output of the distribution function trand(l, u)674

is a vector randomly generated from the standard multivariate normal distribution675

truncated over the region [l, u].676

5.2. Results. The deterministic and probabilistic bounds are plotted and super-677

imposed with the bound (2.1) of [25] in Figure 1 and Figure 2. The latter is denoted by678

Schmidt_1 (Schmidt_2 in the accelerated case) and the proposed bounds are denoted679

by Thrm_1 and Thrm_2 (Thrm_4 and Thrm_5 in the accelerated case), respectively.680

Notice that we expect the effect of ϵk1 to be negligible near the optimum since,681

according to model (3.8), ϵk1 is proportional to the magnitude of the gradient. How-682

ever, depending on the choice of the upper bound of ϵk2 in the proximal operation step683

(3.7), the effect of the error ϵ2 can still be significant and sometimes permanent even684

near the optimum as we will see next.685

In the presence of small gradient and proximal computation errors, the bounds686

in Theorem 1, Theorem 2 practically coincide with (2.1). Therefore, in order to687

emphasize the sharpness of the proposed bounds, we run the simulation with |ϵk1 | ≤688

2.2×10; ϵk2 ≤ 10 for the nonaccelerated case (Figure 1), and with |ϵk1 | ≤ 2.2×10−4; ϵk2 ≤689

10−4 for the accelerated case (Figure 2).690
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Fig. 1: Upper bounds based on Theorems 1 & 3 vs Proposition 1 ((2.1)) in Schmidt
et al. 2010 [25] (with δ = 2.2× 101; ϵ0 = 101).

Fig. 2: Upper bounds based on Theorems 4 & 5 vs Proposition 2 in Schmidt et al.
2010 [25] (with δ = 2.2× 10−4; ϵ0 = 10−4).

Figure 1 suggests that by using the proposed probabilistic bounds, we can predict691

the suboptimality, i.e., f − f⋆, more accurately and the improvement is more signif-692

icant with lower values of γ (with lower probabilities). Note that the probabilistic693

bounds can possibly drop below the suboptimality plot (f − f⋆) during some itera-694
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tions; however, this would not present any conflict with the theory as this is what can695

be expected from probabilistic statements (dependent on the parameter γ) which do696

not hold 100% of the algorithm’s execution time.697

From Figure 2, we can see that none of the bounds can successfully estimate698

the function values suboptimality in the accelerated case, however, the probabilistic699

bound of Theorem 5 gives the best estimate and the slowest divergence rate. The700

bound of Corollary 5.1 slightly improves on Theorem 5 but still diverges, although at701

the slowest rate.702

6. Conclusions. We have analysed the convergence of the proximal gradient de-703

scent under computational errors. We derived deterministic and probabilistic upper704

bounds on the objective function value which we used as an assertion for convergence705

test. We considered the special case in which the gradient ∇g(xk) of g is computed706

with errors as well as the proximal operator proxh (with respect to h) is evaluated707

approximately. We also considered accelerated versions of the proximal gradient de-708

scent, which is known to converge faster in the error-free case, but we have shown that709

this comes at a price of amplified perturbations, which may lead to divergence. We710

proved that the effect of each contributing error term can be decoupled under mild711

assumptions. We also obtained probabilistic bounds with three main advantages:712

• The bounds are sharper (i.e., reflect practical performance better);713

• The bounds are simpler to interpret and predict a priori ;714

• The contribution of each error term is decoupled.715

We have also shown that some error terms follow martingale sequences when error716

conditional mean independence and data conditional mean independence assumptions717

both hold. Finally, we have perceived that in the accelerated case, the algorithm actu-718

ally converges to some suboptimal level around the optimum, however, the latter could719

not be determined using the current convergence bounds. This opens the possibility720

of other types of analyses with different error models.721

Appendix A. Supplementary results. The following Lemma establishes722

bounds on the norm of the residual error vector due to proximal error (forward error).723

Lemma 1. Consider problem (3.1) and let Assumption 1 hold. For L, s > 0,724

define G: Rn ×Rn → (−∞,∞] as the proper, closed, and L-strongly convex function725

