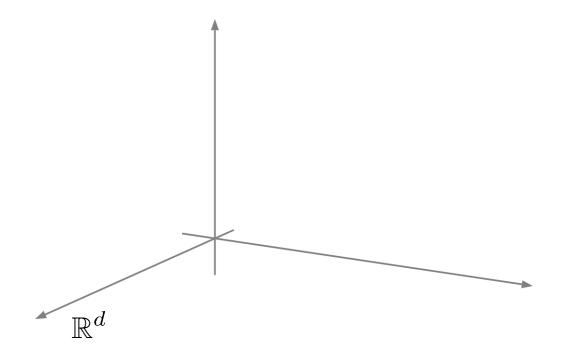
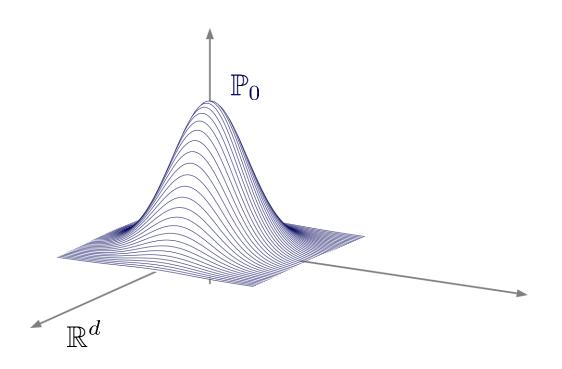


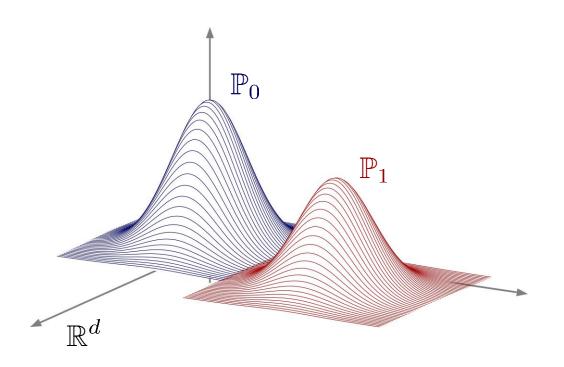
High-Dimensional Statistics & Sparsity

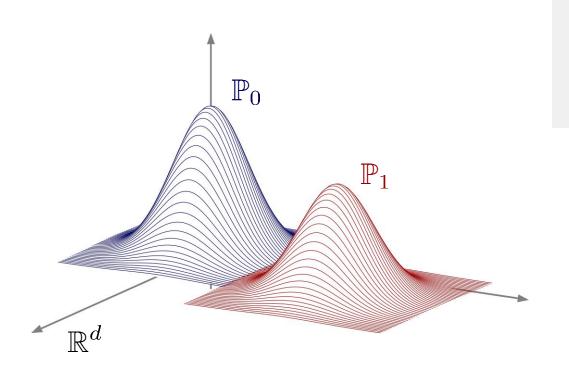
UDRC Summer School

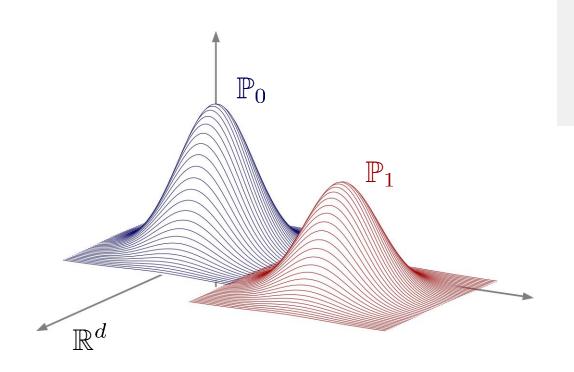
João F. C. Mota


Heriot-Watt University, Edinburgh, UK



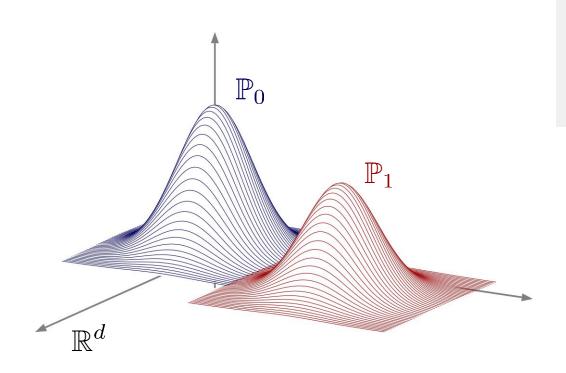





Hypothesis testing in high-dimensions

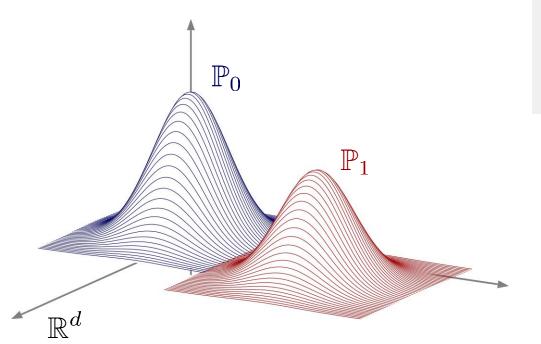
Problem

Hypothesis testing in high-dimensions



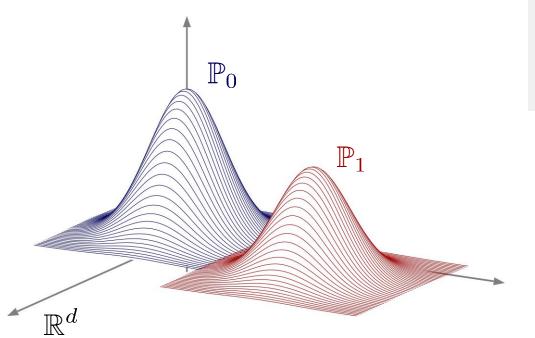
Problem

Observe a random vector $X \in \mathbb{R}^d$


Hypothesis testing in high-dimensions

ProblemObserve a random vector $X \in \mathbb{R}^d$ $X \sim \mathbb{P}_0$ or $X \sim \mathbb{P}_1$?

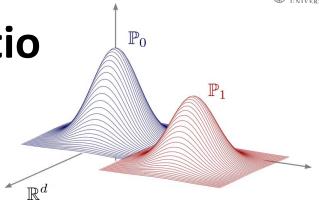
Hypothesis testing in high-dimensions



Problem $Observe ext{ a random vector } X \in \mathbb{R}^d$ $X \sim \mathbb{P}_0$ or $X \sim \mathbb{P}_1$?

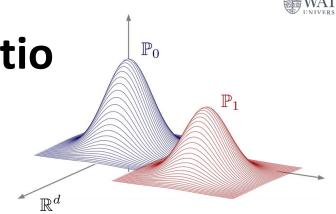
False positive: $\alpha = \mathbb{P}(\text{decide } X \sim \mathbb{P}_1 \mid X \sim \mathbb{P}_0)$

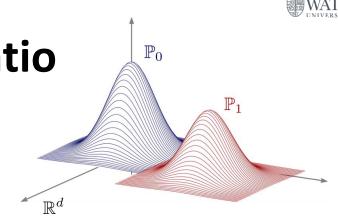
Hypothesis testing in high-dimensions


Problem
Observe a random vector $X \in \mathbb{R}^d$ $X \sim \mathbb{P}_0$ or $X \sim \mathbb{P}_1$?

False positive:

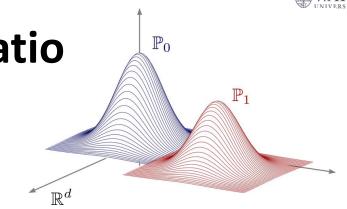
$$\alpha = \mathbb{P}(\text{decide } X \sim \mathbb{P}_1 \mid X \sim \mathbb{P}_0)$$


False negative: $\beta = \mathbb{P}(\text{decide } X \sim \mathbb{P}_0 \mid X \sim \mathbb{P}_1)$


 x_1, \ldots, x_n : i.i.d. realizations of X

 x_1, \ldots, x_n : i.i.d. realizations of X

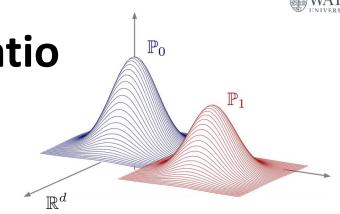
For a given $T\geq 0$,



 x_1, \ldots, x_n : i.i.d. realizations of X

For a given $\ T\geq 0$,

If
$$\frac{\mathbb{P}_1(x_1,\ldots,x_n)}{\mathbb{P}_0(x_1,\ldots,x_n)} > T$$



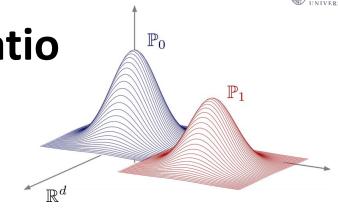
 x_1, \ldots, x_n : i.i.d. realizations of X

For a given $\ T\geq 0$,

If
$$\frac{\mathbb{P}_1(x_1,\ldots,x_n)}{\mathbb{P}_0(x_1,\ldots,x_n)} > T$$

 \mathbb{T} , then decide $X\sim \mathbb{P}_1$

 x_1, \ldots, x_n : i.i.d. realizations of X


For a given $\ T\geq 0$,

If
$$\frac{\mathbb{P}_1(x_1,\ldots,x_n)}{\mathbb{P}_0(x_1,\ldots,x_n)} > T$$

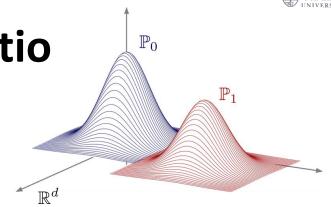
, then decide
$$\ \ X \sim \mathbb{P}_1$$

If
$$\frac{\mathbb{P}_1(x_1,\ldots,x_n)}{\mathbb{P}_0(x_1,\ldots,x_n)} \le T$$

, then decide $\ X \sim \mathbb{P}_0$

 x_1, \ldots, x_n : i.i.d. realizations of X

For a given $\ T\geq 0$,


If
$$\frac{\mathbb{P}_1(x_1,\ldots,x_n)}{\mathbb{P}_0(x_1,\ldots,x_n)} > T$$

, then decide
$$\ X\sim \mathbb{P}_1$$

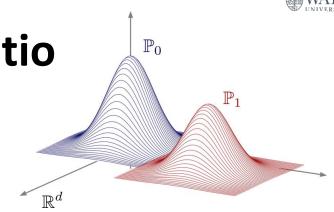
If
$$\frac{\mathbb{P}_1(x_1,\ldots,x_n)}{\mathbb{P}_0(x_1,\ldots,x_n)} \le T$$

, then decide $\ X \sim \mathbb{P}_0$

False positive:
$$\alpha_L = \mathbb{P}(L(x_1, \dots, x_n) > T \mid X \sim \mathbb{P}_0)$$

 x_1, \ldots, x_n : i.i.d. realizations of X

For a given $\ T\geq 0$,


If
$$\frac{\mathbb{P}_1(x_1,\ldots,x_n)}{\mathbb{P}_0(x_1,\ldots,x_n)} > T$$

, then decide
$$X\sim \mathbb{P}_1$$

If
$$\frac{\mathbb{P}_1(x_1,\ldots,x_n)}{\mathbb{P}_0(x_1,\ldots,x_n)} \le T$$

, then decide
$$X\sim \mathbb{P}_0$$

False positive:
$$\alpha_L = \mathbb{P}(L(x_1, \dots, x_n) > T \mid X \sim \mathbb{P}_0)$$

 x_1, \ldots, x_n : i.i.d. realizations of X

For a given $\ T\geq 0$,

If
$$\frac{\mathbb{P}_1(x_1,\ldots,x_n)}{\mathbb{P}_0(x_1,\ldots,x_n)} > T$$

, then decide $\ \ X \sim \mathbb{P}_1$

If
$$\frac{\mathbb{P}_1(x_1,\ldots,x_n)}{\mathbb{P}_0(x_1,\ldots,x_n)} \le T$$

, then decide
$$\ X\sim \mathbb{P}_0$$

ositive:
$$\alpha_L = \mathbb{P}(L(x_1, \dots, x_n) > T \mid X \sim \mathbb{P}_0$$

False positive

False negative: β_L

$$= \mathbb{P}(L(x_1,\ldots,x_n) \le T \mid X \sim \mathbb{P}_1)$$

tio R^d

 x_1, \ldots, x_n : i.i.d. realizations of X

For a given $T \ge 0$,

If
$$\frac{\mathbb{P}_1(x_1,\ldots,x_n)}{\mathbb{P}_0(x_1,\ldots,x_n)} > T$$

, then decide
$$\ X\sim \mathbb{P}_1$$

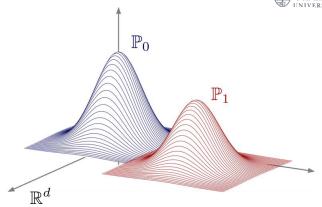
$$\mathbf{R}^{d}$$

A

MAP rule / minimizes risk when $T = \frac{\mathbb{P}(X \sim \mathbb{P}_0)}{\mathbb{P}(X \sim \mathbb{P}_1)}$

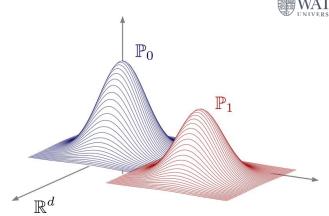
If
$$\frac{\mathbb{P}_1(x_1,\ldots,x_n)}{\mathbb{P}_0(x_1,\ldots,x_n)} \le T$$

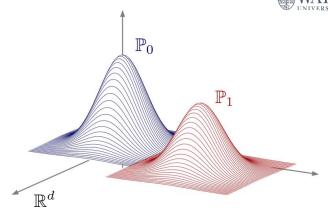
, then decide
$$\ \ X \sim \mathbb{P}_0$$


positive:
$$\alpha_L = \mathbb{P}(L(x_1, \dots, x_n) > T \mid X \sim \mathbb{P}_0)$$

TTD (

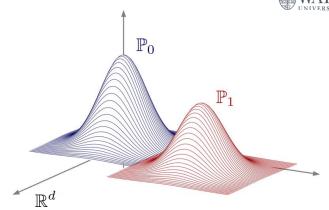
False p


False negative: $\beta_L = \mathbb{P}(L(x_1, \dots, x_n) \leq T \mid X \sim \mathbb{P}_1)$



$$\alpha_L = \mathbb{P}(L(x_1, \dots, x_n) > T \mid X \sim \mathbb{P}_0)$$

$$\beta_L = \mathbb{P}(L(x_1, \dots, x_n) \le T \mid X \sim \mathbb{P}_1)$$

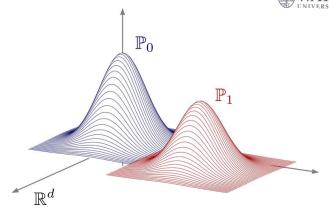

$$\alpha_L = \mathbb{P}(L(x_1, \dots, x_n) > T \mid X \sim \mathbb{P}_0)$$

$$\beta_L = \mathbb{P}(L(x_1, \dots, x_n) \le T \mid X \sim \mathbb{P}_1)$$

Neyman-Pearson Lemma

$$\alpha_L = \mathbb{P}(L(x_1, \dots, x_n) > T \mid X \sim \mathbb{P}_0)$$

$$\beta_L = \mathbb{P}(L(x_1, \dots, x_n) \le T \mid X \sim \mathbb{P}_1)$$

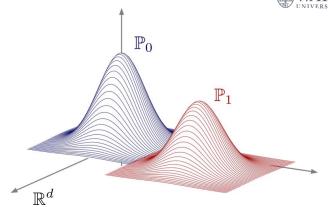


Neyman-Pearson Lemma

The likelihood ratio test is *optimal*:

$$\alpha_L = \mathbb{P}(L(x_1, \dots, x_n) > T \mid X \sim \mathbb{P}_0)$$

$$\beta_L = \mathbb{P}(L(x_1, \dots, x_n) \le T \mid X \sim \mathbb{P}_1)$$


Neyman-Pearson Lemma

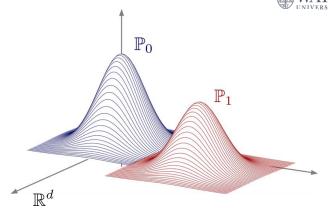
The likelihood ratio test is *optimal*:

If there is another (possibly random) decision rule $D(x_1, \ldots, x_n)$ such that

$$\alpha_L = \mathbb{P}(L(x_1, \dots, x_n) > T \mid X \sim \mathbb{P}_0)$$

$$\beta_L = \mathbb{P}(L(x_1, \dots, x_n) \le T \mid X \sim \mathbb{P}_1)$$

Neyman-Pearson Lemma


The likelihood ratio test is *optimal*:

If there is another (possibly random) decision rule $D(x_1, \ldots, x_n)$ such that

$$\mathbb{P}(D(x_1,\ldots,x_n) \text{ decides } X \sim \mathbb{P}_1 \mid X \sim \mathbb{P}_0) \leq \alpha_L,$$

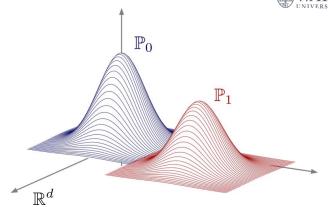
$$\alpha_L = \mathbb{P}(L(x_1, \dots, x_n) > T \mid X \sim \mathbb{P}_0)$$

$$\beta_L = \mathbb{P}(L(x_1, \dots, x_n) \le T \mid X \sim \mathbb{P}_1)$$

Neyman-Pearson Lemma

The likelihood ratio test is *optimal*:

If there is another (possibly random) decision rule $D(x_1, \ldots, x_n)$ such that


$$\mathbb{P}(D(x_1,\ldots,x_n) \text{ decides } X \sim \mathbb{P}_1 \mid X \sim \mathbb{P}_0) \leq \alpha_L,$$

then

$$\mathbb{P}(D(x_1,\ldots,x_n) \text{ decides } X \sim \mathbb{P}_0 \mid X \sim \mathbb{P}_1) \geq \beta_L.$$

$$\alpha_L = \mathbb{P}(L(x_1, \dots, x_n) > T \mid X \sim \mathbb{P}_0)$$

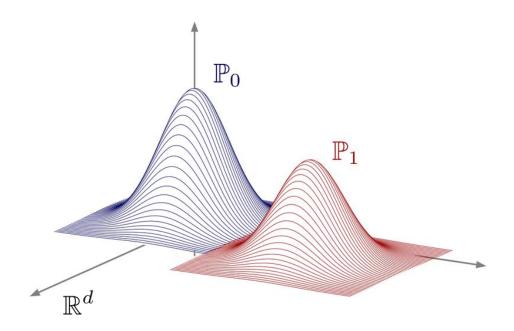
$$\beta_L = \mathbb{P}(L(x_1, \dots, x_n) \le T \mid X \sim \mathbb{P}_1)$$

Neyman-Pearson Lemma

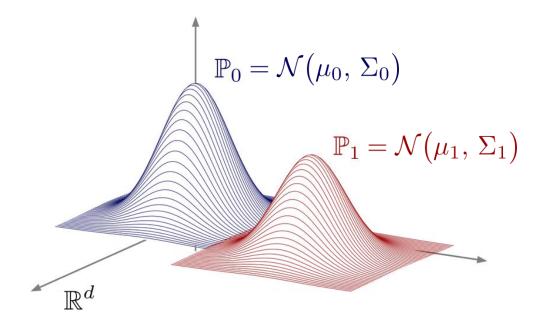
The likelihood ratio test is *optimal*:

If there is another (possibly random) decision rule $D(x_1, \ldots, x_n)$ such that

$$\mathbb{P}(D(x_1,\ldots,x_n) \text{ decides } X \sim \mathbb{P}_1 \mid X \sim \mathbb{P}_0) \leq \alpha_L,$$


then

$$\mathbb{P}(D(x_1,\ldots,x_n) \text{ decides } X \sim \mathbb{P}_0 | X \sim \mathbb{P}_1) \geq \beta_L.$$


And vice-versa.

$$\mathbb{P}_{0} = \mathcal{N}(\mu_{0}, \Sigma_{0})$$

$$\mathbb{P}_{1} = \mathcal{N}(\mu_{1}, \Sigma_{1})$$

$$\mathbb{R}^{d}$$

$$X \sim \mathcal{N}(\mu, \Sigma) \implies f_{X}(x) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$

Assume (to simplify): $\Sigma_0 = \Sigma_1 = \Sigma$

$$\mathbb{P}_{0} = \mathcal{N}(\mu_{0}, \Sigma_{0})$$

$$\mathbb{P}_{1} = \mathcal{N}(\mu_{1}, \Sigma_{1})$$

$$\mathbb{R}^{d}$$

$$X \sim \mathcal{N}(\mu, \Sigma) \implies f_{X}(x) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$

Assume (to simplify): $\Sigma_0 = \Sigma_1 = \Sigma$ and n = 1 (one observation)

$$\mathbb{P}_{0} = \mathcal{N}(\mu_{0}, \Sigma_{0})$$

$$\mathbb{P}_{1} = \mathcal{N}(\mu_{1}, \Sigma_{1})$$

$$\mathbb{R}^{d}$$

$$X \sim \mathcal{N}(\mu, \Sigma) \implies f_{X}(x) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$

Assume (to simplify): $\Sigma_0 = \Sigma_1 = \Sigma$ and n = 1 (one observation)

L(x) > T

Linear Discriminant Analysis

$$\mathbb{P}_{0} = \mathcal{N}(\mu_{0}, \Sigma_{0})$$

$$\mathbb{P}_{1} = \mathcal{N}(\mu_{1}, \Sigma_{1})$$

$$\mathbb{R}^{d}$$

$$X \sim \mathcal{N}(\mu, \Sigma) \implies f_{X}(x) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$

Assume (to simplify): $\Sigma_0 = \Sigma_1 = \Sigma$ and n = 1 (one observation)

$$L(x) > T \quad \Longleftrightarrow \quad \Psi(x) := \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} \left(\mu_1 - \mu_0\right) > \log T$$

$$\Psi(x) := \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} \left(\mu_1 - \mu_0\right) > \log T$$

$$\Psi(x) := \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} \left(\mu_1 - \mu_0\right) > \log T$$

$$\Psi(x) := \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} \left(\mu_1 - \mu_0\right) > \log T$$

$$\Psi(x) := \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} \left(\mu_1 - \mu_0\right) > \log T$$

 $\operatorname{Err}(\Psi) = \mathbb{P}(\Psi(X) > 0 \& \mathbb{P}_0 \operatorname{true}) + \mathbb{P}(\Psi(X) \le 0 \& \mathbb{P}_1 \operatorname{true})$

$$\Psi(x) := \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} \left(\mu_1 - \mu_0\right) > \log T$$

