

High-Dimensional Statistics & Sparsity

UDRC Summer School

João F. C. Mota

Heriot-Watt University, Edinburgh, UK

Motivation

Hypothesis testing in high-dimensions

ProblemObserve a random vector $X \in \mathbb{R}^d$ $X \sim \mathbb{P}_0$ or $X \sim \mathbb{P}_1$?

False positive:

$$= \mathbb{P}(\text{decide } X \sim \mathbb{P}_1 \, \big| \, X \sim \mathbb{P}_0)$$

False negative: $\beta = \mathbb{P}(\text{decide } X \sim \mathbb{P}_0 \mid X \sim \mathbb{P}_1)$

 α

Decision Rule: Likelihood Ratio

 x_1, \ldots, x_n : i.i.d. realizations of X

For a given $\ T \geq 0$,

If
$$\frac{\mathbb{P}_1(x_1,\ldots,x_n)}{\mathbb{P}_0(x_1,\ldots,x_n)} > T$$

, then decide
$$\ X\sim \mathbb{P}_1$$

MAP rule / minimizes risk when

$$T = \frac{\mathbb{P}(X \sim \mathbb{P}_0)}{\mathbb{P}(X \sim \mathbb{P}_1)}$$

If
$$\frac{\mathbb{P}_1(x_1,\ldots,x_n)}{\mathbb{P}_0(x_1,\ldots,x_n)} \le T$$

, then decide
$$\ X \sim \mathbb{P}_0$$

$$\left| \begin{array}{c} \frac{\mathbb{P}_{1}(x_{1},\ldots,x_{n})}{\mathbb{P}_{0}(x_{1},\ldots,x_{n})} \right|$$
positive: $\alpha_{L} = \mathbb{P}(L(x_{1},\ldots,x_{n}) > T \mid X \sim \mathbb{P}_{0})$

False

False negative: β_L

$$= \mathbb{P}(L(x_1,\ldots,x_n) \le T \mid X \sim \mathbb{P}_1)$$

Neyman-Pearson Lemma

$$\alpha_L = \mathbb{P}(L(x_1, \dots, x_n) > T \mid X \sim \mathbb{P}_0)$$

$$\beta_L = \mathbb{P}(L(x_1, \dots, x_n) \le T \mid X \sim \mathbb{P}_1)$$

Neyman-Pearson Lemma

The likelihood ratio test is *optimal*:

If there is another (possibly random) decision rule $D(x_1,\ldots,x_n)$ such that

$$\mathbb{P}(D(x_1,\ldots,x_n) \text{ decides } X \sim \mathbb{P}_1 \mid X \sim \mathbb{P}_0) \leq \alpha_L,$$

then

$$\mathbb{P}(D(x_1,\ldots,x_n) \text{ decides } X \sim \mathbb{P}_0 | X \sim \mathbb{P}_1) \geq \beta_L.$$

And vice-versa.

Linear Discriminant Analysis

$$\mathbb{P}_{0} = \mathcal{N}(\mu_{0}, \Sigma_{0})$$

$$\mathbb{P}_{1} = \mathcal{N}(\mu_{1}, \Sigma_{1})$$

$$\mathbb{R}^{d}$$

$$X \sim \mathcal{N}(\mu, \Sigma) \implies f_{X}(x) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$

Assume (to simplify): $\Sigma_0 = \Sigma_1 = \Sigma$ and n = 1 (one observation)

$$L(x) > T \quad \Longleftrightarrow \quad \Psi(x) := \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} \left(\mu_1 - \mu_0\right) > \log T$$

$$\Psi(x) := \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} \left(\mu_1 - \mu_0\right) > \log T$$

Probability of error (assuming \mathbb{P}_0 and \mathbb{P}_1 are equally likely)

$$\operatorname{Err}(\Psi) = \mathbb{P}(\Psi(X) > 0 \& \mathbb{P}_0 \operatorname{true}) + \mathbb{P}(\Psi(X) \leq 0 \& \mathbb{P}_1 \operatorname{true})$$
$$= \mathbb{P}(\Psi(X) > 0 \mid \mathbb{P}_0) \cdot \mathbb{P}(\mathbb{P}_0) + \mathbb{P}(\Psi(X) \leq 0 \mid \mathbb{P}_1) \cdot \mathbb{P}(\mathbb{P}_1)$$
$$= \frac{1}{2} \mathbb{P}(\Psi(X) > 0 \mid \mathbb{P}_0) + \frac{1}{2} \mathbb{P}(\Psi(X) \leq 0 \mid \mathbb{P}_1)$$