G
(
y, x

)
:= g(y) +∇g(y)⊤(x− y) +

1

2s
∥x− y∥22 + h(x),726

Define ŷ⋆ := argminG
(
y, x

)
as the minimizer of G with respect to y when x is fixed,727

and y⋆ ∈ {y : G(y, x) − G(ŷ⋆, x) ≤ ϵ2} as an ϵ2-approximate solution of the same728

problem. Then,729 ∥∥ŷ⋆ − y⋆
∥∥
2
≤

√
2sϵ2.730

Theorem 6 (Quasi-Fejér monotonicity of the sequence generated by the731

proximal gradient method). Let {xk}k≥0 be the sequence generated by the ap-732

proximate proximal gradient (3.7) for solving problem (3.1) under Assumption 1 and733

with sk ≤ 1
L . Assume that, for k ≥ k0, we have ϵk2 ≤ c2

∥∥xk+1 − xk
∥∥
2
≤ c2ρ and734

∥ϵk1∥2 ≤ c1
∥∥∇g(xk+1)−∇g(xk)

∥∥
2
. Then for any x⋆ ∈ X⋆ and k ≥ 0 we have735

(A.1)
∥∥xk+1 − x⋆

∥∥
2
≤
∥∥xk − x⋆

∥∥
2
+
∥∥rk+1

∥∥
2
+ sk

∥∥ϵk1∥∥2 + Cρ,1/L,736

where Cρ,1/L =
√
2Lc2ρ + c1ρ. If Ek+1 :=

∥∥rk+1
∥∥
2
+ sk

∥∥ϵk1∥∥2 is a positive and737
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absolutely summable sequence, then {xk}k≥0 is a quasi-Féjer sequence relative to the738

set X⋆.739

Proof. we have740

∥∥xk+1 − xk0+1
∥∥
2
=

∥∥∥∥proxϵk2skh(xk − sk∇ϵk1 g(xk))− prox
ϵ
k0
2

sk0
h(x

k0 − sk0
∇ϵ

k0
1 g(xk0))

∥∥∥∥
2

.

(A.2)

741

742

Writing prox
ϵk2
skh

(x) as proxskh(x)+ rk and ∇ϵk1 g(x) as ∇g(x)+ ϵk1 for any suboptimal743

solution xk0 of (3.1), we obtain744 ∥∥xk+1 − xk0+1
∥∥
2
=

∥∥∥∥proxskh(xk − sk∇g(xk)− skϵ
k
1)

− proxsk0
h(x

k0 − sk0
∇g(xk0)− sk0

ϵk0
1 ) + rk+1 − rk0

∥∥∥∥
2

.

(A.3)745

By assumption we have ϵk2 ≤ c2
∥∥xk+1 − xk

∥∥
2
, or equivalently,746 ∥∥rk+1

∥∥
2
≤
√

2c2 ∥xk+1 − xk∥2/s and ϵk2 ≤ c1
∥∥∇g(xk+1)−∇g(xk)

∥∥
2

747

≤ c1L
∥∥xk+1 − xk

∥∥
2
for k ≥ k0. By the triangle inequality we have748

∥∥xk+1 − xk0+1
∥∥
2
≤
∥∥∥∥proxskh(xk − sk∇g(xk)− skϵ

k
1)

−proxsk0
h(x

k0 − sk0∇g(xk0)− sk0ϵ
k0
1 )

∥∥∥∥
2

+
∥∥rk+1

∥∥
2
+
∥∥rk0+1

∥∥
2

≤
∥∥∥∥proxskh(xk − sk∇g(xk)− skϵ

k
1)

−proxsk0
h(x

k0 − sk0∇g(xk0)− sk0ϵ
k0
1 )

∥∥∥∥
2

+
∥∥rk+1

∥∥
2
+

√
2c2ρ

s

(A.4)

749

where we have used
∥∥xk0+1 − xk0

∥∥
2
≤ ρ.750

By the nonexpansivity of the proximal operator we have751

∥∥xk+1 − xk0+1
∥∥
2
≤
∥∥∥∥[xk − sk∇g(xk)]− [xk0 − sk0

∇g(xk0)]

∥∥∥∥
2

+
∥∥rk+1

∥∥
2
+

√
2c2ρ

sk0

+sk
∥∥ϵk1∥∥2 + sk0

∥∥∥ϵk0
1

∥∥∥
2

≤
∥∥∥∥[xk − sk∇g(xk)]− [xk0 − sk0

∇g(xk0)]

∥∥∥∥
2

+
∥∥rk+1

∥∥
2
+ sk

∥∥ϵk1∥∥2
+

√
2c2ρ

sk0

+ sk0c1Lρ

(A.5)

752

By the nonexpansivity of the gradient descent operator, i.e., I− s∇g, we obtain753 ∥∥xk+1 − xk0+1
∥∥
2
≤
∥∥xk − xk0

∥∥
2
+
∥∥rk+1

∥∥
2
+ sk

∥∥ϵk1∥∥2 + Cρ, ∀sk ≤ 1

L
(A.6)754

=
∥∥xk − xk0

∥∥
2
+ Ek+1 + Cρ,(A.7)755756
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757 ∥∥xk+1 − xk0 − (xk0+1 − xk0)
∥∥
2
≤
∥∥xk − xk0

