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Abstract—Deep joint source-channel coding (D-JSCC) provides
several advantages over conventional coding schemes, in which
source and channel coding are designed separately. For example,
D-JSCC schemes suffer from smaller delays and are more robust
to rapid channel variation. However, D-JSCCs are often designed
without explicit structure or insight, making them less adaptive,
hard to control, and theoretically unfounded. In this paper,
we propose a contrastive joint-source-channel coding (C-JSCC)
design, which uses supervised contrastive learning (SCL) to make
the latent space of a conventional D-JSCC more structured and
meaningful. By testing on the CIFAR-10 dataset, we show that C-
JSCC consistently outperforms its D-JSCC counterpart in both
tasks of image reconstruction and classification. Moreover, C-
JSCC is shown to output images with perceptual quality better
than the classic BPG image codec in the low bits-per-pixel
(bpp) region. The roles of various hyper-parameters in C-JSCC
are investigated by analytical approximations, experiments, and
visualization techniques.

Index Terms—Contrastive learning, joint source-channel cod-
ing, semantic information, image communications.

I. INTRODUCTION

The strategy of separating source coding and channel coding

in digital communication systems has achieved tremendous

success. Such a strategy, however, also has limitations. First,

the separated design is optimal only when the code length

approaches infinity [1]. But long codes introduce excessive

delays. Second, the coding performance deteriorates rapidly

when the channel condition falls below a certain threshold.

This is also known as the “cliff effect” [2]. Third, significant

processing power is usually required for high-performance de-

coding. These drawbacks make the separated coding paradigm

less attractive for delay/power sensitive applications and com-

munication scenarios that have fast varying channels or long-

delay feedback.

Joint source-channel coding (JSCC) [3]–[9] aims to over-

come the drawbacks of the separated design with a unified

coding structure. Recently, deep neural networks (DNNs)

have been applied to source coding and shown to achieve

outstanding performance beyond conventional hand-crafted

codecs [10]. The advantage of using DNNs becomes particu-

larly relevant when dealing with complex high-dimensional

signals such as images. Inspired by such a success, much

research attention has been drawn to DNN-based JSCC (or

deep JSCC, D-JSCC), especially under the context of image

transmission [3]–[9]. In [3], [4], Bourtsoulatze et al. proposed

an autoencoder-based D-JSCC scheme, which was shown

to outperform separated systems in low signal-to-noise ratio

(SNR). This scheme was further extended to channels with

feedback in [5], [6]. The work in [7] proposed an adaptive

D-JSCC scheme, which balances the trade-off between rate

and signal quality with a policy network. Further work inves-

tigated the issue of progressive coding for channel bandwidth

adaptation [8], and studied D-JSCC under the context of multi-

path channels and orthogonal frequency division multiplexing

(OFDM) modulation [9]. Compared with separated designs,

advantages of D-JSCC include smaller delays, absence of

the cliff effect, and competitive performance at low SNR.

On the downside, D-JSCCs are often designed in an ad-

hoc manner, without conferring any spectral structure to the

encoded signal. As a result, they are less adaptive, hard to

control, and theoretically unfounded.

A key feature of D-JSCC is to encode high dimensional

source signals, e.g., images, directly into continenous-valued

baseband signals(e.g., complex baseband [3], [4] or [9] sam-

ples). From the perspective of machine learning, finding a

good encoder can be seen as representation learning [11]. The

encoded baseband signals correspond to latent vectors or latent

representations. The major challenge of D-JSCC is to learn

a representation that is both compact and robust to channel

distortions. To address this challenge, it is important to gain

insight into the structure of the encoded latent space.

Contrastive learning [12]–[15] is a recently proposed self-

supervised learning technique that shows great promise for

representation learning. The basic idea is to enforce two

structural properties directly into the latent space. The first

structural property is semantic alignment, which means that

semantically-similar neighbors in the source domain remain

neighbors in the latent space. For example, images with the

same labels or objects should have a representation that is

close in latent space. Or “For example, images whose distance

in pixel space is small should have a representation that is also

small in latent space”. Another structural property is straight-

forward uniformity, which means encoded latent vectors are

distributed uniformly in the entire feasible latent space. Using

image class labels as an additional source of semantic infor-

mation, supervised contrastive learning (SCL) [16] is a further

enhancement to contrastive learning by encouraging the the

third structural property: clustering of samples with identical

labels.

Contributions. In this paper, we propose a contrastive JSCC



Fig. 1. Block diagram of DNN based JSCC systems: (a) Deep JSCC [3]–[9];
(b) Our scheme: Contrastive learning based JSCC.