 $\operatorname{Err}(\Psi) = \mathbb{P}(\Psi(X) > 0 \& \mathbb{P}_0 \operatorname{true}) + \mathbb{P}(\Psi(X) \le 0 \& \mathbb{P}_1 \operatorname{true})$ $= \mathbb{P}(\Psi(X) > 0 \mid \mathbb{P}_0) \cdot \mathbb{P}(\mathbb{P}_0) + \mathbb{P}(\Psi(X) \le 0 \mid \mathbb{P}_1) \cdot \mathbb{P}(\mathbb{P}_1)$

$$\Psi(x) := \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} \left(\mu_1 - \mu_0\right) > \log T$$

$$\operatorname{Err}(\Psi) = \mathbb{P}(\Psi(X) > 0 \& \mathbb{P}_0 \operatorname{true}) + \mathbb{P}(\Psi(X) \le 0 \& \mathbb{P}_1 \operatorname{true})$$
$$= \mathbb{P}(\Psi(X) > 0 \mid \mathbb{P}_0) \cdot \mathbb{P}(\mathbb{P}_0) + \mathbb{P}(\Psi(X) \le 0 \mid \mathbb{P}_1) \cdot \mathbb{P}(\mathbb{P}_1)$$
$$= \frac{1}{2} \mathbb{P}(\Psi(X) > 0 \mid \mathbb{P}_0) + \frac{1}{2} \mathbb{P}(\Psi(X) \le 0 \mid \mathbb{P}_1)$$

$$\Psi(x) := \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} \left(\mu_1 - \mu_0\right) > \log T$$

$$\operatorname{Err}(\Psi) = \mathbb{P}(\Psi(X) > 0 \& \mathbb{P}_0 \operatorname{true}) + \mathbb{P}(\Psi(X) \le 0 \& \mathbb{P}_1 \operatorname{true})$$
$$= \mathbb{P}(\Psi(X) > 0 \mid \mathbb{P}_0) \cdot \mathbb{P}(\mathbb{P}_0) + \mathbb{P}(\Psi(X) \le 0 \mid \mathbb{P}_1) \cdot \mathbb{P}(\mathbb{P}_1)$$
$$= \frac{1}{2} \mathbb{P}(\Psi(X) > 0 \mid \mathbb{P}_0) + \frac{1}{2} \mathbb{P}(\Psi(X) \le 0 \mid \mathbb{P}_1)$$

(using Gaussianity and manipulating...)

$$\Psi(x) := \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} \left(\mu_1 - \mu_0\right) > \log T$$

$$\operatorname{Err}(\Psi) = \mathbb{P}(\Psi(X) > 0 \& \mathbb{P}_0 \operatorname{true}) + \mathbb{P}(\Psi(X) \le 0 \& \mathbb{P}_1 \operatorname{true})$$
$$= \mathbb{P}(\Psi(X) > 0 \mid \mathbb{P}_0) \cdot \mathbb{P}(\mathbb{P}_0) + \mathbb{P}(\Psi(X) \le 0 \mid \mathbb{P}_1) \cdot \mathbb{P}(\mathbb{P}_1)$$
$$= \frac{1}{2} \mathbb{P}(\Psi(X) > 0 \mid \mathbb{P}_0) + \frac{1}{2} \mathbb{P}(\Psi(X) \le 0 \mid \mathbb{P}_1)$$

(using Gaussianity and manipulating...)

$$= \Phi\left(-\frac{\gamma}{2}\right) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-\gamma/2} e^{-t^2/2} dt$$

$$\Psi(x) := \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} \left(\mu_1 - \mu_0\right) > \log T$$

$$\operatorname{Err}(\Psi) = \mathbb{P}(\Psi(X) > 0 \& \mathbb{P}_0 \operatorname{true}) + \mathbb{P}(\Psi(X) \le 0 \& \mathbb{P}_1 \operatorname{true})$$
$$= \mathbb{P}(\Psi(X) > 0 \mid \mathbb{P}_0) \cdot \mathbb{P}(\mathbb{P}_0) + \mathbb{P}(\Psi(X) \le 0 \mid \mathbb{P}_1) \cdot \mathbb{P}(\mathbb{P}_1)$$
$$= \frac{1}{2} \mathbb{P}(\Psi(X) > 0 \mid \mathbb{P}_0) + \frac{1}{2} \mathbb{P}(\Psi(X) \le 0 \mid \mathbb{P}_1)$$

(using Gaussianity and manipulating...)

$$= \Phi\left(-\frac{\gamma}{2}\right) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-\gamma/2} e^{-t^2/2} dt \qquad \gamma = \sqrt{(\mu_0 - \mu_1)^\top \Sigma^{-1} (\mu_0 - \mu_1)}$$

$$\Psi(x) := \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} \left(\mu_1 - \mu_0\right) > \log T$$

$$\operatorname{Err}(\Psi) = \mathbb{P}(\Psi(X) > 0 \& \mathbb{P}_0 \operatorname{true}) + \mathbb{P}(\Psi(X) \le 0 \& \mathbb{P}_1 \operatorname{true})$$
$$= \mathbb{P}(\Psi(X) > 0 \mid \mathbb{P}_0) \cdot \mathbb{P}(\mathbb{P}_0) + \mathbb{P}(\Psi(X) \le 0 \mid \mathbb{P}_1) \cdot \mathbb{P}(\mathbb{P}_1)$$
$$= \frac{1}{2} \mathbb{P}(\Psi(X) > 0 \mid \mathbb{P}_0) + \frac{1}{2} \mathbb{P}(\Psi(X) \le 0 \mid \mathbb{P}_1)$$

(using Gaussianity and manipulating...)

$$= \Phi\left(-\frac{\gamma}{2}\right) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-\gamma/2} e^{-t^2/2} dt$$

$$\gamma = \sqrt{(\mu_0 - \mu_1)^\top \Sigma^{-1} (\mu_0 - \mu_1)}$$

classical error expression

$$\Psi(x) := \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} \left(\mu_1 - \mu_0\right) > \log T$$

$$\operatorname{Err}(\Psi) = \mathbb{P}(\Psi(X) > 0 \& \mathbb{P}_0 \operatorname{true}) + \mathbb{P}(\Psi(X) \leq 0 \& \mathbb{P}_1 \operatorname{true})$$
$$= \mathbb{P}(\Psi(X) > 0 \mid \mathbb{P}_0) \cdot \mathbb{P}(\mathbb{P}_0) + \mathbb{P}(\Psi(X) \leq 0 \mid \mathbb{P}_1) \cdot \mathbb{P}(\mathbb{P}_1)$$
$$= \frac{1}{2} \mathbb{P}(\Psi(X) > 0 \mid \mathbb{P}_0) + \frac{1}{2} \mathbb{P}(\Psi(X) \leq 0 \mid \mathbb{P}_1)$$

(using Gaussianity and manipulating...)

$$= \Phi\left(-\frac{\gamma}{2}\right) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-\gamma/2} e^{-t^2/2} dt$$

classical error expression

$$\gamma = \sqrt{(\mu_0 - \mu_1)^\top \Sigma^{-1} (\mu_0 - \mu_1)}$$

| | |
need to be estimated

$$\Psi(x) := \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} \left(\mu_1 - \mu_0\right) > \log T$$

$$\operatorname{Err}(\Psi) = \mathbb{P}(\Psi(X) > 0 \& \mathbb{P}_0 \operatorname{true}) + \mathbb{P}(\Psi(X) \le 0 \& \mathbb{P}_1 \operatorname{true})$$
$$= \mathbb{P}(\Psi(X) > 0 \mid \mathbb{P}_0) \cdot \mathbb{P}(\mathbb{P}_0) + \mathbb{P}(\Psi(X) \le 0 \mid \mathbb{P}_1) \cdot \mathbb{P}(\mathbb{P}_1)$$
$$= \frac{1}{2} \mathbb{P}(\Psi(X) > 0 \mid \mathbb{P}_0) + \frac{1}{2} \mathbb{P}(\Psi(X) \le 0 \mid \mathbb{P}_1)$$

(using Gaussianity and manipulating...)

$$= \Phi\left(-\frac{\gamma}{2}\right) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-\gamma/2} e^{-t^2/2} dt$$

classical error expression

$$\gamma = \sqrt{(\mu_0 - \mu_1)^\top \Sigma^{-1} (\mu_0 - \mu_1)}$$

| | |
need to be estimated

 n_0 and n_1 samples

$$\Psi(x) := \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} \left(\mu_1 - \mu_0\right) > \log T$$

$$\operatorname{Err}(\Psi) = \mathbb{P}(\Psi(X) > 0 \& \mathbb{P}_0 \operatorname{true}) + \mathbb{P}(\Psi(X) \le 0 \& \mathbb{P}_1 \operatorname{true})$$
$$= \mathbb{P}(\Psi(X) > 0 \mid \mathbb{P}_0) \cdot \mathbb{P}(\mathbb{P}_0) + \mathbb{P}(\Psi(X) \le 0 \mid \mathbb{P}_1) \cdot \mathbb{P}(\mathbb{P}_1)$$
$$= \frac{1}{2} \mathbb{P}(\Psi(X) > 0 \mid \mathbb{P}_0) + \frac{1}{2} \mathbb{P}(\Psi(X) \le 0 \mid \mathbb{P}_1)$$

(using Gaussianity and manipulating...)

$$= \Phi\left(-\frac{\gamma}{2}\right) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-\gamma/2} e^{-t^2/2} dt$$

classical error expression

$$\begin{split} \gamma = \sqrt{(\mu_0 - \mu_1)^\top \Sigma^{-1} (\mu_0 - \mu_1)} \\ \big| \quad \big| \quad \big| \\ \text{need to be estimated} \end{split}$$

 n_0 and n_1 samples

<u>High-dimensional regime</u>: n_0 and n_1 same order as d

$$\Psi(x) = \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} (\mu_1 - \mu_0)$$

$$\gamma = \sqrt{(\mu_0 - \mu_1)^\top \Sigma^{-1} (\mu_0 - \mu_1)} \qquad \text{Err}(\Psi) = \Phi\left(-\frac{\gamma}{2}\right)$$

$$\Psi(x) = \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} (\mu_1 - \mu_0)$$

$$\gamma = \sqrt{(\mu_0 - \mu_1)^\top \Sigma^{-1} (\mu_0 - \mu_1)} \qquad \text{Err}(\Psi) = \Phi\left(-\frac{\gamma}{2}\right)$$

Unbiased estimators:

$$\Psi(x) = \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} (\mu_1 - \mu_0)$$

$$\gamma = \sqrt{(\mu_0 - \mu_1)^\top \Sigma^{-1} (\mu_0 - \mu_1)} \qquad \text{Err}(\Psi) = \Phi\left(-\frac{\gamma}{2}\right)$$

Unbiased estimators:

$$\widehat{\mu}_0 := \frac{1}{n_0} \sum_{i=1}^{n_0} x_i$$

$$\widehat{\mu}_1 := \frac{1}{n_1} \sum_{i=1}^{n_1} y_i$$

$$\Psi(x) = \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} (\mu_1 - \mu_0)$$

$$\gamma = \sqrt{(\mu_0 - \mu_1)^\top \Sigma^{-1} (\mu_0 - \mu_1)} \qquad \text{Err}(\Psi) = \Phi\left(-\frac{\gamma}{2}\right)$$

Unbiased estimators:

$$\widehat{\mu}_0 := \frac{1}{n_0} \sum_{i=1}^{n_0} x_i \qquad \qquad \widehat{\mu}_1 := \frac{1}{n_1} \sum_{i=1}^{n_1} y_i$$

$$\widehat{\Sigma} := \frac{1}{n_0 - 1} \sum_{i=1}^{n_0} (x_i - \widehat{\mu}_0) (x_i - \widehat{\mu}_0)^\top + \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (y_i - \widehat{\mu}_1) (y_i - \widehat{\mu}_1)^\top$$

$$\Psi(x) = \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} (\mu_1 - \mu_0)$$
$$\gamma = \sqrt{(\mu_0 - \mu_1)^\top \Sigma^{-1} (\mu_0 - \mu_1)} \qquad \text{Err}(\Psi) = \Phi\left(-\frac{\gamma}{2}\right)$$

Unbiased estimators:

$$\widehat{\mu}_0 := \frac{1}{n_0} \sum_{i=1}^{n_0} x_i$$
 $\widehat{\mu}_1 := \frac{1}{n_1} \sum_{i=1}^{n_1} y_i$

$$\widehat{\Sigma} := \frac{1}{n_0 - 1} \sum_{i=1}^{n_0} (x_i - \widehat{\mu}_0) (x_i - \widehat{\mu}_0)^\top + \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (y_i - \widehat{\mu}_1) (y_i - \widehat{\mu}_1)^\top$$

Plug estimators into log-likelihood ratio:

$$\Psi(x) = \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} (\mu_1 - \mu_0)$$

$$\gamma = \sqrt{(\mu_0 - \mu_1)^\top \Sigma^{-1} (\mu_0 - \mu_1)} \qquad \text{Err}(\Psi) = \Phi\left(-\frac{\gamma}{2}\right)$$

Unbiased estimators:

$$\widehat{\mu}_0 := \frac{1}{n_0} \sum_{i=1}^{n_0} x_i \qquad \qquad \widehat{\mu}_1 := \frac{1}{n_1} \sum_{i=1}^{n_1} y_i$$

$$\widehat{\Sigma} := \frac{1}{n_0 - 1} \sum_{i=1}^{n_0} (x_i - \widehat{\mu}_0) (x_i - \widehat{\mu}_0)^\top + \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (y_i - \widehat{\mu}_1) (y_i - \widehat{\mu}_1)^\top$$

Plug estimators into log-likelihood ratio:

$$\widehat{\Psi}(x) := \left(x - \frac{\widehat{\mu}_0 + \widehat{\mu}_1}{2}\right)^\top \widehat{\Sigma}^{-1} \left(\widehat{\mu}_1 - \widehat{\mu}_0\right)$$

$$\Psi(x) = \left(x - \frac{\mu_0 + \mu_1}{2}\right)^\top \Sigma^{-1} (\mu_1 - \mu_0)$$

$$\gamma = \sqrt{(\mu_0 - \mu_1)^\top \Sigma^{-1} (\mu_0 - \mu_1)} \qquad \text{Err}(\Psi) = \Phi\left(-\frac{\gamma}{2}\right)$$

Unbiased estimators:

$$\widehat{\mu}_0 := \frac{1}{n_0} \sum_{i=1}^{n_0} x_i \qquad \qquad \widehat{\mu}_1 := \frac{1}{n_1} \sum_{i=1}^{n_1} y_i$$

$$\widehat{\Sigma} := \frac{1}{n_0 - 1} \sum_{i=1}^{n_0} (x_i - \widehat{\mu}_0) (x_i - \widehat{\mu}_0)^\top + \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (y_i - \widehat{\mu}_1) (y_i - \widehat{\mu}_1)^\top$$

Plug estimators into log-likelihood ratio:

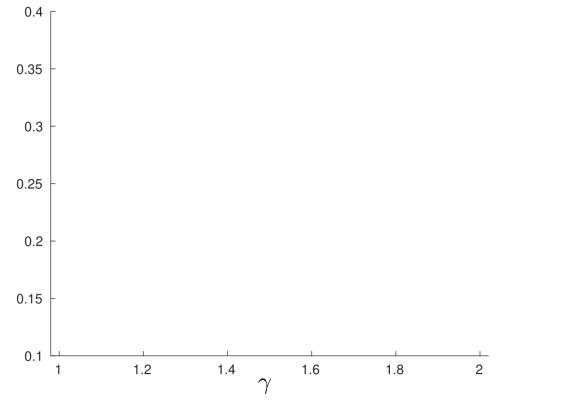
$$\widehat{\Psi}(x) := \left(x - \frac{\widehat{\mu}_0 + \widehat{\mu}_1}{2}\right)^\top \widehat{\Sigma}^{-1} \left(\widehat{\mu}_1 - \widehat{\mu}_0\right)$$

Fisher linear discriminant function

Assume $\mathbb{P}(\mathbb{P}_0) = \mathbb{P}(\mathbb{P}_1)$ $\Sigma = I_d$ d = 400 $n_0 = n_1 = 800$

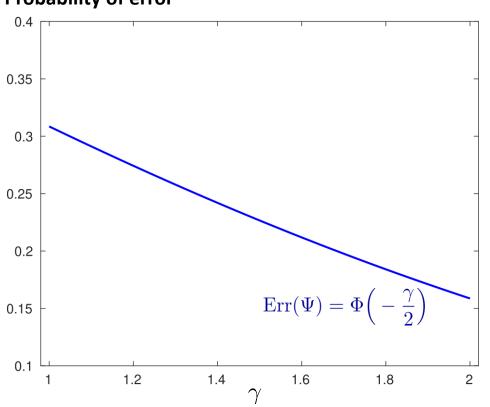
Assume $\mathbb{P}(\mathbb{P}_0) = \mathbb{P}(\mathbb{P}_1)$ $\Sigma = I_d$ d = 400 $n_0 = n_1 = 800$

Vary $\gamma = \|\mu_0 - \mu_1\|_2$ between 1 and 2

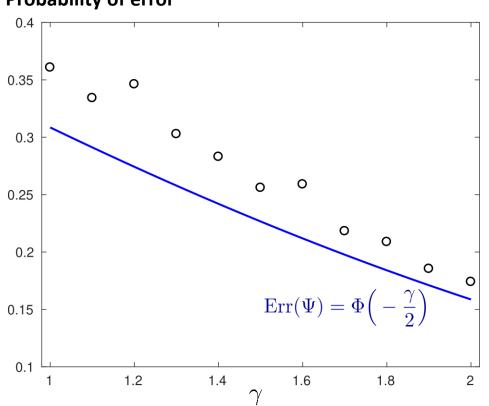

Assume $\mathbb{P}(\mathbb{P}_0) = \mathbb{P}(\mathbb{P}_1)$ $\Sigma = I_d$ d = 400 $n_0 = n_1 = 800$

Vary $\gamma = \|\mu_0 - \mu_1\|_2$ between 1 and 2 Test with $\widehat{\Psi}(x)$ over 5000 random trials

Assume $\mathbb{P}(\mathbb{P}_0) = \mathbb{P}(\mathbb{P}_1)$ $\Sigma = I_d$ d = 400 $n_0 = n_1 = 800$

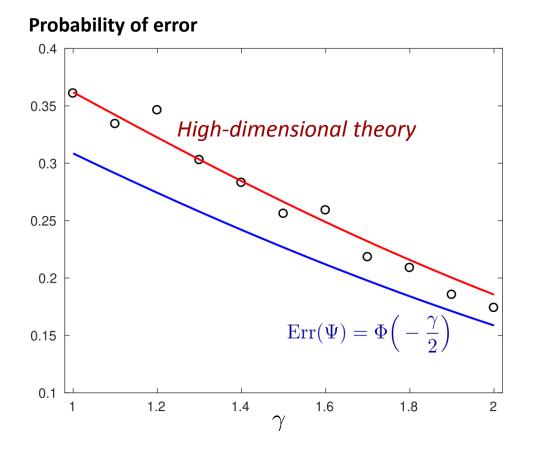

Vary $\gamma = \|\mu_0 - \mu_1\|_2$ between 1 and 2 Test with $\widehat{\Psi}(x)$ over 5000 random trials

Assume $\mathbb{P}(\mathbb{P}_0) = \mathbb{P}(\mathbb{P}_1)$ $\Sigma = I_d$ d = 400 $n_0 = n_1 = 800$


Vary $\gamma = \|\mu_0 - \mu_1\|_2$ between 1 and 2 Test with $\widehat{\Psi}(x)$ over 5000 random trials

Assume $\mathbb{P}(\mathbb{P}_0) = \mathbb{P}(\mathbb{P}_1)$ $\Sigma = I_d$ d = 400 $n_0 = n_1 = 800$

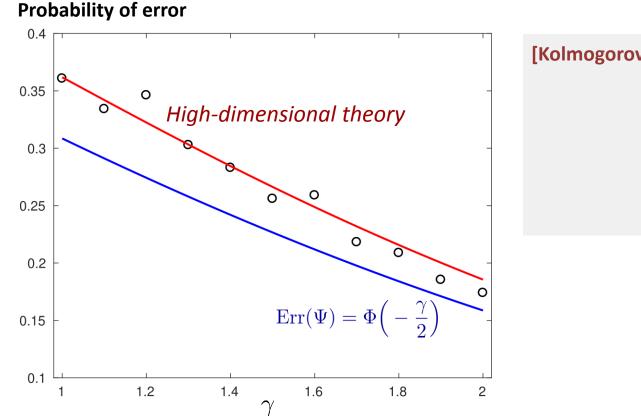
Vary $\gamma = \|\mu_0 - \mu_1\|_2$ between 1 and 2 Test with $\widehat{\Psi}(x)$ over 5000 random trials



Assume $\mathbb{P}(\mathbb{P}_0) = \mathbb{P}(\mathbb{P}_1)$ $\Sigma = I_d$ d = 400 $n_0 = n_1 = 800$

Vary $\gamma = \|\mu_0 - \mu_1\|_2$ between 1 and 2

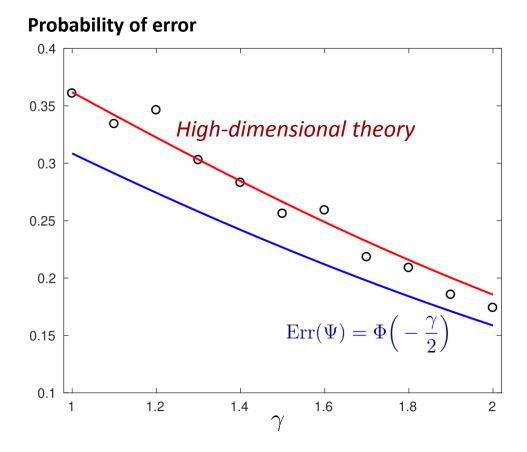
Test with $\widehat{\Psi}(x)$ over 5000 random trials



Assume $\mathbb{P}(\mathbb{P}_0) = \mathbb{P}(\mathbb{P}_1)$ $\Sigma = I_d$ d = 400 $n_0 = n_1 = 800$

Vary $\gamma = \|\mu_0 - \mu_1\|_2$ between 1 and 2

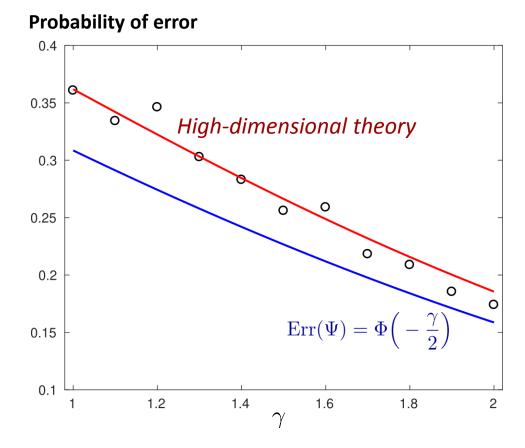
Test with $\widehat{\Psi}(x)$ over 5000 random trials



[Kolmogorov]		

Assume $\mathbb{P}(\mathbb{P}_0) = \mathbb{P}(\mathbb{P}_1)$ $\Sigma = I_d$ d = 400 $n_0 = n_1 = 800$

Vary $\gamma = \|\mu_0 - \mu_1\|_2$ between 1 and 2 Test with $\widehat{\Psi}(x)$ over 5000 random trials



[Kolmogorov]	
$(d, n_0, n_1) \to \infty$	$\frac{d}{n_0}, \ \frac{d}{n_1} \to \alpha$

Assume $\mathbb{P}(\mathbb{P}_0) = \mathbb{P}(\mathbb{P}_1)$ $\Sigma = I_d$ d = 400 $n_0 = n_1 = 800$

Vary $\gamma = \|\mu_0 - \mu_1\|_2$ between 1 and 2 Test with $\widehat{\Psi}(x)$ over 5000 random trials

[Kolmogorov]	
$(d, n_0, n_1) \to \infty$	$\frac{d}{n_0}, \ \frac{d}{n_1} \to \alpha$
$\operatorname{Err}(\widehat{\Psi}) \xrightarrow{\operatorname{prob.}} \Phi\Big(-$	$\frac{\gamma^2}{2\sqrt{\gamma^2 + 2\alpha}}\Big)$

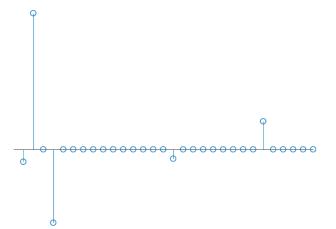
What can help in high-dimensions?