(using Gaussianity and manipulating...)

$$= \Phi\left(-\frac{\gamma}{2}\right) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-\gamma/2} e^{-t^2/2} dt$$

classical error expression

$$\begin{split} \gamma = \sqrt{(\mu_0 - \mu_1)^\top \Sigma^{-1} (\mu_0 - \mu_1)} \\ \big| \quad \big| \quad \big| \\ \text{need to be estimated} \end{split}$$

 n_0 and n_1 samples

<u>High-dimensional regime</u>: n_0 and n_1 same order as d

Fisher Linear Discriminant

$$\Psi(x) = \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} (\mu_1 - \mu_0)$$

$$\gamma = \sqrt{(\mu_0 - \mu_1)^\top \Sigma^{-1} (\mu_0 - \mu_1)} \qquad \text{Err}(\Psi) = \Phi\left(-\frac{\gamma}{2}\right)$$

Unbiased estimators:

$$\widehat{\mu}_0 := \frac{1}{n_0} \sum_{i=1}^{n_0} x_i \qquad \qquad \widehat{\mu}_1 := \frac{1}{n_1} \sum_{i=1}^{n_1} y_i$$

$$\widehat{\Sigma} := \frac{1}{n_0 - 1} \sum_{i=1}^{n_0} (x_i - \widehat{\mu}_0) (x_i - \widehat{\mu}_0)^\top + \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (y_i - \widehat{\mu}_1) (y_i - \widehat{\mu}_1)^\top$$

Plug estimators into log-likelihood ratio:

$$\widehat{\Psi}(x) := \left(x - \frac{\widehat{\mu}_0 + \widehat{\mu}_1}{2}\right)^\top \widehat{\Sigma}^{-1} \left(\widehat{\mu}_1 - \widehat{\mu}_0\right)$$

Fisher linear discriminant function

Fisher Linear Discriminant

Assume $\mathbb{P}(\mathbb{P}_0) = \mathbb{P}(\mathbb{P}_1)$ $\Sigma = I_d$ d = 400 $n_0 = n_1 = 800$

Vary $\gamma = \|\mu_0 - \mu_1\|_2$ between 1 and 2 Test with $\widehat{\Psi}(x)$ over 5000 random trials

[Kolmogorov]	
$(d, n_0, n_1) \to \infty$	$\frac{d}{n_0}, \ \frac{d}{n_1} \to \alpha$
$\operatorname{Err}(\widehat{\Psi}) \xrightarrow{\operatorname{prob.}} \Phi\Big(-$	$-\frac{\gamma^2}{2\sqrt{\gamma^2+2lpha}}\Big)$

What can help in high-dimensions?

Structure e.g., <u>sparsity</u>

Suppose μ_0 and μ_1 are sparse: only have $s \ll d$ nonzero entries

Procedure: *hard-threshold* entries of estimates

$$\widehat{\mu}_0' = \frac{1}{n_0} \sum_{i=1}^{n_0} x_i \quad \longrightarrow \quad (\widehat{\mu}_0)_i = H_\lambda \left(\left(\widehat{\mu}_0' \right)_i \right)$$

(same for μ_1)

hard-thresholding operator

$$H_{\lambda}(x) := \begin{cases} x & , \text{ if } |x| > \lambda \\ 0 & , \text{ if } |x| \leq \lambda \end{cases}$$