∥∥
2
+ Ek+1 + Cρ,(A.8)758759

where Cρ =
√

2c2ρ
sk0

+ sk0
c1Lρ and Ek+1 =

∥∥rk+1
∥∥
2
+ sk

∥∥ϵk1∥∥2.760

By the triangle difference inequality we have761 ∣∣∥∥xk+1 − xk0
∥∥
2
−
∥∥xk0+1 − xk0

∥∥
2

∣∣ ≤ ∥∥xk − xk0
∥∥
2
+ Ek+1 + Cρ.(A.9)762

763

For xk0+1 ≈ xk0 = x⋆ we have764 ∥∥xk+1 − x⋆
∥∥
2
≤
∥∥xk − x⋆

∥∥
2
+ Ek+1 + Cρ,(A.10)765766

From (A.10) and by [9, Definition 1.1], the sequence {xk}k≥1 is quasi-Féjer relative767

to the set X⋆ if {Ek}k≥1 is positive and absolutely summable.768

769

Theorem 7 (Quasi-Fejér monotonicity of the sequence generated by the770

accelerated proximal gradient method). Let {xk}k≥0 be the sequence generated771

by the approximate accelerated proximal gradient (3.6) for solving problem (3.1) under772

Assumption 1 and with sk ≤ 1
L . Assume we have summable iterative displacements773 ∥∥xk − xk−1

∥∥
2
and that, for k ≥ k0, we have ϵk2 ≤ c2

∥∥xk+1 − xk
∥∥
2
≤ c2ρ and ∥ϵk1∥2 ≤774

c1
∥∥∇g(xk+1)−∇g(xk)

∥∥⊤
2
, then for any xk0 ∈ Xk0 and k ≥ 0 we have775

(A.11)
∥∥xk+1 − xk0

∥∥
2
≤
∥∥xk − xk0

∥∥
2
+
∥∥xk − xk−1

∥∥
2
+ Ek+1 + Cρ,1/L776

where Cρ,1/L =
√
2Lc2ρ + c1ρ, E

k+1 =
∥∥rk+1

∥∥
2
+ sk

∥∥ϵk1∥∥2. If Ek+1 :=
∥∥rk+1

∥∥
2
+777

sk
∥∥ϵk1∥∥2 is a positive and absolutely summable sequence, then {xk}k≥0 is a quasi-Féjer778

sequence relative to the set Xk0 .779

Proof. For any optimal solution xk0 of (3.1), we have780

∥∥xk+1 − xk0+1
∥∥
2
=

∥∥∥∥proxϵk2skh(yk − sk∇ϵk1 g(yk))− prox
ϵ
k0
2

sk0
h(x

k0 − sk0
∇ϵ

k0
1 g(xk0))

∥∥∥∥
2

.

(A.12)

781
782

Rewriting prox
ϵk2
skh

(y) as proxskh(y) + rk and ∇ϵk1 g(y) as ∇g(y) + ϵk1 we obtain783

∥∥xk+1 − xk0+1
∥∥
2
=

∥∥∥∥proxskh(yk − sk∇g(yk)− skϵ
k
1)

−proxsk0
h(x

k0 − sk0∇g(xk0)− sk0ϵ
k0
1 ) + rk+1 − rk0

∥∥∥∥
2

.

(A.13)784

By assumption we have ϵk2 ≤ c2
∥∥xk+1 − xk

∥∥
2
and785

ϵk2 ≤ c1
∥∥∇g(xk+1)−∇g(xk)

∥∥
2
≤ c1L

∥∥xk+1 − xk
∥∥
2
for k ≥ k0. By the triangle786
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inequality we have787

∥∥xk+1 − xk0+1
∥∥
2
≤
∥∥∥∥proxskh(yk − sk∇g(yk)− skϵ

k
1)

−proxsk0
h(x

k0 − sk0
∇g(xk0)− sk0

ϵk0
1 )

∥∥∥∥
2

+
∥∥rk+1

∥∥
2
+
∥∥rk0+1

∥∥
2

≤
∥∥∥∥ proxskh(yk − sk∇g(yk)− skϵ

k
1)

−proxsk0
h(x

k0 − sk0
∇g(xk0)− sk0

ϵk0
1 )

∥∥∥∥
2

+
∥∥rk+1

∥∥
2
+

√
2c2ρ

s

(A.14)