What can help in high-dimensions?

Structure

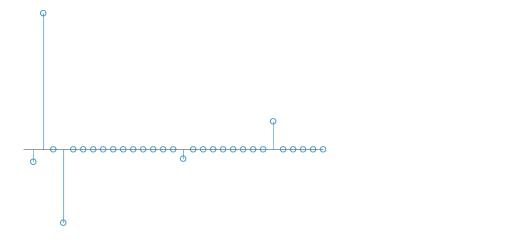
What can help in high-dimensions?

Structure e.g., <u>sparsity</u>


Structure e.g., <u>sparsity</u>

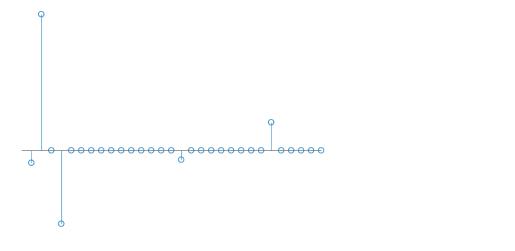
Suppose μ_0 and μ_1 are sparse: only have $s \ll d$ nonzero entries

Structure e.g., <u>sparsity</u>


Suppose μ_0 and μ_1 are sparse: only have $s \ll d$ nonzero entries

Structure e.g., <u>sparsity</u>

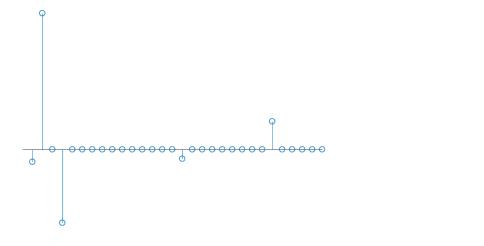
Suppose μ_0 and μ_1 are sparse: only have $s \ll d$ nonzero entries



Procedure: *hard-threshold* entries of estimates

Structure e.g., <u>sparsity</u>

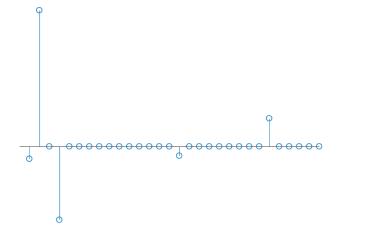
Suppose μ_0 and μ_1 are sparse: only have $s \ll d$ nonzero entries


Procedure: *hard-threshold* entries of estimates

$$\widehat{\mu}_0' = \frac{1}{n_0} \sum_{i=1}^{n_0} x_i$$

Structure e.g., <u>sparsity</u>

Suppose μ_0 and μ_1 are sparse: only have $s \ll d$ nonzero entries

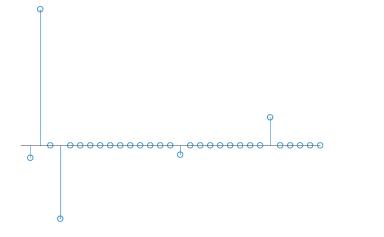

Procedure: *hard-threshold* entries of estimates

$$\widehat{\mu}_0' = \frac{1}{n_0} \sum_{i=1}^{n_0} x_i \quad \longrightarrow \quad (\widehat{\mu}_0)_i = H_\lambda \left(\left(\widehat{\mu}_0' \right)_i \right)$$

Structure e.g., <u>sparsity</u>

Suppose μ_0 and μ_1 are sparse: only have $s \ll d$ nonzero entries

Procedure: *hard-threshold* entries of estimates


$$\widehat{\mu}_0' = \frac{1}{n_0} \sum_{i=1}^{n_0} x_i \quad \longrightarrow \quad (\widehat{\mu}_0)_i = H_\lambda \left(\left(\widehat{\mu}_0' \right)_i \right)$$

$$H_{\lambda}(x) := \begin{cases} x & , \text{ if } |x| > \lambda \\ 0 & , \text{ if } |x| \le \lambda \end{cases}$$

Structure e.g., <u>sparsity</u>

Suppose μ_0 and μ_1 are sparse: only have $s \ll d$ nonzero entries

Procedure: *hard-threshold* entries of estimates

$$\widehat{\mu}_0' = \frac{1}{n_0} \sum_{i=1}^{n_0} x_i \quad \longrightarrow \quad (\widehat{\mu}_0)_i = H_\lambda \left(\left(\widehat{\mu}_0' \right)_i \right)$$

(same for μ_1)

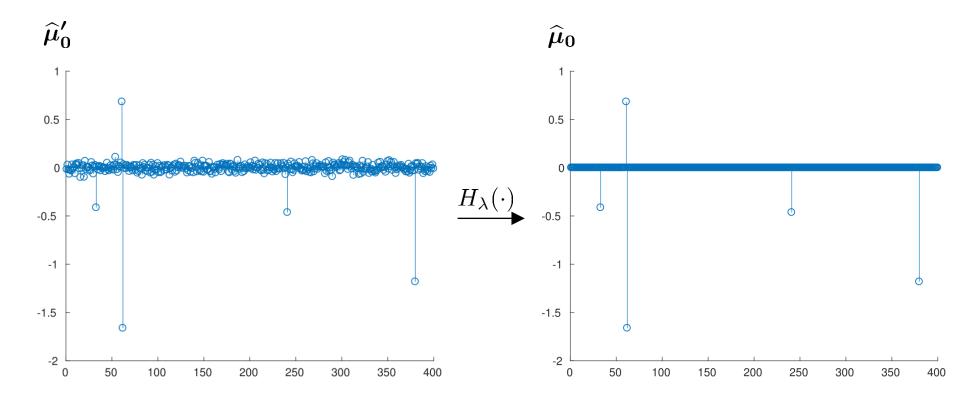
$$H_{\lambda}(x) := \begin{cases} x & , \text{ if } |x| > \lambda \\ 0 & , \text{ if } |x| \le \lambda \end{cases}$$

$$H_{\lambda}(x) := \begin{cases} x & , \text{ if } |x| > \lambda \\ 0 & , \text{ if } |x| \le \lambda \end{cases}$$


$$H_{\lambda}(x) := \left\{ \begin{array}{ll} x & , \ \mathrm{if} \ |x| > \lambda \\ 0 & , \ \mathrm{if} \ |x| \leq \lambda \end{array} \right.$$

$$d = 400$$
 $n = 800$ $s = 5$ $\lambda = \sqrt{\frac{2\log d}{n}} = 0.1224$

$$H_{\lambda}(x) := \begin{cases} x & , \text{ if } |x| > \lambda \\ 0 & , \text{ if } |x| \le \lambda \end{cases}$$


$$d = 400$$
 $n = 800$ $s = 5$ $\lambda = \sqrt{\frac{2\log d}{n}} = 0.1224$

$$H_{\lambda}(x) := \begin{cases} x & , \text{ if } |x| > \lambda \\ 0 & , \text{ if } |x| \le \lambda \end{cases}$$

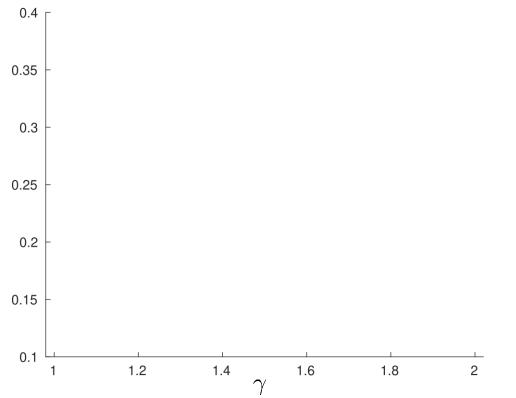
$$d = 400$$
 $n = 800$ $s = 5$ $\lambda = \sqrt{\frac{2\log d}{n}} = 0.1224$

Assume $\mathbb{P}(\mathbb{P}_0) = \mathbb{P}(\mathbb{P}_1)$ $\Sigma = I_d$ d = 400 $n_0 = n_1 = 800$

Vary $\gamma = \|\mu_0 - \mu_1\|_2$ between 1 and 2

Assume $\mathbb{P}(\mathbb{P}_0) = \mathbb{P}(\mathbb{P}_1)$ $\Sigma = I_d$ d = 400 $n_0 = n_1 = 800$

Vary $\gamma = \|\mu_0 - \mu_1\|_2$ between 1 and 2

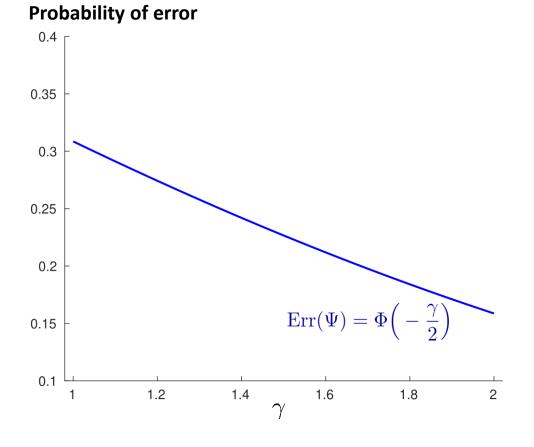

$$s = 5$$
 $\lambda = \sqrt{\frac{2\log d}{n}}$

 $\mathbb{P}(\mathbb{P}_0) = \mathbb{P}(\mathbb{P}_1) \qquad \Sigma = I_d \qquad d = 400 \qquad n_0 = n_1 = 800$ Assume

Vary $\gamma = \|\mu_0 - \mu_1\|_2$ between 1 and 2

Probability of error

$$s = 5$$
 $\lambda = \sqrt{\frac{2\log d}{n}}$

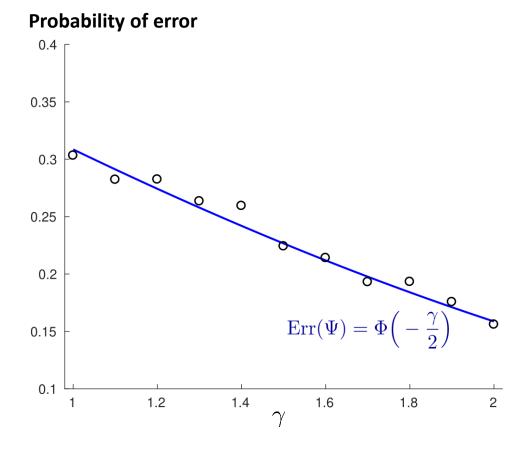


Assume $\mathbb{P}(\mathbb{P}_0) = \mathbb{P}(\mathbb{P}_1)$ $\Sigma = I_d$

Vary $\gamma = \|\mu_0 - \mu_1\|_2$ between 1 and 2

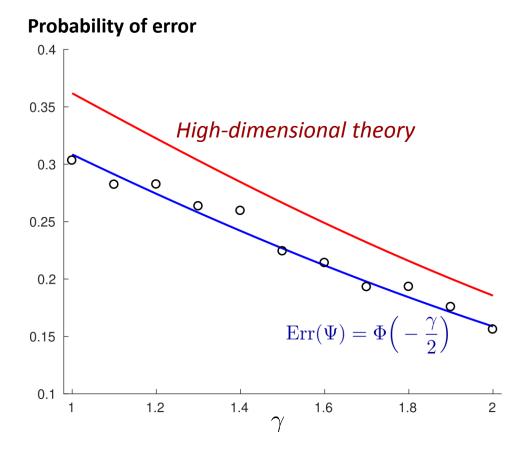
 $d = 400 \qquad \qquad n_0 = n_1 = 800$

$$s = 5$$
 $\lambda = \sqrt{\frac{2\log d}{n}}$



Assume $\mathbb{P}(\mathbb{P}_0) = \mathbb{P}(\mathbb{P}_1)$ $\Sigma = I_d$ d = 400 $n_0 = n_1 = 800$

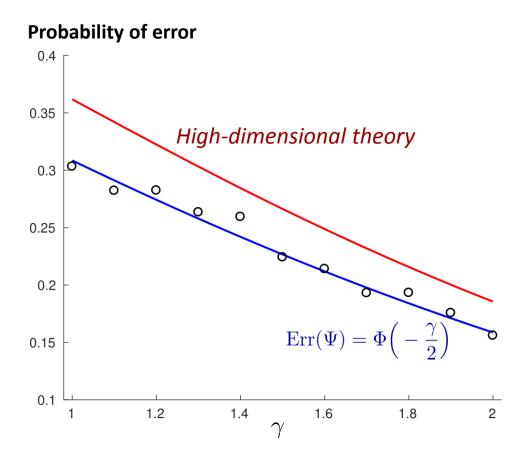
Vary $\gamma = \|\mu_0 - \mu_1\|_2$ between 1 and 2


$$s = 5$$
 $\lambda = \sqrt{\frac{2\log d}{n}}$

Assume $\mathbb{P}(\mathbb{P}_0) = \mathbb{P}(\mathbb{P}_1)$ $\Sigma = I_d$ d = 400 $n_0 = n_1 = 800$

Vary $\gamma = \|\mu_0 - \mu_1\|_2$ between 1 and 2

$$s = 5$$
 $\lambda = \sqrt{\frac{2\log d}{n}}$


Assume $\mathbb{P}(\mathbb{P}_0) = \mathbb{P}(\mathbb{P}_1)$ $\Sigma = I_d$

Vary $\gamma = \|\mu_0 - \mu_1\|_2$ between 1 and 2

 $d = 400 \qquad \qquad n_0 = n_1 = 800$

Test with $\widehat{\Psi}(x)$ over 5000 random trials

$$s = 5$$
 $\lambda = \sqrt{\frac{2\log d}{n}}$

Sparsity makes problem low-dimensional

Outline

Motivation: Hypothesis Testing in High-Dimensions

Introduction to LASSO and other sparsity problems

Gaussian graphical model selection

Matrix completion

A Crime Problem

93/40

A Crime Problem

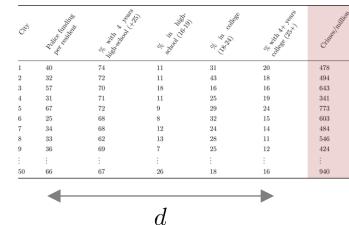
ë ^{xa}	2011 contraction of the state o	ele trigger and the second and the s	of the state of th	540 18 20 000 18 2000 18 2000	do colores x x x x x x x x x x x x x x x x x x x	Cines hillion
1	40	74	11	31	20	478
2	32	72	11	43	18	494
3	57	70	18	16	16	643
4	31	71	11	25	19	341
5	67	72	9	29	24	773
6	25	68	8	32	15	603
7	34	68	12	24	14	484
8	33	62	13	28	11	546
9	36	69	7	25	12	424
÷	:	:	:	÷	:	÷
50	66	67	26	18	16	940

A Crime Problem

S	2010 tostalines 10	ele itilities and a second a s	10000000000000000000000000000000000000	61. 18 . 19. 19. 19. 19. 19. 19. 19. 19. 19. 1	Solo of the solo o	Crittee Initiat
1	40	74	11	31	20	478
2	32	72	11	43	18	494
3	57	70	18	16	16	643
4	31	71	11	25	19	341
5	67	72	9	29	24	773
6	25	68	8	32	15	603
7	34	68	12	24	14	484
8	33	62	13	28	11	546
9	36	69	7	25	12	424
:	:	÷	÷	:	÷	÷
50	66	67	26	18	16	940

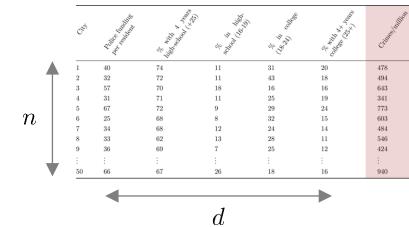
<u>Goal:</u> Predict *# crimes / million* based on the other indicators

G.	Q ^{io} lo ^{to} to ^{to}	A light of the second s	4 hoo ho ho	20 11 12 11 12 11 12 12 12 12 12 12 12 12	A COLOR	Cine hillion
1	40	74	11	31	20	478
2	32	72	11	43	18	494
3	57	70	18	16	16	643
4	31	71	11	25	19	341
5	67	72	9	29	24	773
6	25	68	8	32	15	603
7	34	68	12	24	14	484
8	33	62	13	28	11	546
9	36	69	7	25	12	424
:			:	:	:	:
50	66	67	26	18	16	940


Linear/affine model

ic.	Q ^O CO ^{CO} CO	ale high and high ale	1 Contraction of the second se	64 (1) 20 (1) 40 10 (2) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	and the second s	Crime willion
1	40	74	11	31	20	478
2	32	72	11	43	18	494
3	57	70	18	16	16	643
4	31	71	11	25	19	341
5	67	72	9	29	24	773
6	25	68	8	32	15	603
7	34	68	12	24	14	484
8	33	62	13	28	11	546
9	36	69	7	25	12	424
:	:			:		:
50	66	67	26	18	16	940

Linear/affine model


d=5 predictors

Linear/affine model

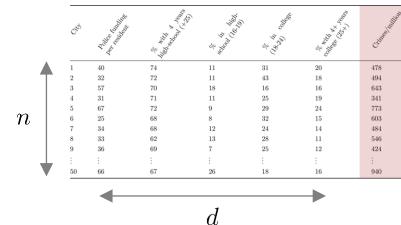
- d=5 predictors
- n=50 samples



Linear/affine model

d=5 predictors

$$y_i \simeq x_0 + \sum_{j=1}^d a_{ij} x_j \quad i = 1, \dots, n$$


Linear/affine model

d=5 predictors

n=50 samples

$$y_i \simeq x_0 + \sum_{j=1}^d a_{ij} x_j \quad i = 1, \dots, n$$

response variable (crime rate)

Linear/affine model

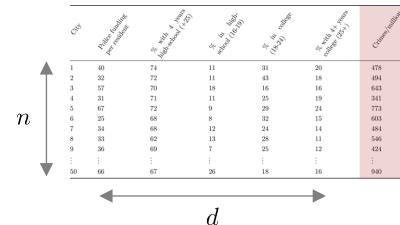
d=5 predictors

$$y_i \simeq x_0 + \sum_{j=1}^d a_{ij} x_j \qquad i = 1, \dots, n$$

$$| offset$$

$$response variable$$

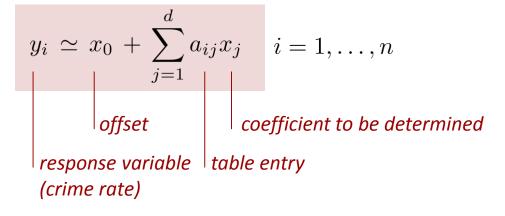
$$(crime rate)$$

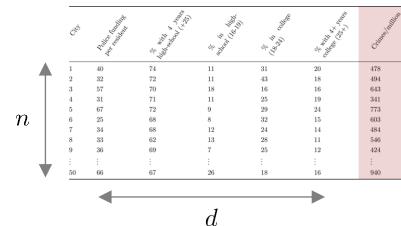


Linear/affine model

d=5 predictors

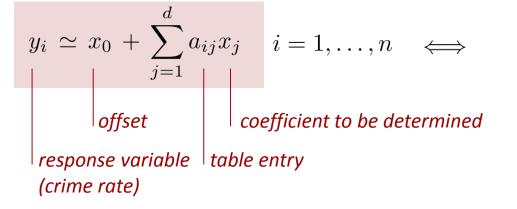
$$y_{i} \simeq x_{0} + \sum_{j=1}^{d} a_{ij}x_{j} \qquad i = 1, \dots, n$$

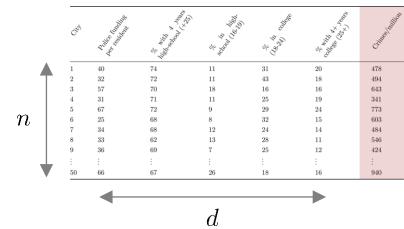

$$| offset \\ response variable \\ (crime rate) \qquad table entry$$



Linear/affine model

d=5 predictors

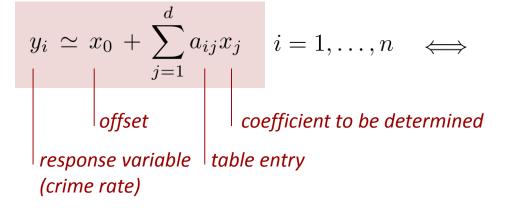


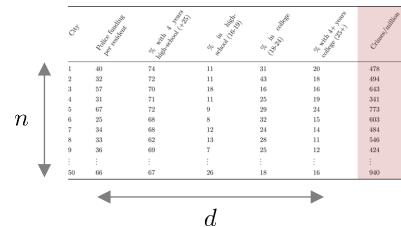


Linear/affine model

d = 5 predictors

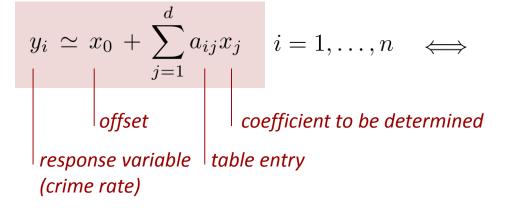
n = 50 samples

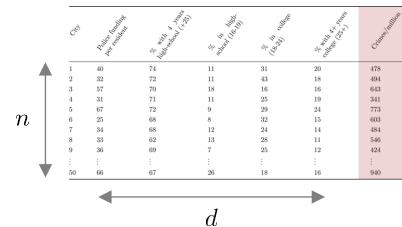


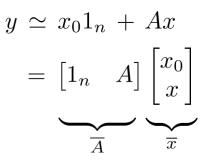

 $y \simeq x_0 1_n + Ax$

Linear/affine model

d = 5 predictors

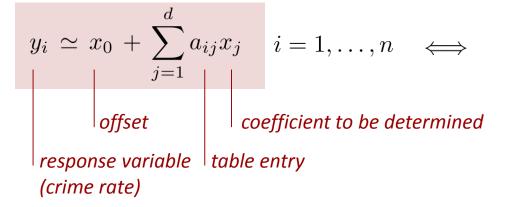


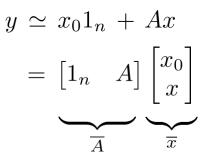

y	\simeq	$x_0 1_n$	+	Ax
	=	$\left[1_n\right]$	A]	$\begin{bmatrix} x_0 \\ x \end{bmatrix}$



Linear/affine model

d = 5 predictors



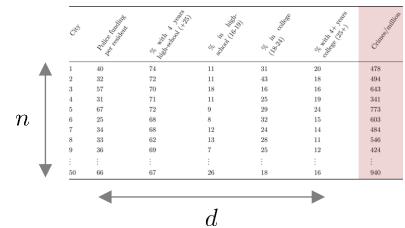

Linear/affine model

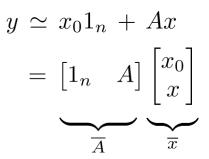
d = 5 predictors

n = 50 samples

nd

Find coefficients:


Linear/affine model


d = 5 predictors

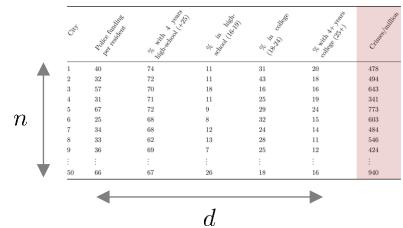
n=50 samples

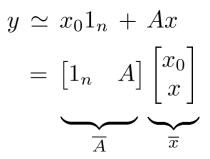
$$y_{i} \simeq x_{0} + \sum_{j=1}^{d} a_{ij}x_{j} \qquad i = 1, \dots, n \quad \iff$$

$$| offset | coefficient to be determined table entry (crime rate)$$

Find coefficients: *least-squares*

$$\underset{\overline{x}}{\operatorname{minimize}} \quad \frac{1}{2} \left\| y - \overline{A} \overline{x} \right\|_2^2$$


Linear/affine model

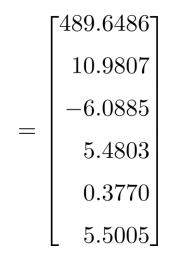

d = 5 predictors

n=50 samples

$$y_{i} \simeq x_{0} + \sum_{j=1}^{d} a_{ij}x_{j} \qquad i = 1, \dots, n \quad \iff$$

$$| offset | coefficient to be determined table entry (crime rate)$$

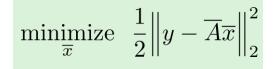
Find coefficients: *least-squares*


$$\underset{\overline{x}}{\operatorname{minimize}} \quad \frac{1}{2} \left\| y - \overline{A} \overline{x} \right\|_2^2$$

$$\overline{x}_{\rm LS}^{\star} = \left(\overline{A}^{\top}\overline{A}\right)^{-1}\overline{A}\,y$$

$$\underset{\overline{x}}{\operatorname{minimize}} \quad \frac{1}{2} \left\| y - \overline{A} \overline{x} \right\|_2^2$$

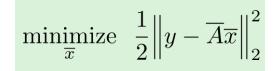
$$\overline{x}_{\rm LS}^{\star} = \left(\overline{A}^{\top}\overline{A}\right)^{-1}\overline{A}\,y$$



$$\underset{\overline{x}}{\operatorname{minimize}} \quad \frac{1}{2} \left\| y - \overline{A} \overline{x} \right\|_2^2$$

$$\overline{x}_{\rm LS}^{\star} = \left(\overline{A}^{\top}\overline{A}\right)^{-1}\overline{A}\,y$$

	489.6486]	offset
	10.9807	
_	-6.0885	
=	5.4803	
	0.3770	
	5.5005	



$\overline{x}_{\rm LS}^{\star} = \left(\overline{A}^{\top}\overline{A}\right)^{-1}\overline{A}\,y$

	489.6486]	offset
	10.9807	police funding / resident (\$/year)
	-6.0885	
=	5.4803	
	0.3770	
	5.5005	

$\overline{x}_{\rm LS}^{\star} = \left(\overline{A}^{\top}\overline{A}\right)^{-1}\overline{A}\,y$

	[489.6486]	offset
	10.9807	police funding / resident (\$/year)
	-6.0885	% of 25+ year-olds with 4+ years of high-school
=	5.4803	
	0.3770	
	5.5005	

$$\underset{\overline{x}}{\operatorname{minimize}} \quad \frac{1}{2} \left\| y - \overline{A} \overline{x} \right\|_2^2$$

$$\overline{x}_{\rm LS}^{\star} = \left(\overline{A}^{\top}\overline{A}\right)^{-1}\overline{A}\,y$$

	489.6486	offset
	10.9807	police funding / resident (\$/year)
	-6.0885	% of 25+ year-olds with 4+ years of high-school
=	5.4803	% of 16-19 year-olds not in high-school
	0.3770	% of 18-24 year-olds in college
	5.5005	% of 25+ year-olds with 4+ years of college

$$\underset{\overline{x}}{\operatorname{minimize}} \quad \frac{1}{2} \left\| y - \overline{A} \overline{x} \right\|_2^2$$

$\overline{x}_{\rm LS}^{\star} = \left(\overline{A}^{\top}\overline{A}\right)^{-1}\overline{A}\,y$

	[489.6486]	offset	
_	10.9807	police funding / resident (\$/year)	
	-6.0885	% of 25+ year-olds with 4+ years of high-school	
	5.4803	% of 16-19 year-olds not in high-school	
	0.3770	% of 18-24 year-olds in college	
	5.5005	% of 25+ year-olds with 4+ years of college	

Problems with least-squares

$$\underset{\overline{x}}{\operatorname{minimize}} \quad \frac{1}{2} \left\| y - \overline{A} \overline{x} \right\|_2^2$$

$$\overline{x}_{\rm LS}^{\star} = \left(\overline{A}^{\top}\overline{A}\right)^{-1}\overline{A}\,y$$

	489.6486	offset	
	10.9807	police funding / resident (\$/year)	
	-6.0885	% of 25+ year-olds with 4+ years of high-school	
	5.4803	% of 16-19 year-olds not in high-school	
	0.3770	% of 18-24 year-olds in college	
	5.5005	% of 25+ year-olds with 4+ years of college	

Problems with least-squares

little interpretability

$$\underset{\overline{x}}{\operatorname{minimize}} \quad \frac{1}{2} \left\| y - \overline{A} \overline{x} \right\|_2^2$$

$$\overline{x}_{\rm LS}^{\star} = \left(\overline{A}^{\top}\overline{A}\right)^{-1}\overline{A}\,y$$

	489.6486	offset		
	10.9807	police funding / resident (\$/year)		
	-6.0885	% of 25+ year-olds with 4+ years of high-school		
	5.4803	% of 16-19 year-olds not in high-school		
	0.3770	% of 18-24 year-olds in college		
	5.5005	% of 25+ year-olds with 4+ years of college		

Problems with least-squares

little interpretability

all coefficients contribute to prediction

$$\underset{\overline{x}}{\operatorname{minimize}} \quad \frac{1}{2} \left\| y - \overline{A} \overline{x} \right\|_2^2$$

$$\overline{x}_{\rm LS}^{\star} = \left(\overline{A}^{\top}\overline{A}\right)^{-1}\overline{A}\,y$$

	489.6486	offset
	10.9807	police funding / resident (\$/year)
	-6.0885	% of 25+ year-olds with 4+ years of high-school
—	5.4803	% of 16-19 year-olds not in high-school
	0.3770	% of 18-24 year-olds in college
	5.5005	% of 25+ year-olds with 4+ years of college

Problems with least-squares

little interpretability

all coefficients contribute to prediction

small bias, large variance

121/40

Linear Regression

$$\underset{\overline{x}}{\operatorname{minimize}} \quad \frac{1}{2} \left\| y - \overline{A} \overline{x} \right\|_2^2$$

$$\overline{x}_{\rm LS}^{\star} = \left(\overline{A}^{\top}\overline{A}\right)^{-1}\overline{A}\,y$$

	489.6486]	offset		
	10.9807	police funding / resident (\$/year)		
	-6.0885	% of 25+ year-olds with 4+ years of high-schoo		
	5.4803	% of 16-19 year-olds not in high-school		
	0.3770	% of 18-24 year-olds in college		
	5.5005	% of 25+ year-olds with 4+ years of college		

Problems with least-squares

little interpretabilityall coefficients contribute to predictionsmall bias, large variancezeroing coefficients can improve mean-squared error

least absolute selection and shrikange operator

least absolute selection and shrikange operator

minimize $\frac{1}{2n} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{1}$

least absolute selection and shrikange operator

least absolute selection and shrikange operator

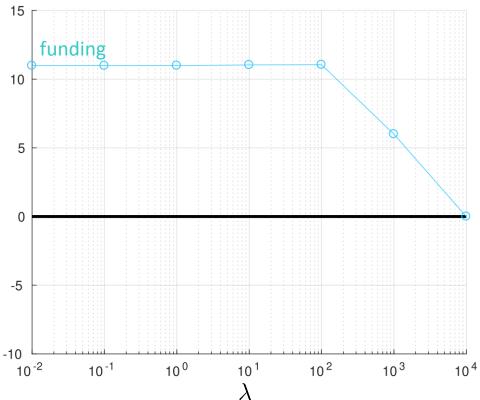
$$\begin{array}{c|c} \underset{x}{\text{minimize}} & \frac{1}{2n} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{1} - \underbrace{\text{L1-norm}}_{\text{regularization parameter}} \geq 0 \end{array}$$

least absolute selection and shrikange operator

$$\begin{array}{c|c} \underset{x}{\text{minimize}} & \frac{1}{2n} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{1} - \dots \\ & & \|x\|_{1} = |x_{1}| + |x_{2}| + \dots + |x_{d}| \\ & & \|x\|_{1} = |x_{1}| + |x_{2}| + \dots + |x_{d}| \\ & & \|x\|_{1} = |x_{1}| + |x_{2}| + \dots + |x_{d}| \\ & & \|x\|_{1} = |x_{1}| + |x_{2}| + \dots + |x_{d}| \\ & & \|x\|_{1} = |x_{1}| + |x_{2}| + \dots + |x_{d}| \\ & & \|x\|_{1} = |x_{1}| + |x_{2}| + \dots + |x_{d}| \\ & & \|x\|_{1} = |x_{1}| + |x_{2}| + \dots + |x_{d}| \\ & & \|x\|_{1} = |x_{1}| + |x_{2}| + \dots + |x_{d}| \\ & & \|x\|_{1} = |x_{1}| + |x_{2}| + \dots + |x_{d}| \\ & \|x\|_{1} = |x_{1}| + |x_{2}| + \dots + |x_{d}| \\ & \|x\|_{1} = |x_{1}| + |x_{2}| + \dots + |x_{d}| \\ & \|x\|_{1} = |x_{1}| + \|x_{2}\|_{1} + \dots + \|x_{d}\|_{1} \\ & \|x\|_{1} = |x_{1}| + \|x_{2}\|_{1} + \dots + \|x_{d}\|_{1} \\ & \|x\|_{1} = \|x_{1}\|_{1} + \|x_{2}\|_{1} + \dots + \|x_{d}\|_{1} \\ & \|x\|_{1} = \|x_{1}\|_{1} + \|x_{2}\|_{1} + \dots + \|x_{d}\|_{1} \\ & \|x\|_{1} = \|x_{1}\|_{1} + \|x_{2}\|_{1} + \dots + \|x_{d}\|_{1} \\ & \|x\|_{1} = \|x_{1}\|_{1} + \|x_{2}\|_{1} + \dots + \|x_{d}\|_{1} \\ & \|x\|_{1} = \|x_{1}\|_{1} + \|x_{2}\|_{1} + \dots + \|x_{d}\|_{1} \\ & \|x\|_{1} = \|x_{1}\|_{1} + \|x_{2}\|_{1} + \dots + \|x_{d}\|_{1} \\ & \|x\|_{1} = \|x\|_{1} + \|x\|_{1} \\ & \|x\|_{1} = \|x\|_{1} + \|x\|_{1} +$$

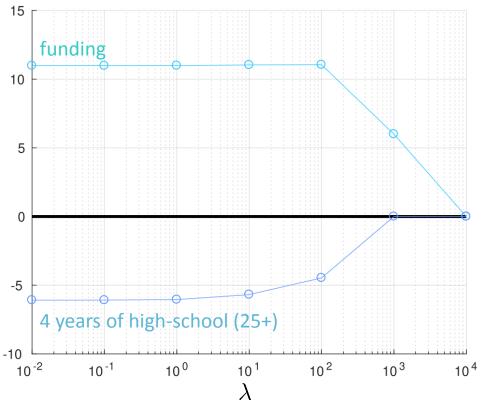
least absolute selection and shrikange operator

$$\begin{array}{cccc} \underset{x}{\text{minimize}} & \frac{1}{2n} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{1} - \dots & \text{L1-norm} & \|x\|_{1} = |x_{1}| + |x_{2}| + \dots + |x_{d}| \\ & & \\ &$$

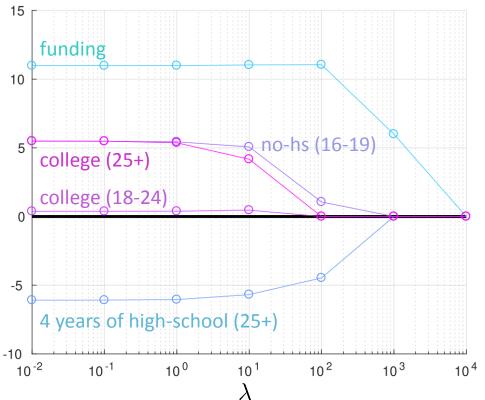

Coefficient value

15 -							
15 _Г							
10							
10 -							
_							
5 -				1 1 1 1 1			
Ŭ							
0							
_							
-5							
-							
ļ							
1							
-10 L			i i i i i i i i i i i i i i i i i i i	1 1 1 1 1 1		iiil i i i i	لنتت
-10 -10 -2			•				
10-2	10	-1 10) ⁰ 1() ¹	10 ²	10 ³	10 ⁴
10	10		, ,,	J	10	10	10
			``				
			/	1			

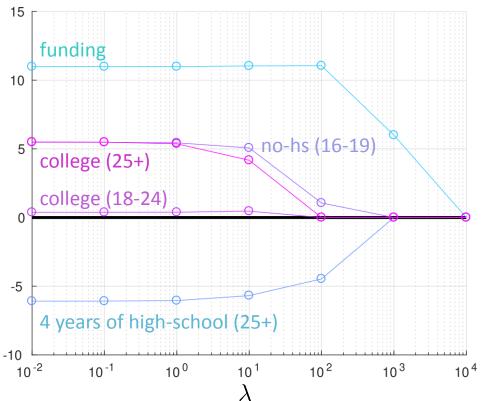
least absolute selection and shrikange operator


Coefficient value

least absolute selection and shrikange operator


Coefficient value

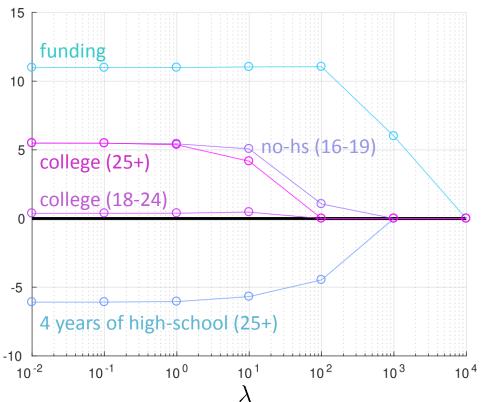
least absolute selection and shrikange operator



least absolute selection and shrikange operator

$$\begin{array}{cccc} \underset{x}{\text{minimize}} & \frac{1}{2n} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{1} - \frac{L1 - norm}{2} \|x\|_{1} = |x_{1}| + |x_{2}| + \dots + |x_{d}| \\ & & \\ &$$

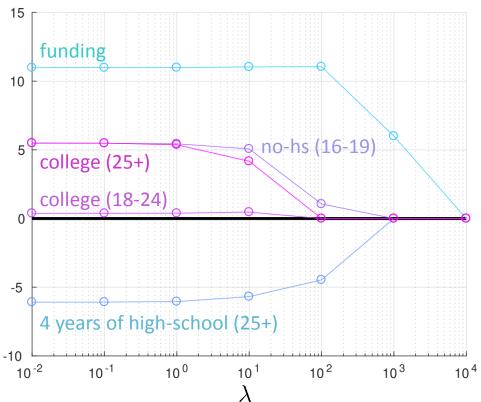
Coefficient value



In reality, we solved ...

least absolute selection and shrikange operator

Coefficient value


In reality, we solved ...

$$\min_{x_0, x} \frac{1}{2n} \|y - x_0 \mathbf{1}_n - Ax\|_2^2 + \lambda \|x\|_1$$

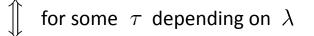
least absolute selection and shrikange operator

Coefficient value

In reality, we solved ...

$$\min_{x_0, x} \frac{1}{2n} \|y - x_0 \mathbf{1}_n - Ax\|_2^2 + \lambda \|x\|_1$$

$$\| \\ \| \\ \text{necessary because } \frac{1}{n} \sum_{i=1}^n y_i \neq 0$$


minimize
$$\frac{1}{2n} \|y - Ax\|_2^2 + \lambda \|x\|_1$$

LASSO (aka Basis Pursuit Denoising)

minimize
$$\frac{1}{2n} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{1}$$

LASSO (aka Basis Pursuit Denoising)

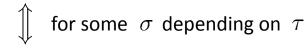
minimize
$$\frac{1}{2n} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{1}$$

LASSO (aka Basis Pursuit Denoising)

$$igfluon$$
 for some $\, au\,$ depending on $\,\lambda\,$

$$\begin{array}{ll} \underset{x}{\text{minimize}} & \left\| y - Ax \right\|_{2}^{2} \\ \text{subject to} & \|x\|_{1} \leq \tau \end{array}$$

Constrained LASSO


minimize
$$\frac{1}{2n} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{1}$$

LASSO (aka Basis Pursuit Denoising)

$$igcap_{1}$$
 for some $\, au\,$ depending on $\,\lambda\,$

$$\begin{array}{ll} \underset{x}{\text{minimize}} & \left\| y - Ax \right\|_{2}^{2} \\ \text{subject to} & \|x\|_{1} \leq \tau \end{array}$$

Constrained LASSO

minimize
$$\frac{1}{2n} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{1}$$

LASSO (aka Basis Pursuit Denoising)

$$igcap_{}$$
 for some $\, au\,$ depending on $\,\lambda$

$$\begin{array}{ll} \underset{x}{\text{minimize}} & \left\| y - Ax \right\|_{2}^{2} \\ \text{subject to} & \|x\|_{1} \leq \tau \end{array}$$

$$\ensuremath{\Uparrow}$$
 for some $\,\sigma\,$ depending on $\,\tau\,$

$$\begin{array}{ll} \underset{x}{\text{minimize}} & \|x\|_{1} \\ \text{subject to} & \left\|y - Ax\right\|_{2} \leq \sigma \end{array}$$

Constrained LASSO

Relaxed Basis Pursuit

minimize
$$\frac{1}{2n} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{1}$$

LASSO (aka Basis Pursuit Denoising)

$$igcap_{}$$
 for some $\, au\,$ depending on $\,\lambda$

$$\begin{array}{ll} \underset{x}{\text{minimize}} & \left\| y - Ax \right\|_{2}^{2} \\ \text{subject to} & \|x\|_{1} \leq \tau \end{array}$$

$$\ensuremath{\Uparrow}$$
 for some $\,\sigma\,$ depending on $\,\tau\,$

$$\begin{array}{ll} \underset{x}{\text{minimize}} & \|x\|_{1} \\ \text{subject to} & \left\|y - Ax\right\|_{2} \leq \sigma \end{array}$$

Constrained LASSO

Relaxed Basis Pursuit

Basis Pursuit when $\sigma = 0$

 $\begin{aligned} \widehat{x} \in & \underset{x}{\operatorname{arg\,min}} & \|x\|_{1} \\ & \text{s.t.} & \|y - Ax\|_{2} \leq \sigma \end{aligned}$

Assume $\sigma = 0$:

$\begin{aligned} \widehat{x} \in & \underset{x}{\operatorname{arg\,min}} & \|x\|_{1} \\ & \text{s.t.} & \|y - Ax\|_{2} \leq \sigma \end{aligned}$

Assume $\sigma = 0$:

y = Ax has solutions

Assume $\sigma = 0$:

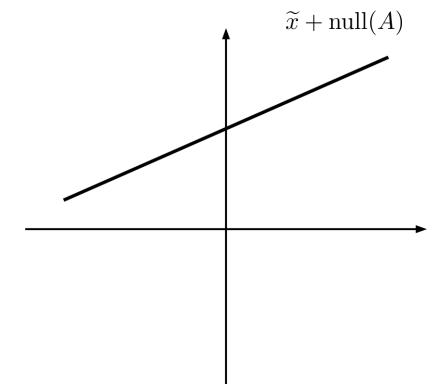
y = Ax has solutions $\widetilde{x} + \operatorname{null}(A)$

$$\widehat{x} \in \underset{x}{\operatorname{arg\,min}} \|x\|_{1} \\ \text{s.t.} \|y - Ax\|_{2} \leq \sigma$$

$$y = Ax$$
 has solutions $\widetilde{x} + \operatorname{null}(A)$
$$y = A\widetilde{x} \Big|$$

$$\widehat{x} \in \underset{x}{\operatorname{arg\,min}} \|x\|_{1} \\ \text{s.t.} \|y - Ax\|_{2} \leq \sigma$$

$$y = Ax$$
 has solutions $\widetilde{x} + \operatorname{null}(A)$
 $y = A\widetilde{x} \Big| \quad \Big| \{d : Ad = 0\}$


 $\begin{aligned} \widehat{x} \in & \underset{x}{\operatorname{arg\,min}} & \|x\|_{1} \\ & \text{s.t.} & \|y - Ax\|_{2} \leq \sigma \end{aligned}$

$$y = Ax$$
 has solutions $\widetilde{x} + \operatorname{null}(A)$
 $y = A\widetilde{x} \Big| \quad \Big| \{d : Ad = 0\}$

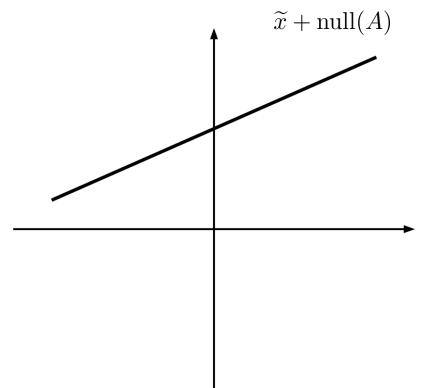
 $\widehat{x} \in \underset{x}{\operatorname{arg\,min}} \|x\|_{1} \\ \text{s.t.} \|y - Ax\|_{2} \le \sigma$

$$y = Ax$$
 has solutions $\widetilde{x} + \operatorname{null}(A)$
 $y = A\widetilde{x} \Big| \quad \Big| \{d : Ad = 0\}$

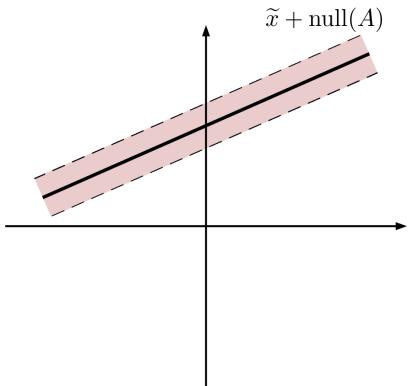


$$\widehat{x} \in \underset{x}{\operatorname{arg\,min}} \|x\|_{1} \\ \text{s.t.} \|y - Ax\|_{2} \leq \sigma$$

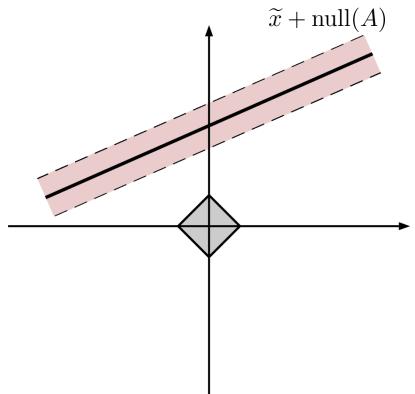
Assume $\sigma = 0$:


$$y = Ax$$
 has solutions $\widetilde{x} + \operatorname{null}(A)$
 $y = A\widetilde{x} \Big| \quad \Big| \{d : Ad = 0\}$