(C-JSCC) scheme, which essentially applies SCL techniques

to D-JSCC. The proposed C-JSCC can be seen as a generaliza-

tion of the original D-JSCC proposed in [3], [4]. Although the

application of SCL to D-JSCC is straight-forward, it is unclear

whether or how the structural properties of SCL improve the

performance of D-JSCC. To this end, our paper makes the

following contributions:

• Under the popular context of image transmission, C-

JSCC is shown to outperform its D-JSCC counterpart in

both image reconstruction and classification. Tested on the

CIFAR-10 dataset, and under Gaussian channels, the peak

SNR (PSNR) of the reconstructed image improves by 2-3 dB,

and the classification accuracy by 10%. In Rayleigh fading

channels, the performance gains in PSNR and classification

accuracy are 3dB and 15%, respectively.

• By relating the SCL loss to a more intuitive quantity,

we shed new insights into how the SCL loss brings semantic

structure into the latent space.

• We systematically study the impact of various C-JSCC

hyper-parameters on the performance of image reconstruction

and classification, and discuss the resulting trade-offs.

• We propose a new metric for measuring the information

bottleneck, which upper bounds the information carrying ca-

pacity of a C-JSCC encoded representation. Using this metric

as a common resource constraint, C-JSCC is shown to visually

outperform the classic BPG image codec in the low bit per

pixel (bpp) region.

II. PROBLEM FORMULATION

A. D-JSCC under Gaussian and Reyleigh channels

Fig. 1(a) shows the block diagram of D-JSCC [3]-[9]. An

encoder fs : RL → C
K , which implements a deterministic

function (namely, a DNN) with trainable parameters s, maps

an input signal x ∈ R
L, e.g., an image, into a vector of

complex-valued latent code z
′

∈ C
K to be transmitted via

the channel. The last layer of fs normalizes z such that the

transmission power is fixed to z =
√

KP/‖z‖2z
′

, where

P > 0.

The encoded vector z is sent over a physical layer channel

as complex-valued symbols. The received symbol is given by

ẑ = Hz+n, where H is the channel gain and n ∼N (0, σ2IK)
is the additive Gaussian noise. We consider two types of classic

channels: Rayleigh and Gaussian. The channel gain matrix H

in Rayleigh fading and Gaussian channels are given by H ∼
CN (0, IK) and H = 1, respectively.

It follows that the received signal has an average SNR ρ =
P/σ2. The decoder uses a decoding function gα : C

K →
R

L to directly map the received signal ẑ to an output (e.g.,

reconstructed image) x̂. The DNN-based decoding function is

parameterized by α.

B. Information bottleneck as a resource constraint

The compression performance of a D-JSCC scheme is

traditionally evaluated by K/L, which is the ratio of dimen-

sion reduction achieved by the encoder. This ratio, called

“bandwidth compression” in the D-JSCC literature [3]–[9],

has been widely used as a resource constraint for performance

comparison of different coding schemes [17]. However, this

constraint is incompatible with the common performance

evaluation framework of separated source and channel coding,

which use “bit” as a standard unit. For example, in image

compression, the performance of an image codec is typically

assessed via bpp.

To establish a common ground for performance comparison

of D-JSCC and conventional separated coding schemes, this

paper introduces a new resource constraint called “information

bottleneck measure.”. The idea is simply to use Shannon

channel capacity (measured in bits) to upper bound the average

amount of information that a D-JSCC symbol z can carry

through a channel. More specifically, for a D-JSCC trans-

mission with symbol dimension K and SNR ρ, in general,

the information bottleneck measure (assuming i.i.d. parallel

Gaussian channel) is given by

C =
K

2
log2(1 + ρ). (1)

This result comes directly from the property of Gaussian chan-

nels, in which the information per (scalar) symbol transmission

is upper bounded by 1
2 log2(1 + ρ) [1]. Applying this new

constraint, an image transmitted via D-JSCC can be compared

against the same image encoded by a conventional codec

into C bits and then decoded assuming no bit errors. This

essentially means that the D-JSCC can be compared against

the concatenation of a conventional source codec and a perfect

channel codec.

C. Performance metrics and problem statement

The primary goal of D-JSCC for image transmission is to

faithfully reconstruct the original image. In addition to pixel-

wise reconstruction fidelity, classification accuracy is another

widely-used performance metric of image transmission [18]–

[20]. It has been suggested that the class of an image is akin

to semantic information [21].

The aim of D-JSCC under a Gaussian channel is to find

the optimal encoding-decoding function pair fs and gα given



a constraint on the information bottleneck C. The encoded

latent vector is used separately for image reconstruction and

classification. Our goal is then to find a pair (fs, gα) that

jointly minimizes the reconstruction error while maximizing

the classification accuracy.