Example

hard-thresholding operator

$$H_{\lambda}(x) := \begin{cases} x & , \text{ if } |x| > \lambda \\ 0 & , \text{ if } |x| \le \lambda \end{cases}$$

$$d = 400$$
 $n = 800$ $s = 5$ $\lambda = \sqrt{\frac{2\log d}{n}} = 0.1224$

Same Experiments

Assume $\mathbb{P}(\mathbb{P}_0) = \mathbb{P}(\mathbb{P}_1)$ $\Sigma = I_d$

Vary $\gamma = \|\mu_0 - \mu_1\|_2$ between 1 and 2

 $d = 400 \qquad \qquad n_0 = n_1 = 800$

Test with $\widehat{\Psi}(x)$ over 5000 random trials

$$s = 5$$
 $\lambda = \sqrt{\frac{2\log d}{n}}$

Sparsity makes problem low-dimensional

Outline

Motivation: Hypothesis Testing in High-Dimensions

Introduction to LASSO and other sparsity problems

Gaussian graphical model selection

Matrix completion

A Crime Problem

in the second se	2010 totalines	of the stand of th	do d	5% 1,9% 1,9% 1,9% 1,9% 1,9% 1,9% 1,9% 1,9	op this cost of the second sec	Crittee Initian
1	40	74	11	31	20	478
2	32	72	11	43	18	494
3	57	70	18	16	16	643
4	31	71	11	25	19	341
5	67	72	9	29	24	773
6	25	68	8	32	15	603
7	34	68	12	24	14	484
8	33	62	13	28	11	546
9	36	69	7	25	12	424
:	:	:	÷	÷	:	÷
50	66	67	26	18	16	940

<u>Goal:</u> Predict *# crimes / million* based on the other indicators

Linear Regression

Linear/affine model

d = 5 predictors

n=50 samples

$$y_{i} \simeq x_{0} + \sum_{j=1}^{d} a_{ij}x_{j} \quad i = 1, \dots, n \iff$$

$$| offset | coefficient to be determined table entry (crime rate)$$

Find coefficients: *least-squares*

15/40

Linear Regression

$$\underset{\overline{x}}{\operatorname{minimize}} \quad \frac{1}{2} \left\| y - \overline{A} \overline{x} \right\|_2^2$$

$$\overline{x}_{\rm LS}^{\star} = \left(\overline{A}^{\top}\overline{A}\right)^{-1}\overline{A}\,y$$

	489.6486	offset
	10.9807	police funding / resident (\$/year)
	-6.0885	% of 25+ year-olds with 4+ years of high-school
	5.4803	% of 16-19 year-olds not in high-school
	0.3770	% of 18-24 year-olds in college
	5.5005	% of 25+ year-olds with 4+ years of college

Problems with least-squares

little interpretabilityall coefficients contribute to predictionsmall bias, large variancezeroing coefficients can improve mean-squared error

LASSO

least absolute selection and shrikange operator

Coefficient value

In reality, we solved ...

$$\min_{x_0, x} \frac{1}{2n} \|y - x_0 \mathbf{1}_n - Ax\|_2^2 + \lambda \|x\|_1$$

$$\| \\ \| \\ \text{necessary because } \frac{1}{n} \sum_{i=1}^n y_i \neq 0$$

L1-Norm Induces Sparsity

minimize
$$\frac{1}{2n} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{1}$$

LASSO (aka Basis Pursuit Denoising)

$$igcap_{}$$
 for some $\, au\,$ depending on $\,\lambda$

$$\begin{array}{ll} \underset{x}{\text{minimize}} & \left\| y - Ax \right\|_{2}^{2} \\ \text{subject to} & \|x\|_{1} \leq \tau \end{array}$$

$$\ensuremath{\Uparrow}$$
 for some $\,\sigma\,$ depending on $\,\tau\,$

$$\begin{array}{ll} \underset{x}{\text{minimize}} & \|x\|_{1} \\ \text{subject to} & \left\|y - Ax\right\|_{2} \leq \sigma \end{array}$$

Constrained LASSO

Relaxed Basis Pursuit

Basis Pursuit when $\sigma = 0$

L1-Norm Induces Sparsity

$$\widehat{x} \in \underset{x}{\operatorname{arg\,min}} \|x\|_{1} \\ \text{s.t.} \|y - Ax\|_{2} \leq \sigma$$

Assume $\sigma = 0$:

$$y = Ax$$
 has solutions $\widetilde{x} + \operatorname{null}(A)$
 $y = A\widetilde{x} \Big| \quad \Big| \{d : Ad = 0\}$

Assume $\sigma > 0$: margin around $\tilde{x} + \operatorname{null}(A)$

What about the L2-norm?

$$\widehat{x}_{2} \in \underset{x}{\operatorname{arg\,min}} \|x\|_{2}^{2}$$
s.t.
$$\|y - Ax\|_{2} \leq \sigma$$