Assume $\sigma = 0$:

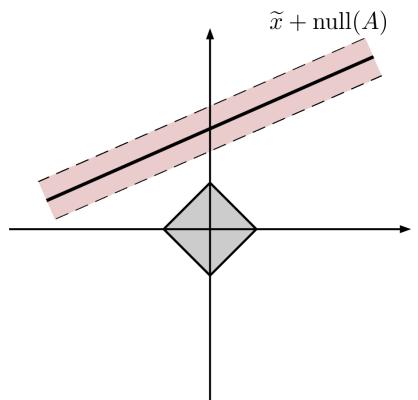

$$y = Ax$$
 has solutions $\widetilde{x} + \operatorname{null}(A)$
 $y = A\widetilde{x} \Big| \quad \Big| \{d : Ad = 0\}$

$$y = Ax$$
 has solutions $\widetilde{x} + \operatorname{null}(A)$
 $y = A\widetilde{x} \Big| \quad \Big| \{d : Ad = 0\}$



$$\widehat{x} \in \underset{x}{\operatorname{arg\,min}} \|x\|_{1} \\ \text{s.t.} \|y - Ax\|_{2} \le \sigma$$

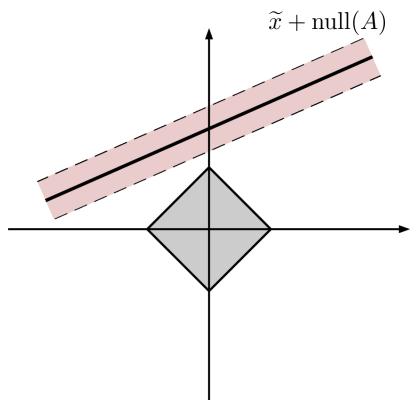
$$y = Ax$$
 has solutions $\widetilde{x} + \operatorname{null}(A)$
 $y = A\widetilde{x} \Big| \quad \Big| \{d : Ad = 0\}$



$$\widehat{x} \in \underset{x}{\operatorname{arg\,min}} \|x\|_{1} \\ \text{s.t.} \|y - Ax\|_{2} \le \sigma$$

Assume $\sigma = 0$:

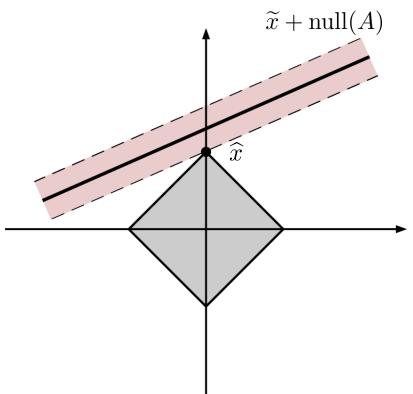
$$y = Ax$$
 has solutions $\widetilde{x} + \operatorname{null}(A)$
 $y = A\widetilde{x} \Big| \quad \Big| \{d : Ad = 0\}$



$$\widehat{x} \in \underset{x}{\operatorname{arg\,min}} \|x\|_{1} \\ \text{s.t.} \|y - Ax\|_{2} \leq \sigma$$

Assume $\sigma = 0$:

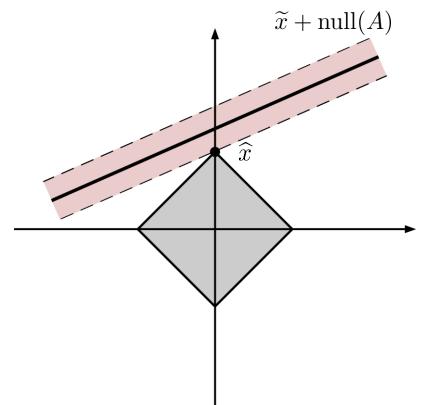
$$y = Ax$$
 has solutions $\widetilde{x} + \operatorname{null}(A)$
 $y = A\widetilde{x} \Big| \quad \Big| \{d : Ad = 0\}$



$$\widehat{x} \in \underset{x}{\operatorname{arg\,min}} \|x\|_{1} \\ \text{s.t.} \|y - Ax\|_{2} \le \sigma$$

Assume $\sigma = 0$:

$$y = Ax$$
 has solutions $\widetilde{x} + \operatorname{null}(A)$
 $y = A\widetilde{x} \Big| \quad \Big| \{d : Ad = 0\}$


$$\widehat{x} \in \underset{x}{\operatorname{arg\,min}} \|x\|_{1} \\ \text{s.t.} \|y - Ax\|_{2} \le \sigma$$

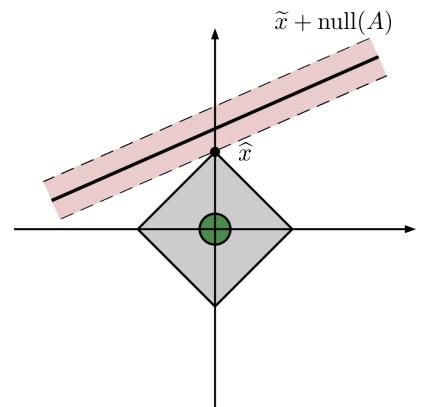
Assume $\sigma = 0$:

$$y = Ax$$
 has solutions $\widetilde{x} + \operatorname{null}(A)$
 $y = A\widetilde{x} \Big| \quad \Big| \{d : Ad = 0\}$

Assume $\sigma > 0$: margin around $\tilde{x} + \operatorname{null}(A)$

$$\widehat{x}_2 \in \underset{x}{\operatorname{arg\,min}} \|x\|_2^2$$

s.t. $\|y - Ax\|_2 \leq \sigma$


$$\widehat{x} \in \underset{x}{\operatorname{arg\,min}} \|x\|_{1} \\ \text{s.t.} \|y - Ax\|_{2} \le \sigma$$

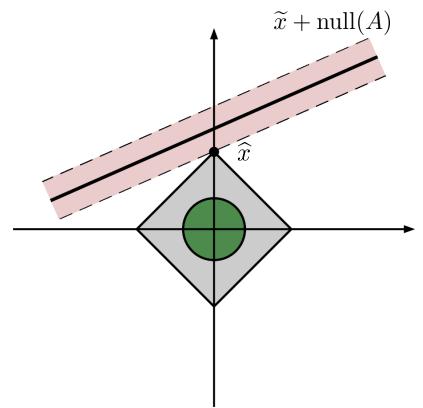
Assume $\sigma = 0$:

$$y = Ax$$
 has solutions $\widetilde{x} + \operatorname{null}(A)$
 $y = A\widetilde{x} \Big| \quad \Big| \{d : Ad = 0\}$

Assume $\sigma > 0$: margin around $\tilde{x} + \operatorname{null}(A)$

$$\widehat{x}_2 \in \underset{x}{\operatorname{arg\,min}} \|x\|_2^2$$

s.t. $\|y - Ax\|_2 \le \sigma$


$$\widehat{x} \in \underset{x}{\operatorname{arg\,min}} \|x\|_{1} \\ \text{s.t.} \|y - Ax\|_{2} \le \sigma$$

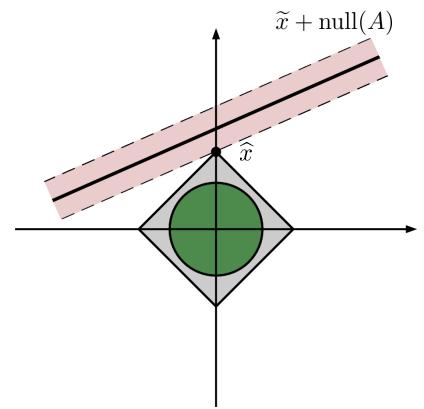
Assume $\sigma = 0$:

$$y = Ax$$
 has solutions $\widetilde{x} + \operatorname{null}(A)$
 $y = A\widetilde{x} \Big| \quad \Big| \{d : Ad = 0\}$

Assume $\sigma > 0$: margin around $\tilde{x} + \operatorname{null}(A)$

$$\widehat{x}_2 \in \underset{x}{\operatorname{arg\,min}} \|x\|_2^2$$

s.t. $\|y - Ax\|_2 \le \sigma$


$$\widehat{x} \in \underset{x}{\operatorname{arg\,min}} \|x\|_{1} \\ \text{s.t.} \|y - Ax\|_{2} \le \sigma$$

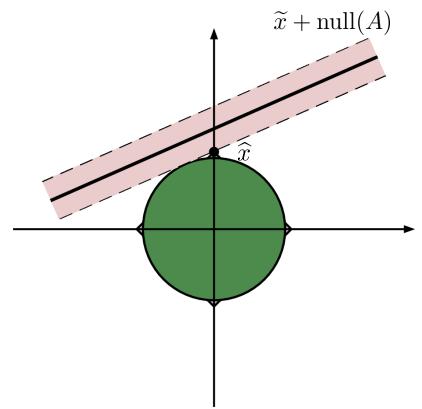
Assume $\sigma = 0$:

$$y = Ax$$
 has solutions $\widetilde{x} + \operatorname{null}(A)$
 $y = A\widetilde{x} \Big| \quad \Big| \{d : Ad = 0\}$

Assume $\sigma > 0$: margin around $\tilde{x} + \operatorname{null}(A)$

$$\widehat{x}_2 \in \underset{x}{\operatorname{arg\,min}} \|x\|_2^2$$

s.t. $\|y - Ax\|_2 \leq \sigma$


$$\widehat{x} \in \underset{x}{\operatorname{arg\,min}} \|x\|_{1} \\ \text{s.t.} \|y - Ax\|_{2} \le \sigma$$

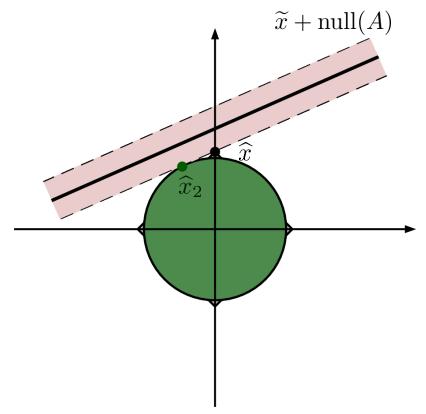
Assume $\sigma = 0$:

$$y = Ax$$
 has solutions $\widetilde{x} + \operatorname{null}(A)$
 $y = A\widetilde{x} \Big| \quad \Big| \{d : Ad = 0\}$

Assume $\sigma > 0$: margin around $\tilde{x} + \operatorname{null}(A)$

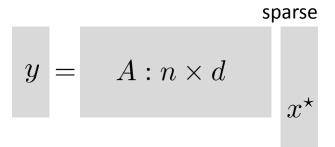
$$\widehat{x}_2 \in \underset{x}{\operatorname{arg\,min}} \|x\|_2^2$$

s.t. $\|y - Ax\|_2 \leq \sigma$


$$\widehat{x} \in \underset{x}{\operatorname{arg\,min}} \|x\|_{1} \\ \text{s.t.} \|y - Ax\|_{2} \leq \sigma$$

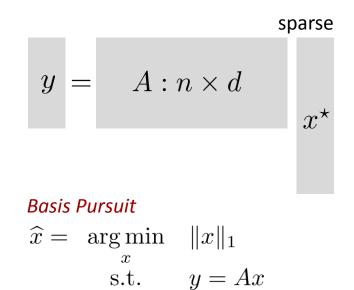
Assume $\sigma = 0$:

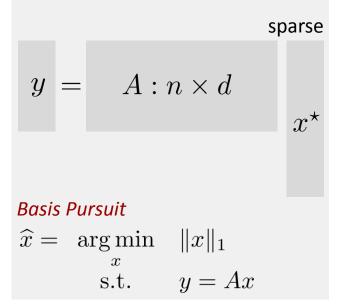
$$y = Ax$$
 has solutions $\widetilde{x} + \operatorname{null}(A)$
 $y = A\widetilde{x} \Big| \quad \Big| \{d : Ad = 0\}$

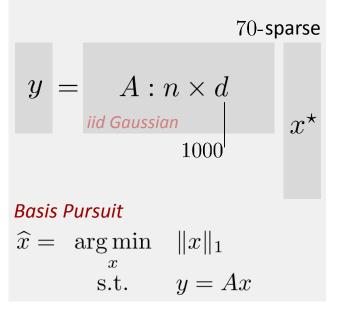

Assume $\sigma > 0$: margin around $\tilde{x} + \operatorname{null}(A)$

$$\widehat{x}_2 \in \underset{x}{\operatorname{arg\,min}} \|x\|_2^2$$

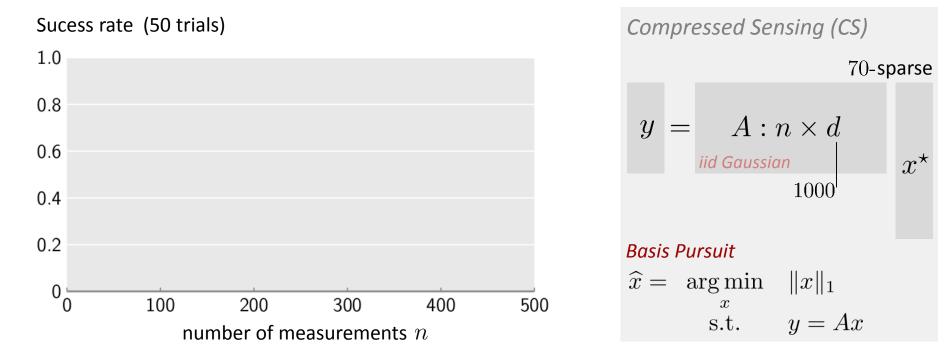
s.t. $\|y - Ax\|_2 \le \sigma$

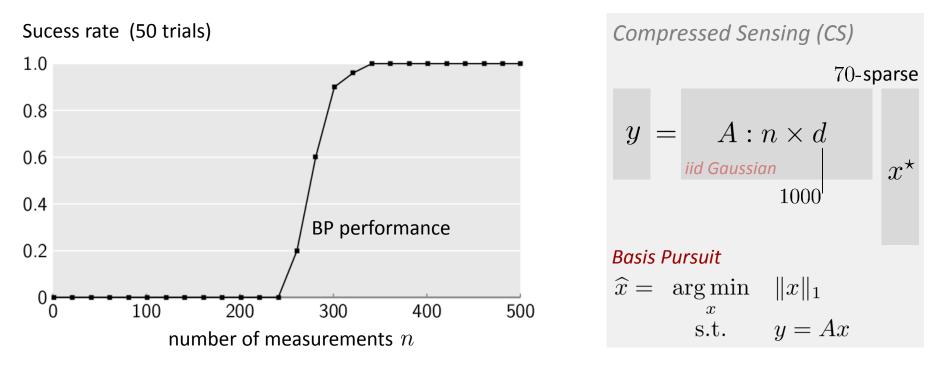


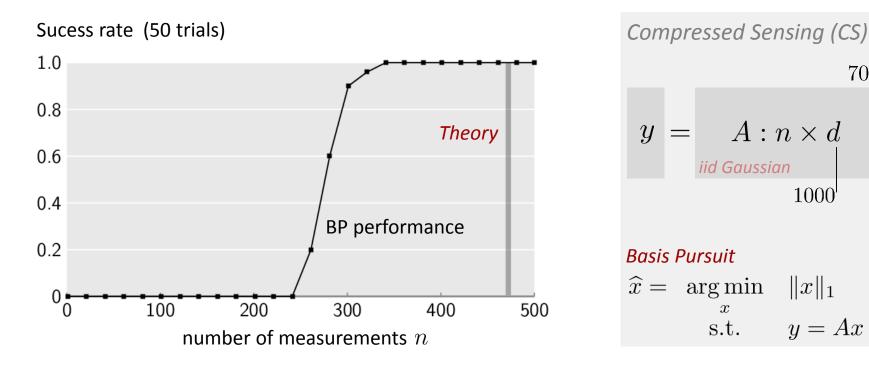




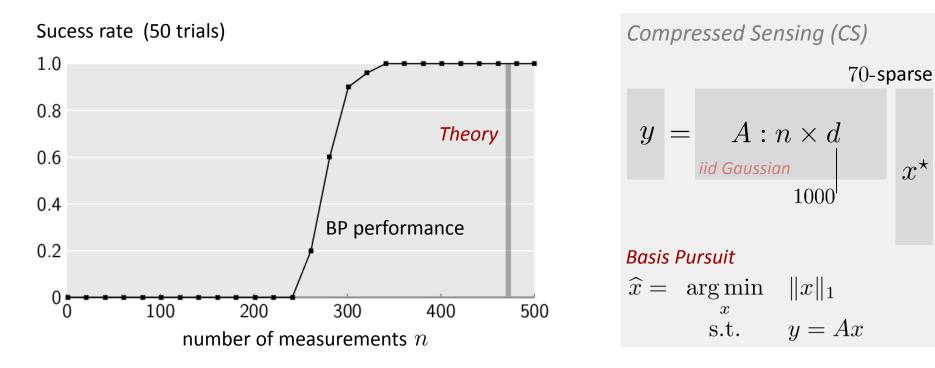
Compressed Sensing (CS)



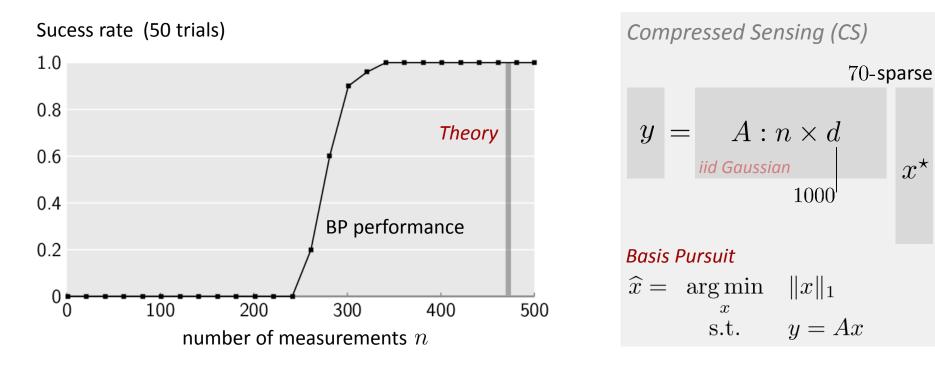

Compressed Sensing (CS)



70-sparse

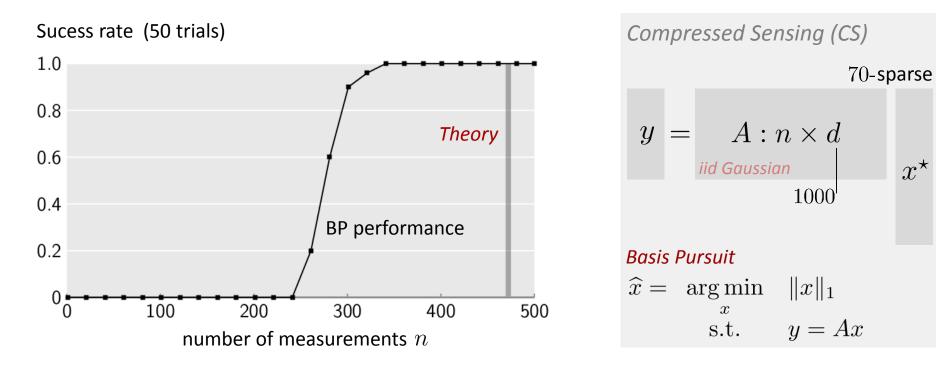

 x^{\star}

 x^{\star}


Example: Compressed Sensing

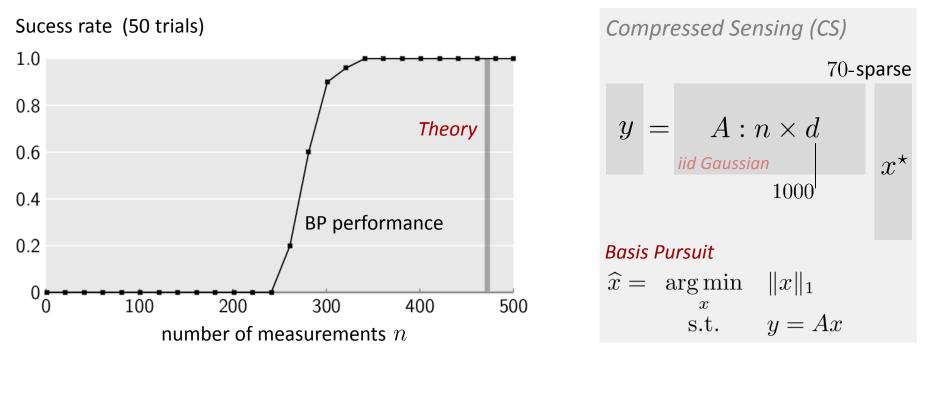
Theorem [Chandrasekaran et al. 12']

 x^{\star}


Theorem [Chandrasekaran et al. 12']

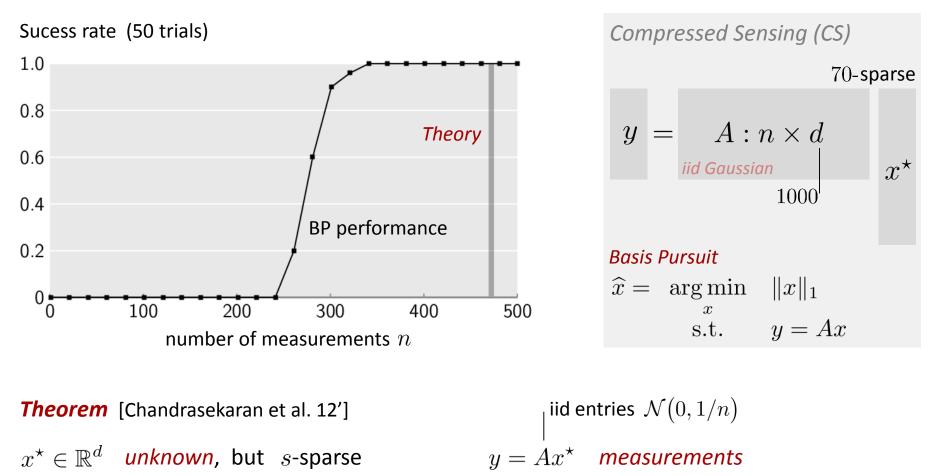
 $x^{\star} \in \mathbb{R}^d$

 x^{\star}

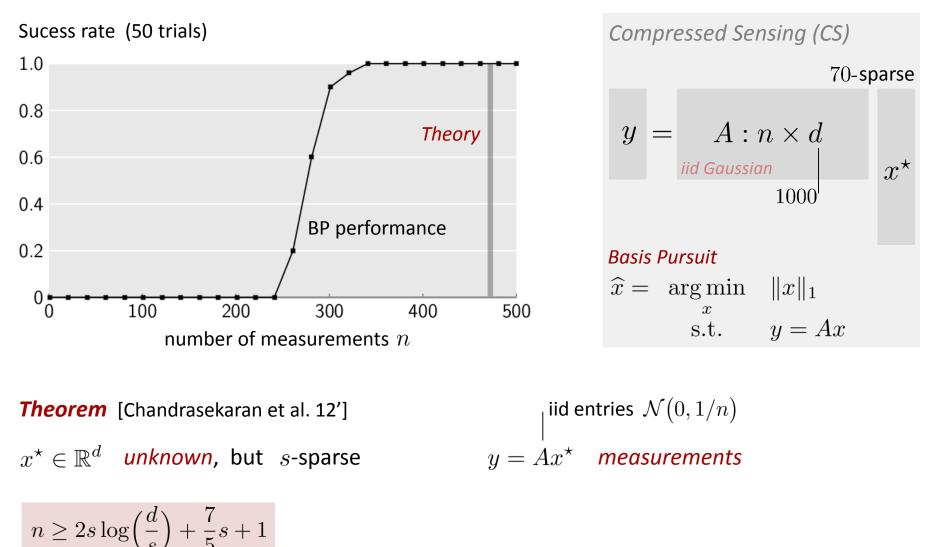

Example: Compressed Sensing

Theorem [Chandrasekaran et al. 12']