III. CONTRASTIVE LEARNING-BASED JSCC

A. Design intuition

From the perspective of representation learning, D-JSCC

essentially tries to learn a noise-tolerant latent representation.

The two optimization objectives of image reconstruction and

classification can be translated into two desirable properties

of the latent vector z. First, for image reconstruction, it is

desirable to maximize the (differential) entropy of z, so that

we can encode as much information as possible into the

latent vector. A simple heuristic for maximizing entropy is

to disperse the latent vector uniformly in the latent space.

This property is called uniformity in the machine-learning

literature [13]. Second, for image classification, images with

similar semantic features (e.g., same class label) should have

similar latent vectors, while images with dissimilar semantic

features should have latent vectors that are far apart. This

second property, called alignment, entails attributing different

meanings or traits to different regions of the latent space. And

to make the latent representations robust to noise, these regions

should be as far apart as possible.

B. Loss function design and its interpretation

The top-level architecture of the proposed C-JSCC scheme

is illustrated in Fig. 1(b). In essence, we propose a simple

modification to the classical MSE loss function by combining

it with an SCL loss:

Lsum = (1− λ) ∗ Lmse + λ ∗ Lscl, (2)

where

Lmse =
1

N

N
∑

i=1

||xi − x̂i||2 (3)

is the average mean square error (MSE) between the original

input image xi and the reconstructed image x̂i. Here, N is

the number of randomly selected samples in a batch.

To calculate Lscl, each of the N original data samples

is augmented to produce a “positive” sample with the same

class label, resulting in a set of 2N samples. For example,

an augmentation strategy could be rotating the image, which

preserves the class label. Within the augmented batch, let

i ∈ I ≡ {1, . . . , 2N} be the index of an arbitrary sample,

let A(i) ≡ I\{i} be the set of samples that excludes the

anchored index i. Let Q(i)≡ {q ∈ A(i) : xq
l = xi

l} be the set

of indices of all samples in A that have the same class label as

the anchored sample. xl is a semantic label. The upper right

is the index. Lscl is defined as [16]

Lscl =
∑

i∈I

−1

|Q(i)|

∑

q∈Q(i)

log
exp(ẑi · ẑq/τ)

∑

a∈A(i) exp(ẑi · ẑa/τ)
, (4)

Fig. 2. DNN architecture and implementation configuration.

where · denotes the inner product, τ is a scalar temperature

parameter, and | · | the cardinality of a set.

The above Lscl was originally proposed in [16] as a

generalization to the contrastive learning loss to handle extra

positive data samples with the same labels. In this paper, we

will subsequently give a novel interpretation of the SCL loss

to shed light into its insight. Our interpretation is based on an

approximation to the log-sum-exp (LSE) function, which is

defined as LSE(x1, x2, . . . , xm) = log
∑m

i=1 expxi. The LSE

is a smooth approximation of the maximum function and the

approximation is bounded as

1
t
LSE(tx) > max {x1, . . . , xn}

1
t
LSE(tx) ≤ max {x1, . . . , xn}+

log(n)
t

(t > 0).
(5)

Applying the above inequality to (4) yields,

Γ < Lscl < Γ + log(2N), (6)

where

Γ = 1
τ

∑

i∈I

1
|Q(i)|

∑

q∈Q(i)

[

max
a∈A(i)

(ẑi · ẑa)− ẑi · ẑq

]

= 1
τ

∑

i∈I

[

max
a∈A(i)

(ẑi · ẑa)−
1

|Q(i)|

∑

q∈Q(i)

ẑi · ẑq

]

.

(7)

Furthermore, because the power of all latent vectors z is

normalized to a constant P , the latent vectors are distributed

over a hypersphere. The inner product terms in (4) essentially

measure the cosine similarity between two vectors. The cosine

similarity is measured by the cosine of the angle between

two vectors and indicates whether two vectors are pointing

in roughly the same direction.

The approximation in (6), (7) provides further insight into

how the SCL loss introduces desirable properties into the

latent space. First, semantic alignment is achieved by minimiz-

ing the angles (and distances) between positive sample pairs.

Second, uniformity is encouraged by maximizing the angle

between a sample and its nearest neighbor. Decreasing the

temperature parameter τ can serve to highlight the importance

of the nearest neighbor. The specific algorithmic steps are

described in Algorithm 1.



Algorithm 1 Training of C-JSCC

Input: The Data sets x, xl

Output: Encoder network parameters θ. Decoder network

parameters ϕ

1: while Stopping criterion is not met do

2: Encoder encodes x into z

3: z is fed to the channel, which outputs ẑ.