Example: Compressed Sensing

Application: Image Reconstruction

 $256 \times 496 \qquad \implies \quad z^{\star} \in \mathbb{R}^{126976}$

not sparse

Natural images have sparse representations

$$z^{\star} = \Psi x^{\star}$$

sparse or near-sparse *dictionary* (wavelet, DCT, gradient space)

Application: Image Reconstruction

Suppose we observe *only 50%* of pixels

Solve $\widehat{x} = \arg \min \|x\|_1$ x $y = \Phi \Psi x$ s.t. wavelet observed indices

PSNR: 21.31 dB

Application: Image Reconstruction

Solve $\widehat{x} = \arg \min \|x\|_1$ xs.t. $y = \Phi \Psi x$ wavelet partial DFT

each entry of y has info from entire image

 \widehat{x}

PSNR: 24.93 dB

Outline

Motivation: Hypothesis Testing in High-Dimensions

Introduction to LASSO and other sparsity problems

Gaussian graphical model selection

Matrix completion

Gaussian Graphical Model Selection

 $X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^{\star})$

<u>Problem</u>: given *n* idd observations of *X*, denoted $X^{(1)}, \ldots, X^{(n)}$, estimate Σ^{\star}

Assumption: most pairs of coordinates (X_i, X_j) are conditionally independent

$$\Downarrow$$
 precision matrix $\Theta^{\star} := (\Sigma^{\star})^{-1}$ is *sparse*

 X_4

 X_5

 X_3

 X_6

 X_2

 X_1

Gaussian Graphical Model Selection

$$X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^{\star})$$

$$\mathsf{pdf}: \quad f_X(x;\,\Theta^\star) = \frac{\sqrt{\det\,\Theta^\star}}{(2\pi)^{\frac{d}{2}}} \exp\left(-\frac{1}{2}x^\top\Theta^\star x\right)$$

Maximum likelihood estimator of $\, \Theta^{\star} \,$

$$\widehat{\Theta}_{\mathrm{ML}} = \underset{\Theta}{\mathrm{arg\,max}} \log \prod_{i=1}^{n} f\left(x^{(1)}, \dots, x^{(n)}; \Theta\right)$$

$$= \underset{\Theta}{\operatorname{arg\,min} - \log\,\det\,\Theta + \operatorname{tr}\left(\Theta\,\widehat{\Sigma}_n\right)} \\ = \widehat{\Sigma}_n^{-1}$$

sample covariance matrix

$$\widehat{\Sigma}_n := \frac{1}{n} \sum_{i=1}^n x^{(i)} x^{(i)^{\top}}$$

(assuming it is invertible \implies n > d)

Graphical LASSO

Maximum likelihood estimator

$$\widehat{\Theta}_{\mathrm{ML}}^{\star} = \underset{\Theta}{\operatorname{arg\,min}} - \log \, \det \, \Theta + \operatorname{tr} \left(\Theta \, \widehat{\Sigma}_n \right)$$

Assumption: most pairs of coordinates (X_i, X_j) are conditionally independent

Graphical LASSO

$$\widehat{\Theta}_{\mathrm{GL}} = \underset{\Theta}{\operatorname{arg\,min}} - \log\,\det\Theta + \operatorname{tr}\left(\Theta\,\widehat{\Sigma}_n\right) + \lambda \|\Theta\|_{1,\mathrm{off}} - d \\ \left|\sum_{\substack{i\neq j \\ i\neq j}} |\Theta|_{i\neq j}\right| = \left| \begin{array}{c} \star & \star & 0 & 0 & \star \\ \star & \star & \star & 0 & \star & \star \\ 0 & \star & \star & \star & \star & 0 \\ 0 & 0 & \star & \star & \star & \star & 0 \\ 0 & \star & \star & \star & \star & \star & \star \\ \star & \star & 0 & 0 & \star & \star \end{array} \right|$$

 $\left|\sum_{i \neq j} |\Theta_{ij}|\right|$ applies L1-norm only to off-diagonal entries

sensible estimators even for non-Gaussian RVs

Price of stock of *6 companies* at beginning of each week of 2011 (Jan-Jun)