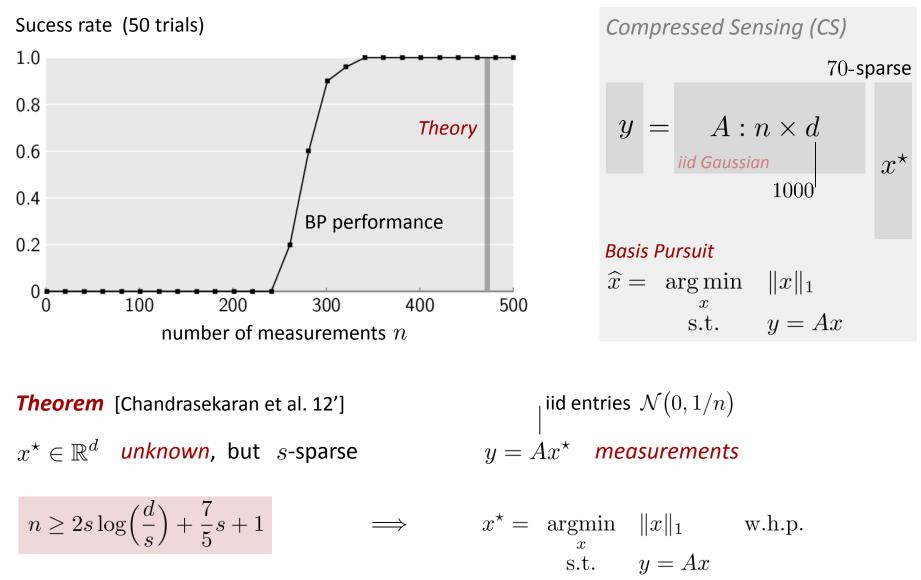
 $x^{\star} \in \mathbb{R}^{d}$ unknown, but *s*-sparse



Theorem [Chandrasekaran et al. 12']


 $x^{\star} \in \mathbb{R}^{d}$ unknown, but *s*-sparse

 $y = Ax^{\star}$ measurements



Application: Image Reconstruction

Application: Image Reconstruction

Application: Image Reconstruction

 256×496

 $256 \times 496 \qquad \Longrightarrow \quad z^{\star} \in \mathbb{R}^{126976}$

 $256 \times 496 \qquad \Longrightarrow \quad z^{\star} \in \mathbb{R}^{126976}$

not sparse

 $256 \times 496 \qquad \implies \quad z^{\star} \in \mathbb{R}^{126976}$

not sparse

Natural images have sparse representations

 $256 \times 496 \qquad \Longrightarrow \quad z^{\star} \in \mathbb{R}^{126976}$

not sparse

Natural images have sparse representations

$$z^{\star} = \Psi x^{\star}$$

 $256 \times 496 \qquad \implies \quad z^{\star} \in \mathbb{R}^{126976}$

not sparse

Natural images have sparse representations

$$z^{\star} = \Psi x^{\star}$$

sparse or near-sparse

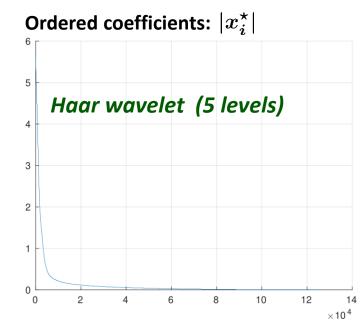
 $256 \times 496 \qquad \implies \quad z^{\star} \in \mathbb{R}^{126976}$

not sparse

Natural images have sparse representations

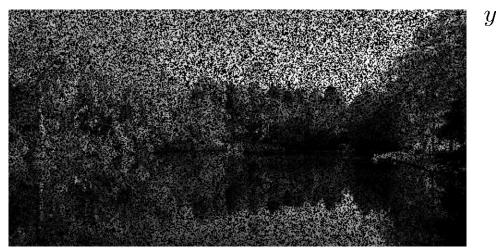
$$z^{\star} = \Psi x^{\star}$$

sparse or near-sparse *dictionary* (wavelet, DCT, gradient space)


 $256 \times 496 \qquad \Longrightarrow \quad z^{\star} \in \mathbb{R}^{126976}$

not sparse

Natural images have sparse representations


$$z^{\star} = \Psi x^{\star}$$

sparse or near-sparse *dictionary* (wavelet, DCT, gradient space)

Suppose we observe *only 50%* of pixels

Solve $\widehat{x} = \underset{x}{\operatorname{arg\,min}} \|x\|_{1}$ s.t. $y = \Phi \Psi x$

Solve

$$\widehat{x} = \underset{x}{\operatorname{arg\,min}} \|x\|_{1}$$

s.t. $y = \Phi \Psi x$
|wavelet

Solve

$$\widehat{x} = \underset{x}{\operatorname{arg\,min}} \|x\|_{1} \\ \text{s.t.} \quad y = \Phi \Psi x \\ | \underset{\text{observed indices}}{\| \text{wavelet} \|}$$

Solve $\widehat{x} = \arg \min \|x\|_1$ x $y = \Phi \Psi x$ s.t. wavelet observed indices

Suppose we observe *only 50%* of pixels

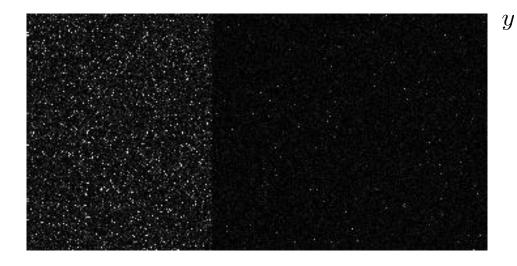
Solve $\widehat{x} = \arg \min \|x\|_1$ x $y = \Phi \Psi x$ s.t. wavelet observed indices

PSNR: 21.31 dB

Solve

$$\widehat{x} = \underset{x}{\operatorname{arg\,min}} \|x\|_{1}$$

s.t. $y = \Phi \Psi x$
 $\|wavelet$
partial DFT

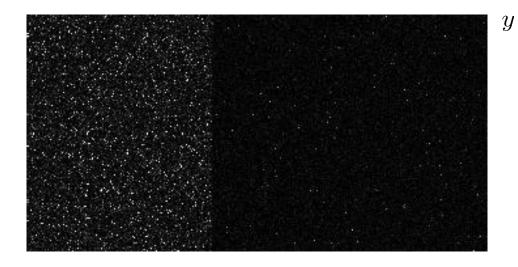


Solve

$$\widehat{x} = \underset{x}{\operatorname{arg\,min}} \|x\|_{1}$$

s.t. $y = \Phi \Psi x$
 $\|wavelet$
partial DFT

each entry of y has info from entire image



Solve

$$\widehat{x} = \underset{x}{\operatorname{arg\,min}} \|x\|_{1}$$

s.t. $y = \Phi \Psi x$
 $\|wavelet$
partial DFT

each entry of y has info from entire image

Solve $\widehat{x} = \arg \min \|x\|_1$ xs.t. $y = \Phi \Psi x$ wavelet partial DFT

each entry of y has info from entire image

 \widehat{x}

PSNR: 24.93 dB

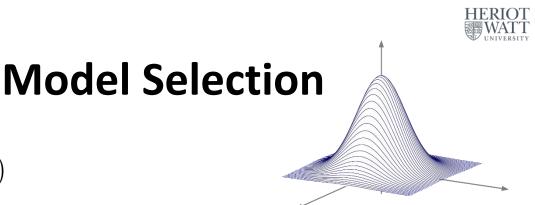
Outline

Motivation: Hypothesis Testing in High-Dimensions

Introduction to LASSO and other sparsity problems

Gaussian graphical model selection

Matrix completion



 $X = (X_1, X_2, \dots, X_d)$

 $X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^{\star})$

 $X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^\star)$

 $X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^\star)$

<u>Problem</u>: given *n* idd observations of *X*, denoted $X^{(1)}, \ldots, X^{(n)}$, estimate Σ^{\star}

 $X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^{\star})$

<u>Problem</u>: given *n* idd observations of *X*, denoted $X^{(1)}, \ldots, X^{(n)}$, estimate Σ^{\star}

Assumption:

ERIOT

 $X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^{\star})$

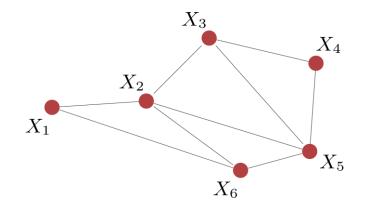
<u>Problem</u>: given *n* idd observations of *X*, denoted $X^{(1)}, \ldots, X^{(n)}$, estimate Σ^{\star}

Assumption: most pairs of coordinates (X_i, X_j) are conditionally independent

 $X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^{\star})$

<u>Problem</u>: given *n* idd observations of *X*, denoted $X^{(1)}, \ldots, X^{(n)}$, estimate Σ^{\star}

Assumption: most pairs of coordinates (X_i, X_j) are conditionally independent

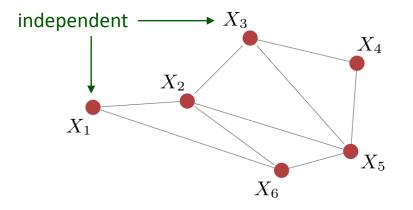

 $\stackrel{\Psi}{\text{precision matrix }} \Theta^{\star} := \left(\Sigma^{\star}\right)^{-1}$ is *sparse*

 $X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^{\star})$

<u>Problem</u>: given *n* idd observations of *X*, denoted $X^{(1)}, \ldots, X^{(n)}$, estimate Σ^{\star}

Assumption: most pairs of coordinates (X_i, X_j) are conditionally independent

$$\Downarrow$$
 precision matrix $\Theta^{\star} := (\Sigma^{\star})^{-1}$ is *sparse*

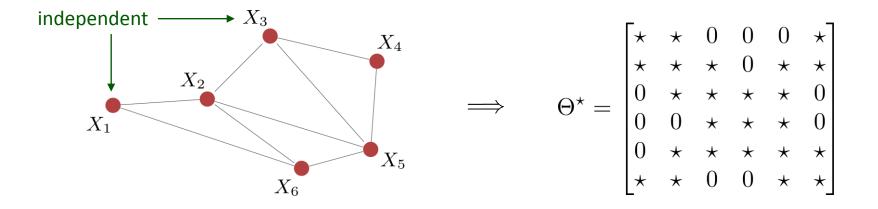


 $X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^{\star})$

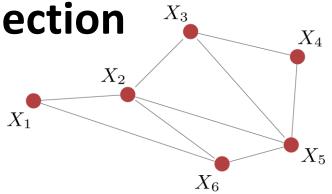
<u>Problem</u>: given *n* idd observations of *X*, denoted $X^{(1)}, \ldots, X^{(n)}$, estimate Σ^{\star}

Assumption: most pairs of coordinates (X_i, X_j) are conditionally independent

$$\Downarrow$$
 precision matrix $\Theta^{\star} := (\Sigma^{\star})^{-1}$ is *sparse*

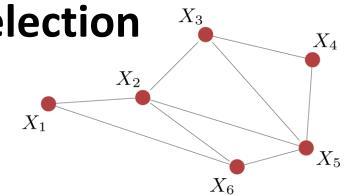


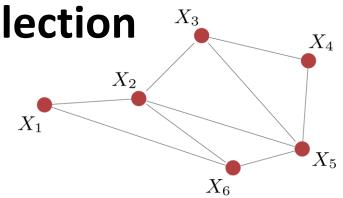
 $X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^{\star})$


<u>Problem</u>: given *n* idd observations of *X*, denoted $X^{(1)}, \ldots, X^{(n)}$, estimate Σ^{\star}

Assumption: most pairs of coordinates (X_i, X_j) are conditionally independent

$$\Downarrow$$
 precision matrix $\Theta^{\star} := (\Sigma^{\star})^{-1}$ is *sparse*




 $X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^\star)$

$$X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^{\star})$$

$$\mathsf{pdf}: \quad f_X(x;\,\Theta^\star) = \frac{\sqrt{\det\,\Theta^\star}}{(2\pi)^{\frac{d}{2}}} \exp\left(-\frac{1}{2}x^\top\Theta^\star x\right)$$

 X_4

 X_5

 X_3

 X_6

 X_2

 X_1

Gaussian Graphical Model Selection

$$X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^{\star})$$

pdf:
$$f_X(x; \Theta^*) = \frac{\sqrt{\det \Theta^*}}{(2\pi)^{\frac{d}{2}}} \exp\left(-\frac{1}{2}x^\top \Theta^* x\right)$$

Maximum likelihood estimator of $\, \Theta^{\star} \,$

 X_4

 X_5

 X_3

 X_6

 X_2

 X_1

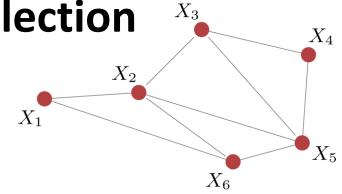
Gaussian Graphical Model Selection

$$X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^{\star})$$

$$\mathsf{pdf}: \quad f_X(x;\,\Theta^\star) = \frac{\sqrt{\det\,\Theta^\star}}{\left(2\pi\right)^{\frac{d}{2}}} \exp\left(-\frac{1}{2}x^\top\Theta^\star x\right)$$

Maximum likelihood estimator of $\, \Theta^{\star} \,$

$$\widehat{\Theta}_{\mathrm{ML}} = \underset{\Theta}{\mathrm{arg\,max}} \log \prod_{i=1}^{n} f\left(x^{(1)}, \dots, x^{(n)}; \Theta\right)$$



$$X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^{\star})$$

$$\mathsf{pdf}: \quad f_X(x;\,\Theta^\star) = \frac{\sqrt{\det\,\Theta^\star}}{\left(2\pi\right)^{\frac{d}{2}}} \exp\left(-\frac{1}{2}x^\top\Theta^\star x\right)$$

Maximum likelihood estimator of $\, \Theta^{\star} \,$

$$\widehat{\Theta}_{\mathrm{ML}} = \underset{\Theta}{\operatorname{arg\,max}} \log \prod_{i=1}^{n} f\left(x^{(1)}, \dots, x^{(n)}; \Theta\right)$$
$$= \underset{\Theta}{\operatorname{arg\,min}} - \log \det \Theta + \operatorname{tr}\left(\Theta \widehat{\Sigma}_{n}\right)$$

 X_4

 X_5

 X_3

 X_6

 X_2

 X_1

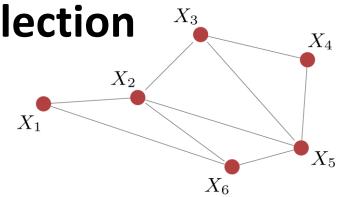
Gaussian Graphical Model Selection

$$X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^{\star})$$

$$\mathsf{pdf}: \quad f_X(x;\,\Theta^\star) = \frac{\sqrt{\det\,\Theta^\star}}{\left(2\pi\right)^{\frac{d}{2}}} \exp\left(-\frac{1}{2}x^\top\Theta^\star x\right)$$

Maximum likelihood estimator of $\, \Theta^{\star} \,$

$$\widehat{\Theta}_{\mathrm{ML}} = \underset{\Theta}{\operatorname{arg\,max}} \log \prod_{i=1}^{n} f\left(x^{(1)}, \dots, x^{(n)}; \Theta\right)$$
$$= \underset{\Theta}{\operatorname{arg\,min}} - \log \det \Theta + \operatorname{tr}\left(\Theta \widehat{\Sigma}_{n}\right)$$
$$|_{sample \ covariance \ matrix}$$


Gaussian Graphical Model Selection

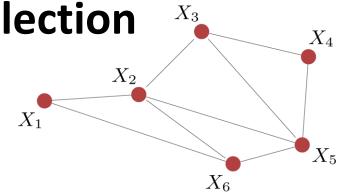
$$X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^{\star})$$

$$\mathsf{pdf}: \quad f_X(x;\,\Theta^\star) = \frac{\sqrt{\det\,\Theta^\star}}{\left(2\pi\right)^{\frac{d}{2}}} \exp\left(-\frac{1}{2}x^\top\Theta^\star x\right)$$

Maximum likelihood estimator of $\, \Theta^{\star} \,$

$$\widehat{\Theta}_{\mathrm{ML}} = \underset{\Theta}{\operatorname{arg\,max}} \log \prod_{i=1}^{n} f\left(x^{(1)}, \dots, x^{(n)}; \Theta\right)$$
$$= \underset{\Theta}{\operatorname{arg\,min}} - \log \det \Theta + \operatorname{tr}\left(\Theta \widehat{\Sigma}_{n}\right)$$
$$| sample covariance$$

 $\textit{matrix} \quad \widehat{\Sigma}_n := \frac{1}{n} \sum_{i=1}^n x^{(i)} {x^{(i)}}^\top$



Gaussian Graphical Model Selection

$$X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^{\star})$$

$$\mathsf{pdf}: \quad f_X(x;\,\Theta^\star) = \frac{\sqrt{\det\,\Theta^\star}}{\left(2\pi\right)^{\frac{d}{2}}} \exp\left(-\frac{1}{2}x^\top\Theta^\star x\right)$$

Maximum likelihood estimator of $\, \Theta^{\star} \,$

 X_4

 X_5

 X_3

 X_6

 X_2

 X_1

Gaussian Graphical Model Selection

$$X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^{\star})$$

$$\mathsf{pdf}: \quad f_X(x;\,\Theta^\star) = \frac{\sqrt{\det\,\Theta^\star}}{(2\pi)^{\frac{d}{2}}} \exp\left(-\frac{1}{2}x^\top\Theta^\star x\right)$$

Maximum likelihood estimator of $\, \Theta^{\star} \,$

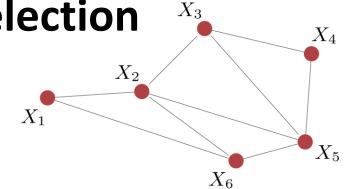
(assuming it is invertible \implies n > d)

Gaussian Graphical Model Selection

$$X = (X_1, X_2, \dots, X_d) \sim \mathcal{N}(0_d, \Sigma^{\star})$$

$$\mathsf{pdf}: \quad f_X(x;\,\Theta^\star) = \frac{\sqrt{\det\,\Theta^\star}}{(2\pi)^{\frac{d}{2}}} \exp\left(-\frac{1}{2}x^\top\Theta^\star x\right)$$

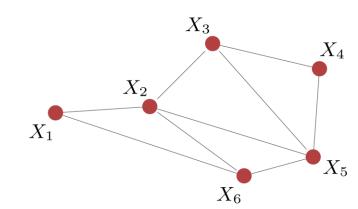
Maximum likelihood estimator of $\, \Theta^{\star} \,$


$$\widehat{\Theta}_{\mathrm{ML}} = \underset{\Theta}{\mathrm{arg\,max}} \log \prod_{i=1}^{n} f\left(x^{(1)}, \dots, x^{(n)}; \Theta\right)$$

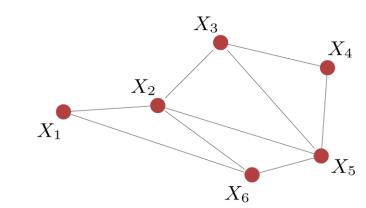
$$= \underset{\Theta}{\operatorname{arg\,min}} - \log \,\det\,\Theta + \operatorname{tr}\left(\Theta\,\widehat{\Sigma}_n\right) \\ | \\ samp \\ = \widehat{\Sigma}_n^{-1}$$

sample covariance matrix

$$\widehat{\Sigma}_n := \frac{1}{n} \sum_{i=1}^n x^{(i)} x^{(i)^{\top}}$$

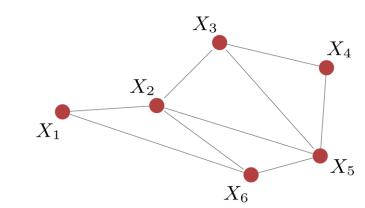

(assuming it is invertible \implies n>d)

Maximum likelihood estimator


$$\widehat{\Theta}_{\mathrm{ML}}^{\star} = \underset{\Theta}{\operatorname{arg\,min}} - \log \, \det \, \Theta + \operatorname{tr} \left(\Theta \, \widehat{\Sigma}_n \right)$$

Maximum likelihood estimator

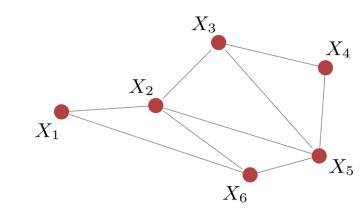
$$\widehat{\Theta}_{\mathrm{ML}}^{\star} = \underset{\Theta}{\operatorname{arg\,min}} - \log \, \det \, \Theta + \operatorname{tr} \left(\Theta \, \widehat{\Sigma}_n \right)$$



Assumption: most pairs of coordinates (X_i, X_j) are conditionally independent

Maximum likelihood estimator

$$\widehat{\Theta}_{\mathrm{ML}}^{\star} = \underset{\Theta}{\operatorname{arg\,min}} - \log \, \det \, \Theta + \operatorname{tr} \left(\Theta \, \widehat{\Sigma}_n \right)$$

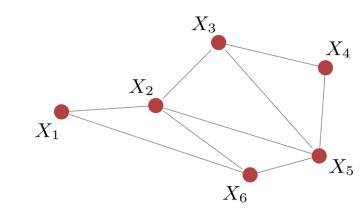

Assumption: most pairs of coordinates (X_i, X_j) are conditionally independent

Graphical LASSO

Maximum likelihood estimator

$$\widehat{\Theta}_{\mathrm{ML}}^{\star} = \underset{\Theta}{\operatorname{arg\,min}} - \log \, \det \, \Theta + \operatorname{tr} \left(\Theta \, \widehat{\Sigma}_n \right)$$

Assumption: most pairs of coordinates (X_i, X_j) are conditionally independent

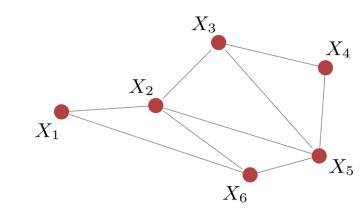

Graphical LASSO

$$\widehat{\Theta}_{\mathrm{GL}} = \underset{\Theta}{\operatorname{arg\,min}} - \log \, \det \, \Theta + \operatorname{tr} \left(\Theta \, \widehat{\Sigma}_n \right) + \lambda \left\| \Theta \right\|_{1, \mathrm{off}\text{-d}}$$

Maximum likelihood estimator

$$\widehat{\Theta}_{\mathrm{ML}}^{\star} = \underset{\Theta}{\operatorname{arg\,min}} - \log \, \det \, \Theta + \operatorname{tr} \left(\Theta \, \widehat{\Sigma}_n \right)$$