788

where we have used
∥∥xk0+1 − xk0

∥∥
2
≤ ρ.789

By the nonexpansivity of the proximal operator we have790 ∥∥xk+1 − xk0+1
∥∥
2
≤
∥∥[yk − sk∇g(yk)]− [xk0 − sk0

∇g(xk0)]
∥∥
2
+
∥∥rk+1

∥∥
2

+

√
2c2ρ

sk0

+ sk
∥∥ϵk1∥∥2 + sk0

∥∥∥ϵk0
1

∥∥∥
2

≤
∥∥[yk − sk∇g(yk)]− [xk0 − sk0∇g(xk0)]

∥∥
2
+
∥∥rk+1

∥∥
2

+sk
∥∥ϵk1∥∥2 +

√
2c2ρ

sk0

+ sk0c1Lρ

(A.15)791

By the nonexpansivity of the gradient descent operator, i.e., I− s∇g, we obtain792 ∥∥xk+1 − xk0+1
∥∥
2
≤
∥∥yk − xk0

∥∥
2
+
∥∥rk+1

∥∥
2
+ sk

∥∥ϵk1∥∥2 + Cρ,sk0
, ∀sk ≤ 1

L

=
∥∥xk − xk0 + βk(x

k − xk−1)
∥∥
2
+ Ek+1 + Cρ,sk0

=
∥∥xk − xk0

∥∥
2
+
∥∥xk − xk−1

∥∥
2
+ Ek+1 + Cρ,sk0

,

(A.16)793

where Cρ,sk0
=
√

2c2ρ
sk0

+ sk0
c1Lρ, E

k+1 =
∥∥rk+1

∥∥
2
+ sk

∥∥ϵk1∥∥2 and we used βk ≤ 1.794

By the triangle difference inequality we have795

∣∣∥∥xk+1–xk0
∥∥
2
−
∥∥xk0+1 − xk0

∥∥
2

∣∣≤ ∥∥xk − xk0
∥∥
2
+
∥∥xk − xk−1

∥∥
2
+ Ek+1 + Cρ,sk0

,

(A.17)
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For xk0+1 ≈ xk0 = x⋆ we have797 ∥∥xk+1 − x⋆
∥∥
2
≤
∥∥xk − x⋆

∥∥
2
+
∥∥xk − xk−1

∥∥
2
+ Ek+1 + Cρ,sk0

,(A.18)798

From (A.18) and by [9, Definition 1.1], the sequence {xk}k≥1 is quasi-Féjer relative799

to the set X⋆ if {Ek}k≥1 is positive and absolutely summable provided we have800

summable iterative displacements
∥∥xk − xk−1

∥∥
2
.801
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[24] L. Rosasco, S. Villa, and B. C. Vũ, Convergence of stochastic proximal gradient algorithm,856
Applied Mathematics & Optimization, (2019), pp. 1–27.857

[25] M. Schmidt, N. L. Roux, and F. R. Bach, Convergence rates of inexact proximal-gradient858
methods for convex optimization, in Advances in neural information processing systems,859
2011, pp. 1458–1466.860

[26] S. Villa, S. Salzo, L. Baldassarre, and A. Verri, Accelerated and inexact forward-backward861
algorithms, SIAM Journal on Optimization, 23 (2013), pp. 1607–1633.862

[27] M. J. Wainwright, High-dimensional statistics: A non-asymptotic viewpoint, vol. 48, Cam-863
bridge University Press, 2019.864

[28] L. Wang, Model predictive control system design and implementation using MATLAB®,865
Springer Science & Business Media, 2009.866

[29] Y. Zhou, Y. Liang, Y. Yu, W. Dai, and E. P. Xing, Distributed proximal gradient algorithm867

This manuscript is for review purposes only.



SHARPER BOUNDS FOR PROXIMAL GRADIENT ALGORITHMS WITH ERRORS 29

for partially asynchronous computer clusters, The Journal of Machine Learning Research,868
19 (2018), pp. 733–764.869

[30] Y. Zhou, Y. Yu, W. Dai, Y. Liang, and E. Xing, On convergence of model parallel proxi-870
mal gradient algorithm for stale synchronous parallel system, in Artificial Intelligence and871
Statistics, PMLR, 2016, pp. 713–722.872

This manuscript is for review purposes only.


	Introduction
	Our approach
	Applications
	Contributions
	Organization

	Related Work
	Main Results
	Setup and algorithms
	Error models and assumptions
	Approximate proximal gradient
	Deterministic errors
	Random errors

	Accelerated Approximate PG
	Deterministic errors
	Random errors


	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	Experimental Results
	Model Predictive Control (MPC)
	Results

	Conclusions
	Appendix A. Supplementary results
	Acknowledgment
	Acknowledgements
	References