Week	Alcoa	${f American}\ {f Express}$	Boeing	Bank of America	Caterpillar	Cisco Systems	_
1	14.67	43.30	66.15	10.59	100.25	14.94	_
2	15.29	43.73	69.26	10.89	101.30	15.14	
3	15.82	43.86	69.42	11.18	102.59	16.04	
4	15.87	43.86	70.29	11.47	102.72	16.41	
5	15.92	43.96	70.86	11.87	103.42	16.59	
6	15.95	44.13	71.17	11.89	103.56	16.82	
7	15.96	44.20	71.43	12.28	104.86	16.88	
8	16.18	44.75	71.52	12.32	105.58	16.93	
9	16.19	44.94	71.60	12.36	105.87	17.01	
÷	:	÷	÷	÷	÷	:	
24	17.42	50.74	79.31	14.77	96.93	21.22	
25	18.06	51.39	80.35	15.08	99.62	22.11	
	\widetilde{X}_1	\widetilde{X}_2	\widetilde{X}_3	\widetilde{X}_4	\widetilde{X}_5	\widetilde{X}_6	
remove mean	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	d =
	X_1	X_2	X_3	X_4	X_5	X_6	n =

27/40

25

6

$$\widehat{\Theta}_{\rm ML} = \widehat{\Sigma}_n^{-1} = \begin{bmatrix} 60.82 & 4.85 & -6.21 & -21.34 & -0.07 & -4.81 \\ 4.85 & 7.34 & -1.22 & -5.50 & 0.37 & -4.78 \\ -6.21 & -1.22 & 3.03 & 2.08 & -0.08 & -2.69 \\ -21.34 & -5.50 & 2.08 & 14.31 & -0.42 & 1.69 \\ -0.07 & 0.37 & -0.08 & -0.42 & 0.06 & 0.07 \\ -4.81 & -4.78 & -2.69 & 1.69 & 0.07 & 11.38 \end{bmatrix}$$

$$\widehat{\Theta}_{\text{GL}} = \underset{\Theta}{\operatorname{arg\,min}} - \log \, \det \, \Theta + \operatorname{tr} \left(\Theta \, \widehat{\Sigma}_n \right) + \lambda \left\| \Theta \right\|_{1, \text{off-d}} \quad \text{graphical LASSO}$$
$$(\widehat{\Theta}_{\text{GL}})_{ij} \left| \leq 10^{-3} \quad \Longrightarrow \quad \text{we assume no correlation, i.e., no edge} \quad (i, j)$$

Number of edges

Outline

Motivation: Hypothesis Testing in High-Dimensions

Introduction to LASSO and other sparsity problems

Gaussian graphical model selection

Matrix completion

Matrix Completion

Suppose someone gave you \$1M for *completing* a table like this...

Key insight: only a few factors may explain users' tastes (genre, actors, ads, ...)

Singular value decomposition: any real $m \times n$ matrix can be decomposed as

$$A = U\Sigma V^{\top} = \underbrace{\begin{bmatrix} \begin{vmatrix} & & & & & \\ u_1 & \cdots & u_k \\ & & & \\ \end{vmatrix}}_{m \times k} \underbrace{\begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_k \end{bmatrix}}_{k \times k} \underbrace{\begin{bmatrix} - & v_1^{\top} & - \\ \vdots \\ - & v_k^{\top} & - \end{bmatrix}}_{k \times n}_{orthogonal}$$

$$= \underbrace{\begin{bmatrix} u_1 & \cdots & u_k \\ u_{k+1} & \cdots & u_m' \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_k \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots &$$

 $m \times k \quad k \times n$

Our problem

minimize $\operatorname{rank}(X)$ nonconvex $X \in \mathbb{R}^{m \times n}$ subject to $X_{ij} = a_{ij}, \quad (i,j) \in \mathcal{O}$ observed entries relax nuclear norm $\underset{X \in \mathbb{R}^{m \times n}}{\text{minimize}} \quad \left\| (\sigma_1(X), \sigma_2(X), \dots, \sigma_r(X)) \right\|_1 = \|X\|_{\star}$ subject to $X_{ij} = a_{ij}, \quad (i,j) \in \mathcal{O}$ minimize $||X||_{\star}$ $X \in \mathbb{R}^{m \times n}$

subject to $\operatorname{tr}(XM_l) = a_l$, $l = 1, \dots, p$

movies

Example Result

Theorem [Chandrasekaran et al. 12']