Assumption: most pairs of coordinates (X_i, X_j) are conditionally independent


Graphical LASSO

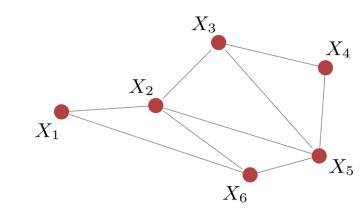
$$\widehat{\Theta}_{\mathrm{GL}} = \underset{\Theta}{\operatorname{arg\,min}} - \log \, \det \, \Theta + \operatorname{tr} \left(\Theta \, \widehat{\Sigma}_n \right) + \frac{\lambda \left\| \Theta \right\|_{1, \mathrm{off}\text{-d}}}{\left| \sum_{i \neq j} \left| \Theta_{ij} \right| \right|}$$

Maximum likelihood estimator

$$\widehat{\Theta}_{\mathrm{ML}}^{\star} = \underset{\Theta}{\operatorname{arg\,min}} - \log \, \det \, \Theta + \operatorname{tr} \left(\Theta \, \widehat{\Sigma}_n \right)$$

Assumption: most pairs of coordinates (X_i, X_j) are conditionally independent

Graphical LASSO


$$\widehat{\Theta}_{\text{GL}} = \underset{\Theta}{\operatorname{arg\,min}} - \log \,\det\,\Theta + \operatorname{tr}\left(\Theta\,\widehat{\Sigma}_n\right) + \frac{\lambda \|\Theta\|_{1,\text{off-d}}}{\left|\sum_{i\neq j} |\Theta_{ij}|\right|}$$

applies L1-norm only to off-diagonal entries

Maximum likelihood estimator

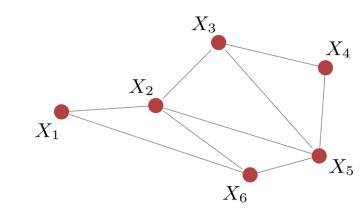
$$\widehat{\Theta}_{\mathrm{ML}}^{\star} = \underset{\Theta}{\operatorname{arg\,min}} - \log \, \det \, \Theta + \operatorname{tr} \left(\Theta \, \widehat{\Sigma}_n \right)$$

Assumption: most pairs of coordinates (X_i, X_j) are conditionally independent

Graphical LASSO

* *

0


$$\widehat{\Theta}_{\mathrm{GL}} = \underset{\Theta}{\operatorname{arg\,min}} - \log\,\det\,\Theta + \operatorname{tr}\left(\Theta\,\widehat{\Sigma}_{n}\right) + \lambda \|\Theta\|_{1,\mathrm{off-d}}$$
$$\sum_{i\neq j} |\Theta|_{i\neq j} |\Theta|_{i\neq j} = \begin{bmatrix} \star & \star & 0 & 0 & \star \\ \star & \star & 0 & 0 & \star \\ 0 & \star & \star & \star & 0 \\ 0 & 0 & \star & \star & \star & 0 \\ 0 & \star & \star & \star & \star & \star \\ \star & \star & 0 & 0 & \star & \star \end{bmatrix}$$

ijs L1-norm only to off-diagonal entries

Maximum likelihood estimator

$$\widehat{\Theta}_{\mathrm{ML}}^{\star} = \underset{\Theta}{\operatorname{arg\,min}} - \log \, \det \, \Theta + \operatorname{tr} \left(\Theta \, \widehat{\Sigma}_n \right)$$

Assumption: most pairs of coordinates (X_i, X_j) are conditionally independent

Graphical LASSO

$$\widehat{\Theta}_{\mathrm{GL}} = \underset{\Theta}{\operatorname{arg\,min}} - \log\,\det\Theta + \operatorname{tr}\left(\Theta\,\widehat{\Sigma}_n\right) + \lambda \|\Theta\|_{1,\mathrm{off}} - d \\ \left|\sum_{\substack{i\neq j \\ i\neq j}} |\Theta|_{i\neq j} \right| = \left| \begin{array}{c} \star & \star & 0 & 0 & \star \\ \star & \star & \star & 0 & \star & \star \\ 0 & \star & \star & \star & \star & 0 \\ 0 & 0 & \star & \star & \star & \star & 0 \\ 0 & \star & \star & \star & \star & \star & \star \\ \star & \star & 0 & 0 & \star & \star \end{array} \right|$$

 $\left|\sum_{i \neq j} |\Theta_{ij}|\right|$ applies L1-norm only to off-diagonal entries

sensible estimators even for non-Gaussian RVs

Week	Alcoa	$\begin{array}{c} \mathbf{American}\\ \mathbf{Express} \end{array}$	Boeing	Bank of America	Caterpillar	Cisco Systems
1	14.67	43.30	66.15	10.59	100.25	14.94
2	15.29	43.73	69.26	10.89	101.30	15.14
3	15.82	43.86	69.42	11.18	102.59	16.04
4	15.87	43.86	70.29	11.47	102.72	16.41
5	15.92	43.96	70.86	11.87	103.42	16.59
6	15.95	44.13	71.17	11.89	103.56	16.82
7	15.96	44.20	71.43	12.28	104.86	16.88
8	16.18	44.75	71.52	12.32	105.58	16.93
9	16.19	44.94	71.60	12.36	105.87	17.01
÷	:	÷	÷		÷	÷
24	17.42	50.74	79.31	14.77	96.93	21.22
25	18.06	51.39	80.35	15.08	99.62	22.11

Week	Alcoa	$\begin{array}{c} \mathbf{American}\\ \mathbf{Express} \end{array}$	Boeing	Bank of America	Caterpillar	Cisco Systems
1	14.67	43.30	66.15	10.59	100.25	14.94
2	15.29	43.73	69.26	10.89	101.30	15.14
3	15.82	43.86	69.42	11.18	102.59	16.04
4	15.87	43.86	70.29	11.47	102.72	16.41
5	15.92	43.96	70.86	11.87	103.42	16.59
6	15.95	44.13	71.17	11.89	103.56	16.82
7	15.96	44.20	71.43	12.28	104.86	16.88
8	16.18	44.75	71.52	12.32	105.58	16.93
9	16.19	44.94	71.60	12.36	105.87	17.01
:	÷	÷	:	:	÷	:
24	17.42	50.74	79.31	14.77	96.93	21.22
25	18.06	51.39	80.35	15.08	99.62	22.11
	\widetilde{X}_1	\widetilde{X}_2	\widetilde{X}_3	\widetilde{X}_4	\widetilde{X}_5	\widetilde{X}_6

Week	Alcoa	$\begin{array}{c} \mathbf{American}\\ \mathbf{Express} \end{array}$	Boeing	Bank of America	Caterpillar	Cisco Systems
1	14.67	43.30	66.15	10.59	100.25	14.94
2	15.29	43.73	69.26	10.89	101.30	15.14
3	15.82	43.86	69.42	11.18	102.59	16.04
4	15.87	43.86	70.29	11.47	102.72	16.41
5	15.92	43.96	70.86	11.87	103.42	16.59
6	15.95	44.13	71.17	11.89	103.56	16.82
7	15.96	44.20	71.43	12.28	104.86	16.88
8	16.18	44.75	71.52	12.32	105.58	16.93
9	16.19	44.94	71.60	12.36	105.87	17.01
:		÷		÷	÷	÷
24	17.42	50.74	79.31	14.77	96.93	21.22
25	18.06	51.39	80.35	15.08	99.62	22.11
	\widetilde{X}_1	\widetilde{X}_2	\widetilde{X}_3	\widetilde{X}_4	\widetilde{X}_5	\widetilde{X}_6
remove mean	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ

Week	Alcoa	$\begin{array}{c} \mathbf{American}\\ \mathbf{Express} \end{array}$	Boeing	Bank of America	Caterpillar	Cisco Systems
1	14.67	43.30	66.15	10.59	100.25	14.94
2	15.29	43.73	69.26	10.89	101.30	15.14
3	15.82	43.86	69.42	11.18	102.59	16.04
4	15.87	43.86	70.29	11.47	102.72	16.41
5	15.92	43.96	70.86	11.87	103.42	16.59
6	15.95	44.13	71.17	11.89	103.56	16.82
7	15.96	44.20	71.43	12.28	104.86	16.88
8	16.18	44.75	71.52	12.32	105.58	16.93
9	16.19	44.94	71.60	12.36	105.87	17.01
:	:	:		÷	:	•
24	17.42	50.74	79.31	14.77	96.93	21.22
25	18.06	51.39	80.35	15.08	99.62	22.11
	\widetilde{X}_1	\widetilde{X}_2	\widetilde{X}_3	\widetilde{X}_4	\widetilde{X}_5	\widetilde{X}_6
emove mean	Ļ				Ļ	Ļ
	\dot{X}_1	X_2	X_3	X_4	X_5	X_6

Price of stock of *6 companies* at beginning of each week of 2011 (Jan-Jun)

Week	Alcoa	$\begin{array}{c} \mathbf{American}\\ \mathbf{Express} \end{array}$	Boeing	Bank of America	Caterpillar	Cisco Systems
1	14.67	43.30	66.15	10.59	100.25	14.94
2	15.29	43.73	69.26	10.89	101.30	15.14
3	15.82	43.86	69.42	11.18	102.59	16.04
4	15.87	43.86	70.29	11.47	102.72	16.41
5	15.92	43.96	70.86	11.87	103.42	16.59
6	15.95	44.13	71.17	11.89	103.56	16.82
7	15.96	44.20	71.43	12.28	104.86	16.88
8	16.18	44.75	71.52	12.32	105.58	16.93
9	16.19	44.94	71.60	12.36	105.87	17.01
÷		÷		:	÷	•
24	17.42	50.74	79.31	14.77	96.93	21.22
25	18.06	51.39	80.35	15.08	99.62	22.11
	\widetilde{X}_1	\widetilde{X}_2	\widetilde{X}_3	\widetilde{X}_4	\widetilde{X}_5	\widetilde{X}_6
remove mean	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ
	X_1	X_2	X_3	X_4	X_5	X_6 η

236/40

25

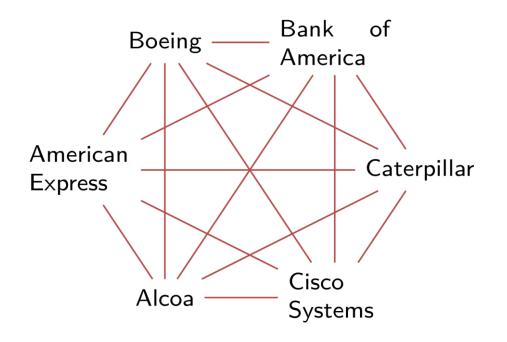
6

$$\widehat{\Theta}_{\rm ML} = \widehat{\Sigma}_n^{-1} = \begin{bmatrix} 60.82 & 4.85 & -6.21 & -21.34 & -0.07 & -4.81 \\ 4.85 & 7.34 & -1.22 & -5.50 & 0.37 & -4.78 \\ -6.21 & -1.22 & 3.03 & 2.08 & -0.08 & -2.69 \\ -21.34 & -5.50 & 2.08 & 14.31 & -0.42 & 1.69 \\ -0.07 & 0.37 & -0.08 & -0.42 & 0.06 & 0.07 \\ -4.81 & -4.78 & -2.69 & 1.69 & 0.07 & 11.38 \end{bmatrix}$$

$$\widehat{\Theta}_{\rm ML} = \widehat{\Sigma}_n^{-1} = \begin{bmatrix} 60.82 & 4.85 & -6.21 & -21.34 & -0.07 & -4.81 \\ 4.85 & 7.34 & -1.22 & -5.50 & 0.37 & -4.78 \\ -6.21 & -1.22 & 3.03 & 2.08 & -0.08 & -2.69 \\ -21.34 & -5.50 & 2.08 & 14.31 & -0.42 & 1.69 \\ -0.07 & 0.37 & -0.08 & -0.42 & 0.06 & 0.07 \\ -4.81 & -4.78 & -2.69 & 1.69 & 0.07 & 11.38 \end{bmatrix}$$

Boeing

Bank of America

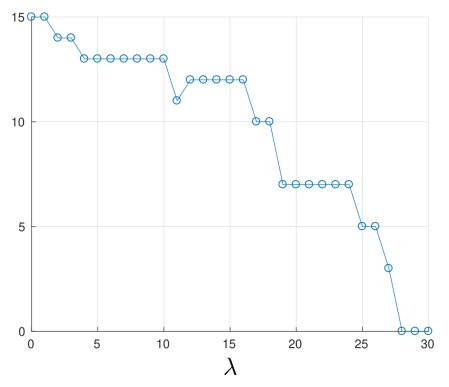

American Express

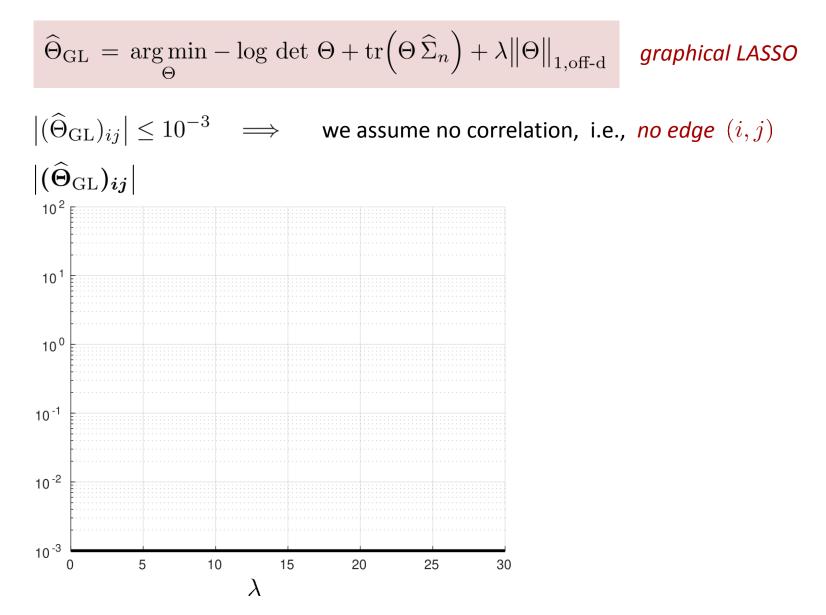
Caterpillar

$$\widehat{\Theta}_{\rm ML} = \widehat{\Sigma}_n^{-1} = \begin{bmatrix} 60.82 & 4.85 & -6.21 & -21.34 & -0.07 & -4.81 \\ 4.85 & 7.34 & -1.22 & -5.50 & 0.37 & -4.78 \\ -6.21 & -1.22 & 3.03 & 2.08 & -0.08 & -2.69 \\ -21.34 & -5.50 & 2.08 & 14.31 & -0.42 & 1.69 \\ -0.07 & 0.37 & -0.08 & -0.42 & 0.06 & 0.07 \\ -4.81 & -4.78 & -2.69 & 1.69 & 0.07 & 11.38 \end{bmatrix}$$

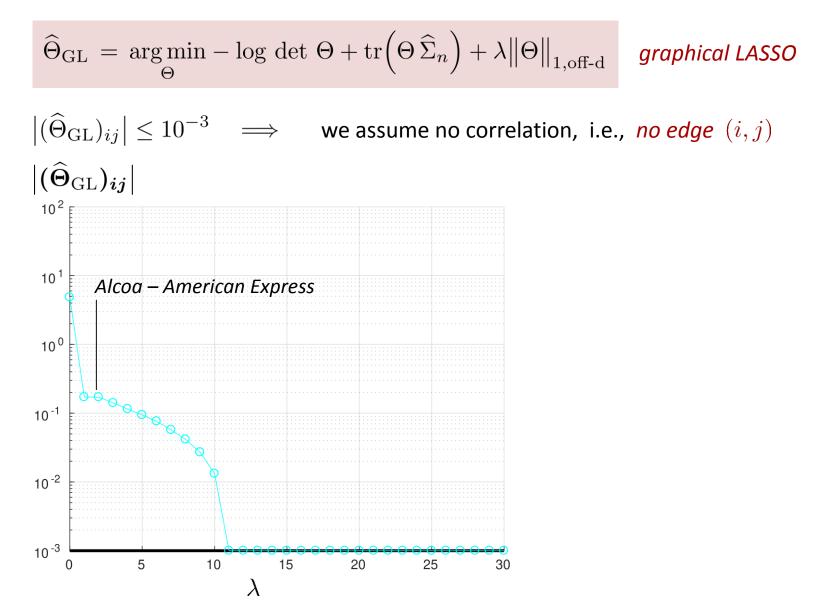
 $\widehat{\Theta}_{\mathrm{GL}} = \underset{\Theta}{\operatorname{arg\,min}} - \log \, \det \, \Theta + \operatorname{tr} \left(\Theta \, \widehat{\Sigma}_n \right) + \lambda \left\| \Theta \right\|_{1, \mathrm{off}\text{-d}}$

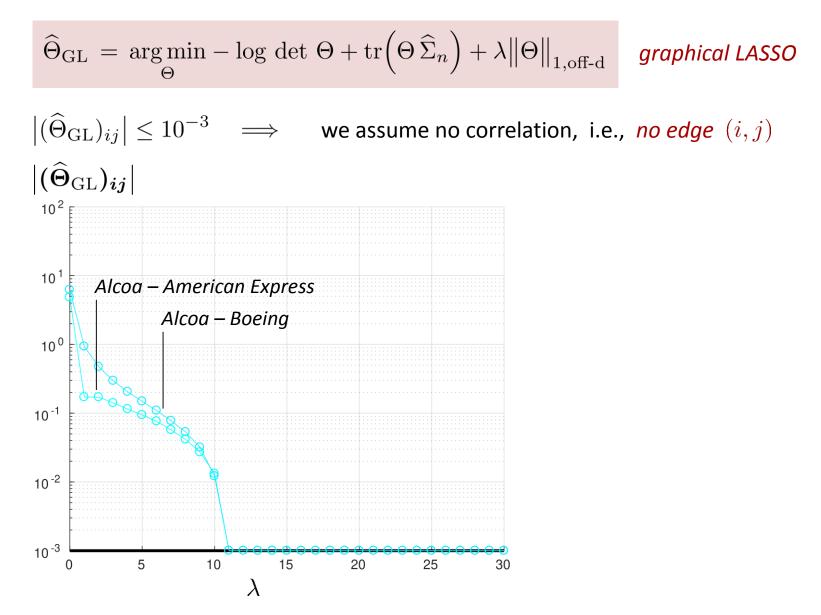
graphical LASSO

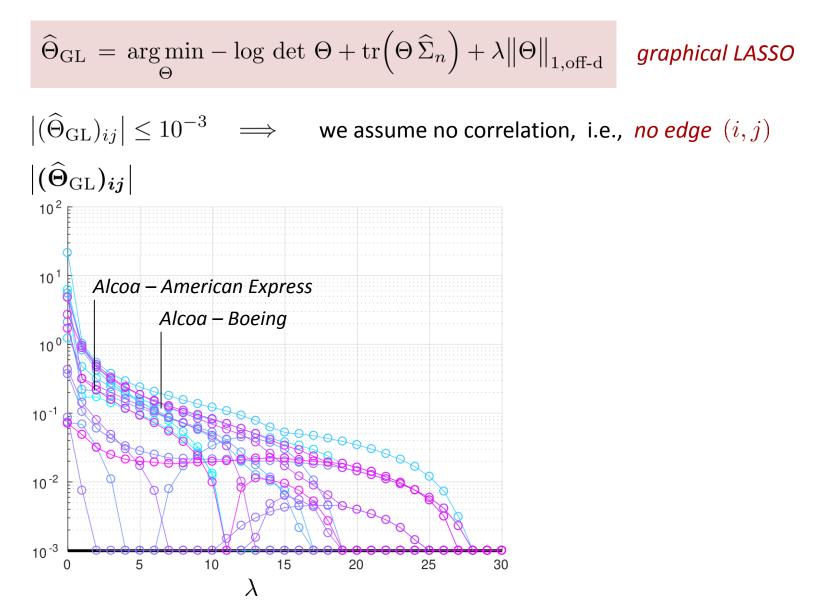

$$\widehat{\Theta}_{\rm GL} = \underset{\Theta}{\operatorname{arg\,min}} - \log \,\det\,\Theta + \operatorname{tr}\left(\Theta\,\widehat{\Sigma}_n\right) + \lambda \|\Theta\|_{1,{\rm off-d}} \quad \text{graphical LASSO}$$
$$\left| (\widehat{\Theta}_{\rm GL})_{ij} \right| \leq 10^{-3} \quad \Longrightarrow \quad \text{we assume no correlation, i.e., no edge } (i,j)$$

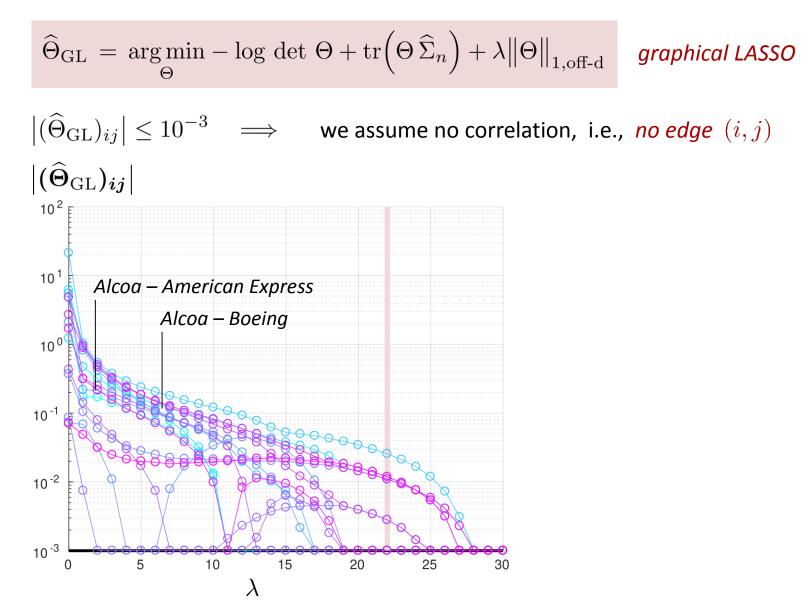

$$\widehat{\Theta}_{\text{GL}} = \underset{\Theta}{\operatorname{arg\,min}} - \log \, \det \, \Theta + \operatorname{tr} \left(\Theta \, \widehat{\Sigma}_n \right) + \lambda \left\| \Theta \right\|_{1, \text{off-d}} \quad \text{graphical LASSO}$$

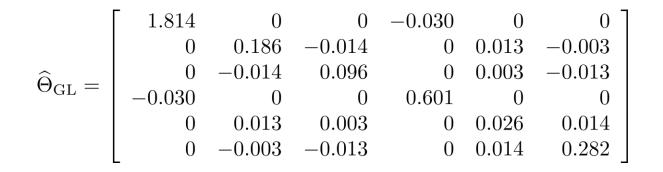
$$(\widehat{\Theta}_{\text{GL}})_{ij} \left| \leq 10^{-3} \quad \Longrightarrow \quad \text{we assume no correlation, i.e., no edge} \quad (i, j)$$

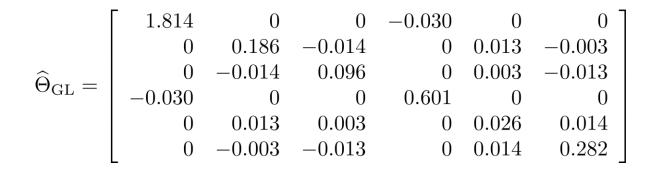

Number of edges

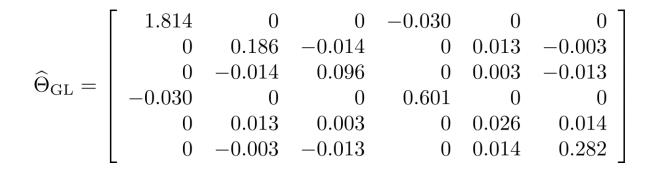


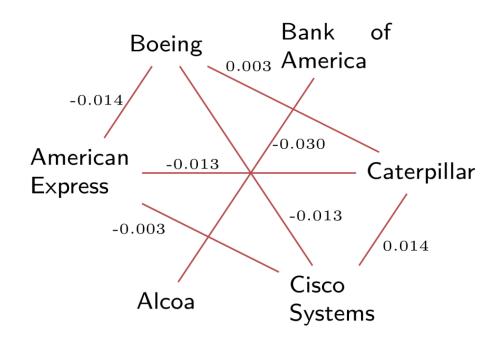









Boeing Bank of America


American Express

Caterpillar

Outline

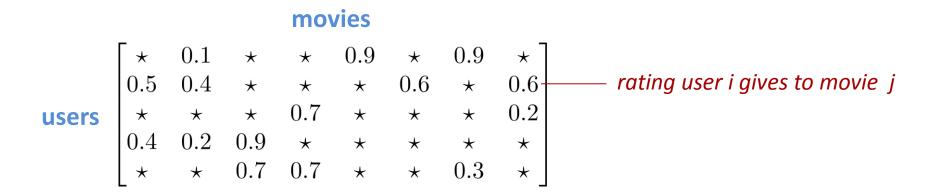
Motivation: Hypothesis Testing in High-Dimensions

Introduction to LASSO and other sparsity problems

Gaussian graphical model selection

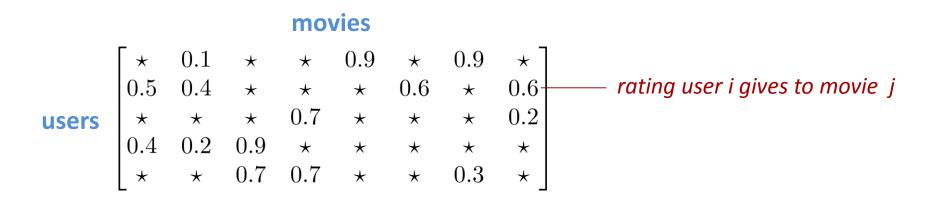
Matrix completion

Suppose someone gave you \$1M for *completing* a table like this...