4: Decoder decodes ẑ into x̂, x̂l

5: Calculate loss Lsum by (2) and Lcross−entropy

6: Update θ ←− Gradient descent ( θ, Lsum )
Update ϕ ←− Gradient descent ( ϕ, Lsum )

7: end while

8: Return the parameters θ and ϕ

IV. EXPERIMENT RESULTS AND DISCUSSIONS

A. DNN implementation and experiment settings

The proposed C-JSCC is a general training framework that

can be applied to different types of DNNs. Without loss of

generality, we adopt the same DNN implementation as in the

original D-JSCC [3], to highlight the advantages of C-JSCC

over the original D-JSCC. The DNN implementation is shown

in Fig. 2. Readers can refer to [4] for further implementation

details. The CIFAR-10 data set is used, which includes images

of size 32x32 [22]. The AdamW optimization framework is

used at a learning rate of 0.001. The batch size is set to 64. The

peak SNR (PSNR) of reconstructed images and classification

accuracy are adopted for performance evaluation of different

JSCC schemes.

Similar to the training procedure of D-JSCC, C-JSCC is

trained with varying SNR values, denoted as SNRtrain. This

means that end-to-end DNN training is conditioned on the

levels of noise imposed on the latent vector. Major hyper-

parameters associated with C-JSCC training include the loss

function weighting factor λ, the SCL temperature τ , the latent

vector dimension K, and the training SNR. We will subse-

quently investigate the impacts of these hyper-parameters.

B. Impact of hyper-parameter λ

Fig. 3 shows how λ, which varies from 10−8 to 1, affects

classification accuracy and the PSNR. The performance of

conventional D-JSCC (i.e., λ = 0) is also shown for compar-

ison. It is observed that the classification accuracy improves

with increasing λ until a performance ceiling is reached around

λ = 1. Moreover, increasing λ up to a certain threshold (in

this case around 0.01) is shown to be beneficial to the PSNR.

However, further increasing λ beyond this threshold leads to

a steady degradation of PSNR. It is interesting to see that

the PSNR and accuracy exhibit a clear trade-off right after

the threshold. Within this trade-off region, there is an interval

(around 0.01 to 0.1) where C-JSCC outperforms D-JSCC in

both PSNR and accuracy.

To gain further insight into how λ modulates the latent

space, Fig. 4 applies the t-distributed stochastic neighbor

embedding (t-SNE) technique [23] to visualize the structure

Fig. 3. Image PSNR (left) and classification accuracy (right) as functions of
λ (K=500, τ = 0.01, SNRtrain=SNRtest=10dB).

of latent vectors z. Different colors are used to differentiate

different image classes. At λ = 0, the latent vectors are

mixed without obvious structure. However, when λ increases,

latent vectors of the same class tend to aggregate into distinct

clusters. Fig. 4 partly explains the underlying cause of the

PSNR-accuracy trade-off previously shown in Fig. 3: while

semantic clustering helps to improve the classification accu-

racy by forming semantic constellations, well-formed clusters

could be detrimental to the PSNR due to a reduction of the

overall entropy.

(a) λ = 0 (b) λ = 0.01 (c) λ = 0.6 (d) λ = 1.0

Fig. 4. Visualization of the C-JSCC latent vector structure using t-SNE (λ =
[0, 0.01, 0.6, 1.0], τ = 0.01, K=500, and SNRtrain=SNRtest=10dB) .

C. Impact of hyper-parameter τ

Similar to Fig. 3, Fig. 5 shows the impact of temperature

parameter τ on the PSNR and accuracy. As discussed in [13],

increasing the value of τ tends to improve alignment (i.e.,

produce semantic clusters) in the latent space. This means

increasing τ has a similar effect as increasing λ. The results

in Fig. 5 mirrors our previous findings in Fig. 3: the PSNR

and accuracy both improve initially with increasing τ , but

eventually degrade after τ exceeds a certain threshold value.

Figs. 3 and 5 both suggest that a small degree of semantic

clustering is beneficial to the PSNR.

D. Impacts of training SNR

The training SNR is another important parameter that has

an overall impact on the D-JSCC performance. Setting lambda

= tau = 0.01, so that we are in the trade-off region, Fig.

6 compares the PSNR performance of C-JSCC against the

conventional D-JSCC [3], [4] with varying training SNR

values ranging from 1dB to 25 dB. In all values of training



Fig. 5. Image PSNR (left) and classification accuracy (right) as functions of
τ (K=500, λ = 0.01, SNRtrain=SNRtest=10dB)

(a)

(b)

Fig. 6. Image PSNR as a function of SNRtest, with C-JSCC models
trained under different values of SNRtrain: (a) Gaussian channel, (b) Rayleigh
channel( λ = 0.01, τ = 0.01, K = 500).