 $X^{\star} \in \mathbb{R}^{m \times n}$ unknown, but rank k

iid entries $\mathcal{N}(0,1)$ $a_l = \operatorname{tr}(XM_l), \ l = 1, \dots, p$ measurements

$$p \ge 3k (m+n-k) + 1 \qquad \Longrightarrow \qquad X^{\star} = \underset{X}{\operatorname{argmin}} \quad \|X\|_{\star} \qquad \text{w.h.p.}$$

s.t. $\operatorname{tr}(XM_l) = a_l, \quad l = 1, \dots, p$

Experiments

 X^{\star} : 30 × 30

$$\operatorname{rank}(X^{\star}) = 3$$

 $\begin{array}{ll} \underset{X \in \mathbb{R}^{m \times n}}{\text{minimize}} & \|X\|_{\star} \\ \text{subject to} & \operatorname{tr}(XM_l) = a_l \,, \quad l = 1, \dots, p \\ \\ & & \\$

Sucess rate (20 trials)

Conclusions

- Structure is key in *high-dimensional* problems
- Sparsity encodes several types of structure
- Several applications (and theory)

- LASSO, basis pursuit, ... improve *interpretability* and (often) *performance*
- Didn't cover: optimization theory and *algorithms*

References

M. J. Wainwright *High-Dimensional Statistics: A Non-Asymptotic Viewpoint* Cambridge University Press, 2019

T. Hastie, R. Tibshirani, M. Wainwright **Statistical Learning with Sparsity: The Lasso and Generalizations** CRC Press, 2016 <u>https://web.stanford.edu/~hastie/StatLearnSparsity/</u>

V. Chandrasekaran, B. Recht, P. A. Parrilo, A. S. Willsky *The Convex Geometry of Linear Inverse Problems* Foundations of Computational Mathematics, Vol. 12, pp. 805-849, 2012

J. F. C. Mota, N. Deligiannis, M. R. D. Rodrigues *Compressed sensing with side information: Geometrical interpretation and performance bounds* IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2014

P. Ravikumar, M. J. Wainwright, G. Raskutti, B. Yu *High-dimensional covariance estimation by minimizing L1-penalized log-determinant divergence* Electronic Journal of Statistics, Vol. 5, pp. 935-980, 2011

Ten o Conservation de la Conservation les activités alles de la Conservation	FOUNDATIONS of COMPUTATIONAL MATHEMATICS
The Corner Gostatry of Lin	tar Interne Problems
BAR & During Alex 5 William	
lan sak Navata (10) kalar Misaa Kalan ala Kitaka Kit Kitaka Ki	WE compare 1 Mp We C
When the performance is a point on the definition of the performance of the second sec	concerning over a second of last with one product, where the second of the data was produced by the second of the data of the second of the second of the data of the second of the second of the data of the second of the second of the second of the second of the data of the second second of the second of the second of the second of the data of the second of the second of the data of the second of the data of the second of the second of the second of the second of the second of the data of the second of the second of the second of the data of the second of the second of the second of the data of the second of the second of the second of the second of the data of the second of the s
Communication Internant Control Schule and any Control Schule and Control Control Schule Control Schule and Control Schule Schule Control Schule And Schule Schule And Schule Schule And Sc	en California Antonio de Polandego Rendero.
 Control of College Control of College Compare Name Mechanic Problem System Compare Name Mechanics and Antonio Thick Control of College College of College 	Equation of Ferning Legislating and and generalized the CDM LEA.
	$(1) = (1 + 1)^{-1}$

References

V. Chandrasekaran *Convex Optimization Methods for Graphs and Statistical Modeling* PhD thesis, MIT, 2011

M. S. Brown, M. Pelosi, H. Dirska *Dynamic-radius species-conserving genetic algorithm for the financial forecasting of Dow Jones index stocks* Machine Learning and Data Mining in Pattern Recognition, Vol. 7988, pp. 27-41, 2013

Code & presentation

https://github.com/joaofcmota/udrc-summerschool

http://jmota.eps.hw.ac.uk/documents/Mota21-HighDimensionalStatsAndSparsity-UDRC.pdf