
High-Dimensional Statistics & Sparsity
UDRC Summer School

João F. C. Mota

Heriot-Watt University,  Edinburgh,  UK



2/40

Motivation



3/40

Motivation
Hypothesis testing in high-dimensions



4/40

Motivation
Hypothesis testing in high-dimensions



5/40

Motivation
Hypothesis testing in high-dimensions



6/40

Motivation
Hypothesis testing in high-dimensions



7/40

Problem

Motivation
Hypothesis testing in high-dimensions



8/40

Problem

Motivation
Hypothesis testing in high-dimensions

Observe a random vector



9/40

Problem

Motivation
Hypothesis testing in high-dimensions

Observe a random vector

or ?



10/40

Problem

Motivation
Hypothesis testing in high-dimensions

Observe a random vector

or ?

False positive:



11/40

Problem

Motivation
Hypothesis testing in high-dimensions

Observe a random vector

or ?

False positive:

False negative:



12/40

Decision Rule:  Likelihood Ratio



13/40

Decision Rule:  Likelihood Ratio

i.i.d. realizations of



14/40

Decision Rule:  Likelihood Ratio

i.i.d. realizations of

For a given                ,



15/40

Decision Rule:  Likelihood Ratio

i.i.d. realizations of

For a given                ,

If



16/40

Decision Rule:  Likelihood Ratio

i.i.d. realizations of

For a given                ,

If ,   then decide



17/40

Decision Rule:  Likelihood Ratio

i.i.d. realizations of

For a given                ,

If ,   then decide

If ,   then decide



18/40

Decision Rule:  Likelihood Ratio

False positive:

i.i.d. realizations of

For a given                ,

If ,   then decide

If ,   then decide



19/40

Decision Rule:  Likelihood Ratio

False positive:

i.i.d. realizations of

For a given                ,

If ,   then decide

If ,   then decide



20/40

Decision Rule:  Likelihood Ratio

False positive:

False negative:

i.i.d. realizations of

For a given                ,

If ,   then decide

If ,   then decide



21/40

Decision Rule:  Likelihood Ratio

False positive:

False negative:

i.i.d. realizations of

For a given                ,

If ,   then decide
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MAP rule / minimizes risk when
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Neyman-Pearson Lemma

The likelihood ratio test is optimal:

And vice-versa.

If there is another (possibly random) decision rule                                  such that

then
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Structure e.g.,  sparsity

Suppose         and         are sparse: only have                  nonzero entries

Procedure: hard-threshold entries of estimates

hard-thresholding operator

(same for      )
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Same Experiments
Assume

Vary                                   between  1  and  2 Test with            over 5000 random trials

Probability of error

High-dimensional theory
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Linear Regression

offset

police funding / resident  ($/year)

% of 25+ year-olds with 4+ years of high-school

% of 16-19 year-olds not in high-school 

% of 18-24 year-olds in college

% of 25+ year-olds with 4+ years of college

Problems with least-squares

small bias,  large variance zeroing coefficients can improve mean-squared error
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In reality, we solved ...

LASSO

regularization parameter 

L1-norm

least absolute selection and shrikange operator 

Coefficient value

funding

4 years of high-school (25+)

no-hs (16-19)
college (25+)

college (18-24)
necessary because
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Application: Image Reconstruction

not sparse

Natural images have sparse representations

sparse or near-sparse

dictionary (wavelet, DCT, gradient space)
Ordered coefficients:

Haar wavelet  (5 levels)
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partial DFT
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PSNR:  24.93 dB

each entry of      has info from entire image
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Graphical LASSO

Maximum likelihood estimator

Assumption: most pairs of coordinates                    are conditionally independent 

Graphical LASSO

sensible estimators even for non-Gaussian RVs
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 Motivation:  Hypothesis Testing in High-Dimensions

 Introduction to LASSO and other sparsity problems

 Gaussian graphical model selection

 Matrix completion

Outline
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Matrix Completion
Suppose someone gave you  $1M  for completing a table like this...

users

movies

rating user i gives to movie  j

Key insight: only a few factors may explain users’ tastes   (genre, actors, ads, ...)

ratings

influence of factors on users’ tastes 

characterization of movies Fewer degrees 
of freedom
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Example Result

Theorem [Chandrasekaran et al. 12’]

measurements

iid entries

unknown,  but rank

w.h.p.
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Experiments

Sucess rate  (20 trials)

iid entries

all-zeros,  and 1 at random entry

bound
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 Structure is key in  high-dimensional problems

 Sparsity encodes several types of structure

 Several applications  (and theory)

 LASSO,  basis pursuit, ...  improve  interpretability and (often)  performance

 Didn’t cover:  optimization theory  and  algorithms

Conclusions
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