SNR, C-JSCC is shown to consistently outperform D-JSCC

by 2 to 3 dB.

E. Impacts of latent vector dimension K

For a thorough comparison, Fig. 7 extends Fig. 6 by treating

K as a new variable. For each value of K, different SNRtest-

SNRtrain pairs are tested for C-JSCC and D-JSCC. The

resulting PSNR is shown in Fig. 7 using a standard box plot.

Again, C-JSCC is shown to consistently outperform D-JSCC

in all parameter settings. Moreover, it is shown that the PSNR

gain tends to increase with larger values of K.

F. Comparison of classification accuracy

Table. I shows the classification performance of C-JSCC and

D-JSCC. Here, “K=average” represents the average perfor-

mance over K = {200, 500, 1000, 1500, 2000, 2500}. Awgn

Fig. 7. Image PSNR as a function of K (λ = 0.01, τ = 0.01,
SNRtrain=[0dB,10dB,20dB], SNRtest=[1dB-25dB], red for C-JSCC and blue
for D-JSCC).

TABLE I
IMAGE CLASSIFICATION PERFORMANCE

Method SNRtest=[0dB,10dB,20dB]

—————–AWGN——————–

CJSCC(τ = 0.01,K=average) 0.491,0.556,0.569

CJSCC(τ = 0.07,K=500) 0.554,0.618,0.646

CJSCC(τ = 0.13,K=500) 0.608,0.652,0.661

CJSCC(τ = 0.19 K=500) 0.646,0.6820.6820.682,0.685

CJSCC(τ = 0.25,K=500) 0.6490.6490.649,0.681,0.6920.6920.692

DJSCC(K=average) 0.486,0.551,0.553

DJSCC(K=500) 0.481,0.551,0.557

—————–Rayleigh—————-

CJSCC(τ = 0.01,K=average) 0.439,0.546,0.574

CJSCC(τ = 0.07,K=500) 0.491,0.591,0.627

CJSCC(τ = 0.13,K=500) 0.542,0.636,0.664

CJSCC(τ = 0.19,K=500) 0.566,0.664,0.689

CJSCC(τ = 0.25,K=500) 0.5900.5900.590,0.6700.6700.670,0.6980.6980.698

DJSCC(K=average) 0.433,0.532,0.562

DJSCC(K=500) 0.408,0.514,0.554

and Rayl represent the Gaussian and Rayleigh channels respec-

tively. We set λ = 0.01. Again, C-JSCC is shown to consis-

tently outperform D-JSCC with an average improvement of 10
%. As expected, increasing τ leads to improved classification

accuracy.

G. Visual comparison with BPG

Finally, Fig. 8 shows the visual comparison of reconstructed

images yielded by the proposed C-JSCC scheme and the

classic BPG codec. As explained previously in Section II, the

information bottleneck is used as a resource constraint for C-

JSCC. This allows us to assign proper values for K and SNR

in C-JSCC given a target bpp. It can be seen that C-JSCC

significantly outperforms BPG at low bpp values, making it a

promising coding scheme for image transmission over adverse

communication channels.

V. CONCLUSIONS

In this paper, we propose C-JSCC as a generalization and

enhancement to the conventional D-JSCC. Using the CIFAR-

10 dataset, the proposed C-JSCC is shown to outperform

D-JSCC by 2-3 dB of PSNR for image reconstruction, and

by 10% for image classification under Gaussion channels. In



Fig. 8. Visual comparison of reconstructed images from C-JSCC and BPG at different bpp (columns (b-d) are outputs of C-JSCC, SNRtrain=20dB, λ = τ =

0.01), the text below each image indicate parameters K/SNRtest/bpp.

Rayleigh fading channels, the performance gains in PSNR

and classification accuracy are 3dB and 15%, respectively.

An analytical investigation into the SCL loss function shows

that the temperature hyper-parameter can be used to adjust

attention between local and global samples in the latent space.

Through experiments, we show that uniformity and alignment

properties in the latent space have a direct impact on the image

reconstruction and classification performance, respectively. For

image reconstruction, introducing semantic structure into the

latent space is initially beneficial but detrimental after a certain

threshold. Using bpp as a common constraint, C-JSCC is

shown to outperform BPG perceptually at low rates. We

conclude that the proposed C-JSCC is a promising candidate

for low-rate image transmission over adverse communication

channels.
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