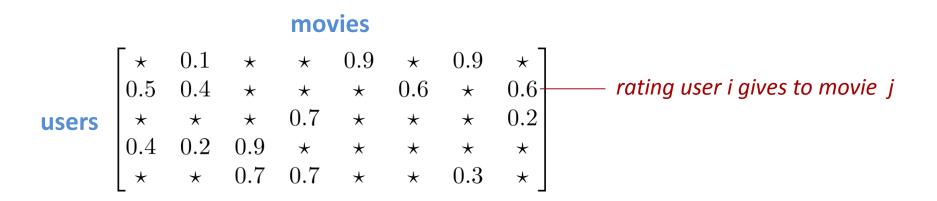


Suppose someone gave you \$1M for *completing* a table like this...

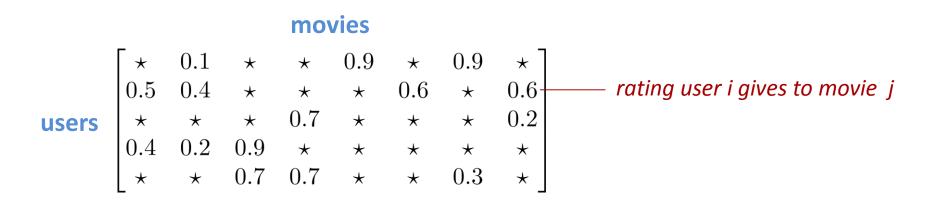
	movies								
users	[*	0.1	*	*	0.9	*	0.9	*]	
	0.5	0.4	*	\star	*	0.6	*	0.6	
	*	\star	*	0.7	\star	*	*	0.2	
	0.4	0.2	0.9	\star	\star	*	\star	*	
	*	*	0.7	0.7	*	*	0.3	*	



Suppose someone gave you \$1M for *completing* a table like this...

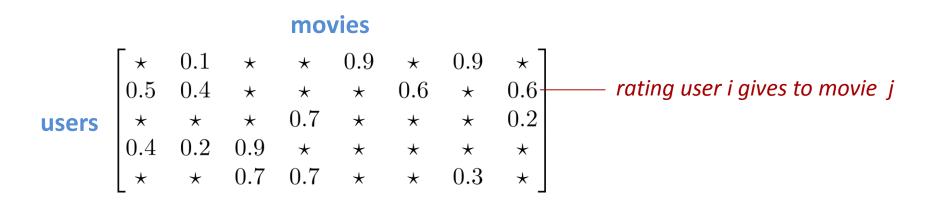

Suppose someone gave you \$1M for *completing* a table like this...

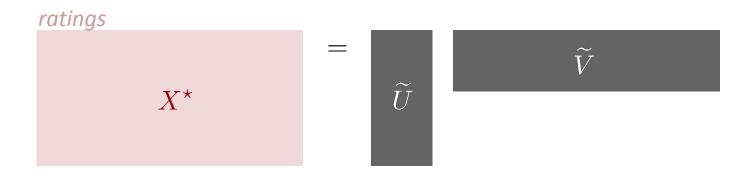
Key insight:



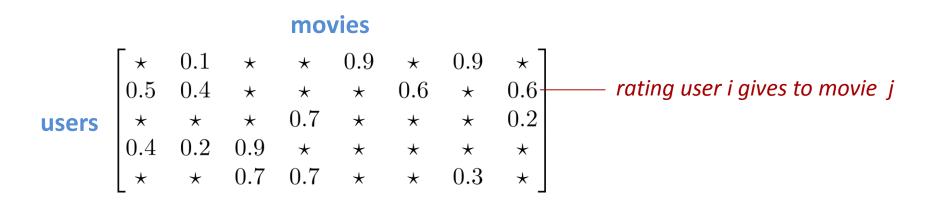
Suppose someone gave you \$1M for *completing* a table like this...

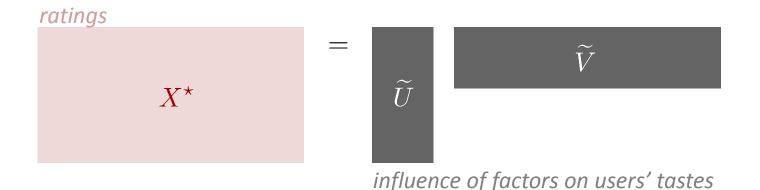
Suppose someone gave you \$1M for *completing* a table like this...

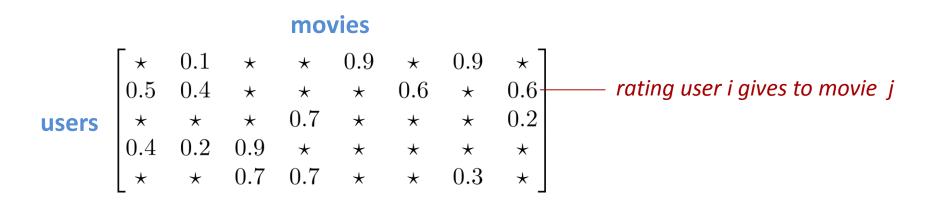


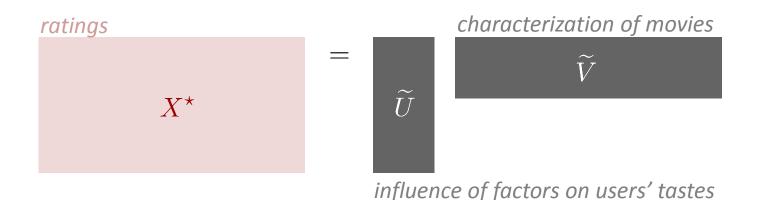

Key insight: only a few factors may explain users' tastes (genre, actors, ads, ...)

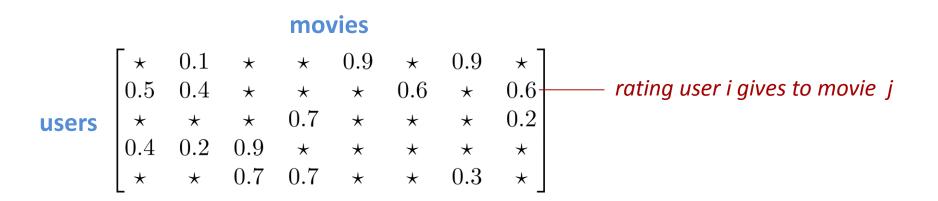
ratings

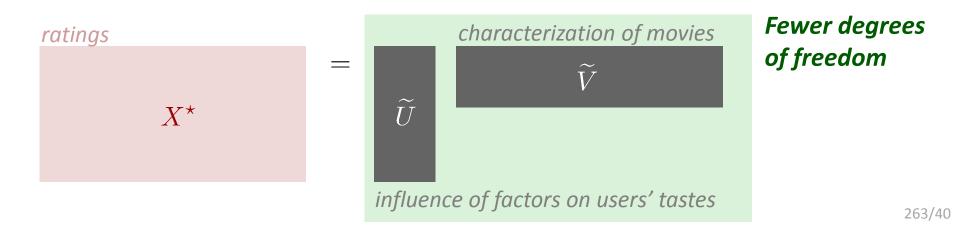

Suppose someone gave you \$1M for *completing* a table like this...




Suppose someone gave you \$1M for *completing* a table like this...

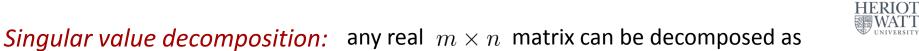


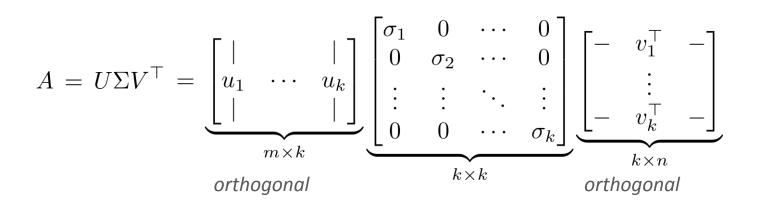

Suppose someone gave you \$1M for *completing* a table like this...



Suppose someone gave you \$1M for *completing* a table like this...

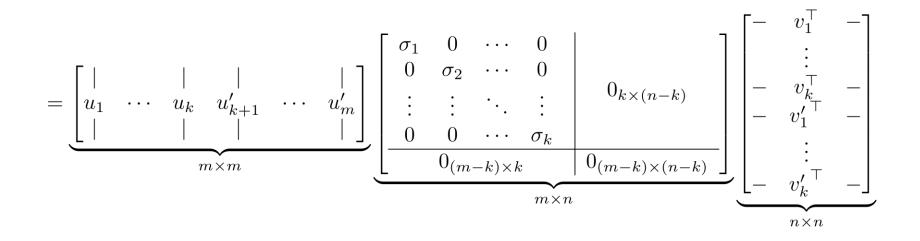
Singular value decomposition:



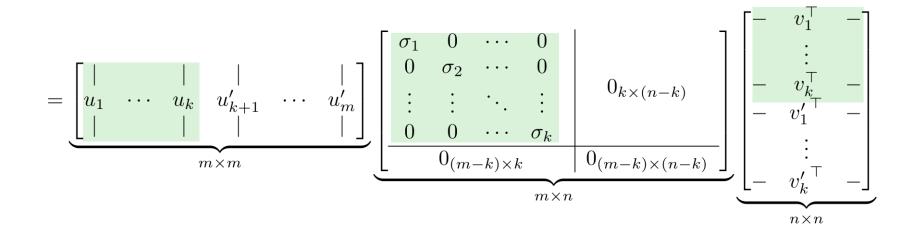


 $A = U\Sigma V^{\top}$

$$A = U\Sigma V^{\top} = \underbrace{\begin{bmatrix} | & & | \\ u_1 & \cdots & u_k \\ | & & | \end{bmatrix}}_{m \times k} \underbrace{\begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_k \end{bmatrix}}_{k \times k} \underbrace{\begin{bmatrix} - & v_1^{\top} & - \\ \vdots & \\ - & v_k^{\top} & - \end{bmatrix}}_{k \times n}$$

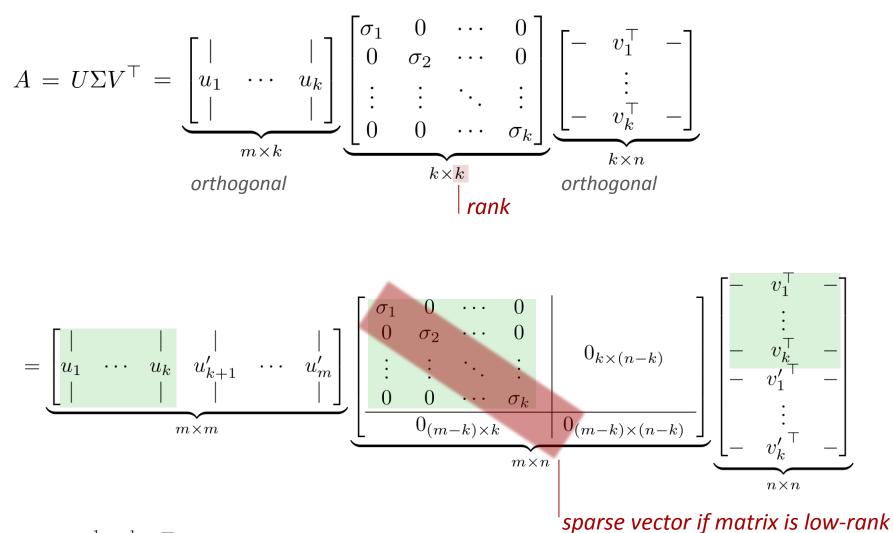


$$A = U\Sigma V^{\top} = \underbrace{\begin{bmatrix} | & & | \\ u_1 & \cdots & u_k \\ | & & | \end{bmatrix}}_{m \times k} \underbrace{\begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_k \end{bmatrix}}_{k \times k} \underbrace{\begin{bmatrix} - & v_1^{\top} & - \\ \vdots & \\ - & v_k^{\top} & - \end{bmatrix}}_{k \times n} \underbrace{k \times k}_{orthogonal}$$



$$A = U\Sigma V^{\top} = \underbrace{\begin{bmatrix} | & & | \\ u_1 & \cdots & u_k \\ | & & | \end{bmatrix}}_{m \times k} \underbrace{\begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_k \end{bmatrix}}_{k \times k} \underbrace{\begin{bmatrix} - & v_1^{\top} & - \\ \vdots \\ - & v_k^{\top} & - \end{bmatrix}}_{k \times n} \underbrace{k \times k}_{orthogonal}$$

$$A = U\Sigma V^{\top} = \underbrace{\begin{bmatrix} | & & | \\ u_1 & \cdots & u_k \\ | & & | \end{bmatrix}}_{m \times k} \underbrace{\begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_k \end{bmatrix}}_{k \times k} \underbrace{\begin{bmatrix} - & v_1^{\top} & - \\ \vdots \\ - & v_k^{\top} & - \end{bmatrix}}_{k \times n} \underbrace{k \times k}_{orthogonal} \underbrace{rank}_{rank}$$



'sparse vector if matrix is low-rank

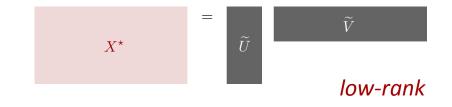
 $X^{\star} = \underbrace{U\Sigma^{\frac{1}{2}}}_{m \times k} \underbrace{\Sigma^{\frac{1}{2}}V^{\top}}_{k \times n}$



	movies								
	[*	0.1	*	*	0.9	*	0.9	*]	
users	0.5	0.4	*	*	*	0.6	*	0.6	
	*	\star	\star	0.7	*	*	*	0.2	
	0.4	0.2	0.9	\star	*	*	*	*	
	L *	*	0.7	0.7	*	*	0.3	*	
277/40									

 $\begin{array}{ll} \underset{X \in \mathbb{R}^{m \times n}}{\text{minimize}} & \operatorname{rank}(X) \\ \text{subject to} & X_{ij} = a_{ij} \,, \quad (i,j) \in \mathcal{O} \end{array}$

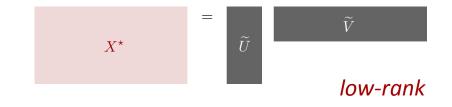
	movies							
	[*]	0.1	*	*	0.9	*	0.9	*]
users	0.5	0.4	*	*	*	0.6	*	0.6
	*	\star	\star	0.7	\star	*	\star	0.2
	0.4	0.2	0.9	\star	\star	*	\star	*
	*	*	0.7	0.7	*	*	0.3	*
278/40								


 $\begin{array}{ll} \underset{X \in \mathbb{R}^{m \times n}}{\text{minimize}} & \operatorname{rank}(X) \\ \text{subject to} & X_{ij} = a_{ij} \,, \quad (i,j) \in \mathcal{O} \end{array}$

observed entries

	movies							
	[*	0.1	*	*	0.9	*	0.9	*]
users	0.5	0.4	*	*	*	0.6	*	0.6
	*	\star	\star	0.7	*	*	*	0.2
	0.4	0.2	0.9	\star	*	\star	*	*
	*	*	0.7	0.7	*	*	0.3	*
279/40								

 $\begin{array}{ll} \underset{X \in \mathbb{R}^{m \times n}}{\text{minimize}} & \operatorname{rank}(X) \\ \text{subject to} & X_{ij} = a_{ij} \,, \quad (i,j) \in \mathcal{O} \\ \end{array}$


nonconvex

observed entries

	movies							
	[*	0.1	*	*	0.9	*	0.9	*]
users	0.5	0.4	*	*	*	0.6	*	0.6
	*	\star	*	0.7	*	*	*	0.2
	0.4	0.2	0.9	\star	*	*	*	*
	*	*	0.7	0.7	*	*	0.3	*
280/40								

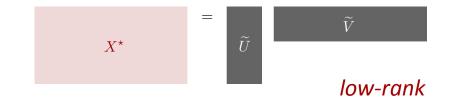
 $\begin{array}{ccc} \underset{X \in \mathbb{R}^{m \times n}}{\text{minimize}} & \operatorname{rank}(X) & & & & & \\ \text{subject to} & X_{ij} = a_{ij} \,, & (i,j) \in \mathcal{O} & & & \\ & & & & & & \\ & & & & & & \\ \text{relax} & & & & \\ \\ \underset{X \in \mathbb{R}^{m \times n}}{\text{minimize}} & \left\| \left(\sigma_1(X), \sigma_2(X), \dots, \sigma_r(X) \right) \right\|_1 \\ \text{subject to} & X_{ij} = a_{ij} \,, & (i,j) \in \mathcal{O} \end{array} \right\|$

 $\begin{array}{c} \text{movies} \\ \text{users} \begin{bmatrix} \star & 0.1 & \star & \star & 0.9 & \star & 0.9 & \star \\ 0.5 & 0.4 & \star & \star & \star & 0.6 & \star & 0.6 \\ \star & \star & \star & 0.7 & \star & \star & \star & 0.2 \\ 0.4 & 0.2 & 0.9 & \star & \star & \star & \star & \star \\ \star & \star & 0.7 & 0.7 & \star & \star & 0.3 & \star \end{bmatrix} \\ 281/40 \end{array}$

 $\begin{array}{ll} \underset{X \in \mathbb{R}^{m \times n}}{\text{minimize}} & \operatorname{rank}(X) & \text{nonconvex} \\ \text{subject to} & X_{ij} = a_{ij} \,, \quad (i,j) \in \mathcal{O} \\ & & & & & & \\ \end{array} \\ \text{relax} \\ \begin{array}{l} \underset{X \in \mathbb{R}^{m \times n}}{\text{minimize}} & \left\| (\sigma_1(X), \sigma_2(X), \dots, \sigma_r(X)) \right\|_1 \\ \text{subject to} & X_{ij} = a_{ij} \,, \quad (i,j) \in \mathcal{O} \end{array} \right\| \\ \end{array}$

	movies								
	[*	0.1	*	*	0.9	*	0.9	*]	
users	0.5	0.4	*	*	*	0.6	*	0.6	
	*	\star	\star	0.7	*	\star	*	0.2	
	0.4	0.2	0.9	*	*	\star	*	*	
	*	*	0.7	0.7	*	*	0.3	*	
282/40									

movior


 $\begin{array}{c} \underset{X \in \mathbb{R}^{m \times n}}{\text{subject to}} & \operatorname{rank}(X) & \text{nonconvex} \\ X_{ij} = a_{ij}, & (i,j) \in \mathcal{O} \\ & \text{observed entries} \\ \end{array}$ $\begin{array}{c} \text{relax} & \\ \underset{X \in \mathbb{R}^{m \times n}}{\text{subject to}} & \left\| (\sigma_1(X), \sigma_2(X), \dots, \sigma_r(X)) \right\|_1 \\ \text{subject to} & X_{ij} = a_{ij}, & (i,j) \in \mathcal{O} \end{array} \right\| = \left\| X \right\|_{\star}$

	IIIOVIC5								
	[*	0.1	*	*	0.9	*	0.9	*]	
users	0.5	0.4	*	*	*	0.6	*	0.6	
	*	\star	*	0.7	*	\star	\star	0.2	
	0.4	0.2	0.9	*	*	\star	\star	*	
	L *	*	0.7	0.7	*	*	0.3	*	
283/40									

movies

minimize $\operatorname{rank}(X)$ nonconvex $X \in \mathbb{R}^{m \times n}$ subject to $X_{ij} = a_{ij}, \quad (i,j) \in \mathcal{O}$ observed entries relax nuclear norm $\underset{X \in \mathbb{R}^{m \times n}}{\text{minimize}} \quad \left\| (\sigma_1(X), \sigma_2(X), \dots, \sigma_r(X)) \right\|_1 = \|X\|_{\star}$ subject to $X_{ij} = a_{ij}, \quad (i,j) \in \mathcal{O}$ minimize $||X||_{\star}$ $X \in \mathbb{R}^{m \times n}$

subject to $\operatorname{tr}(XM_l) = a_l$, $l = 1, \ldots, p$

284/40

movies

Theorem [Chandrasekaran et al. 12']

Theorem [Chandrasekaran et al. 12']

 $X^{\star} \in \mathbb{R}^{m \times n}$

Theorem [Chandrasekaran et al. 12']

 $X^{\star} \in \mathbb{R}^{m \times n}$ unknown, but rank k

Theorem [Chandrasekaran et al. 12']

 $X^{\star} \in \mathbb{R}^{m \times n}$ unknown, but rank k

 $a_l = \operatorname{tr}(XM_l), \ l = 1, \dots, p$ measurements

Theorem [Chandrasekaran et al. 12']

 $X^{\star} \in \mathbb{R}^{m \times n}$ unknown, but rank k

iid entries $\mathcal{N}(0,1)$ $a_l = \operatorname{tr}(XM_l), \ l = 1, \dots, p$ measurements

Theorem [Chandrasekaran et al. 12']

 $X^{\star} \in \mathbb{R}^{m \times n}$ unknown, but rank k

iid entries $\mathcal{N}(0,1)$ $a_l = \operatorname{tr}(XM_l), \ l = 1, \dots, p$ measurements

 $p \ge 3k\left(m+n-k\right)+1$

Theorem [Chandrasekaran et al. 12']

 $X^{\star} \in \mathbb{R}^{m \times n}$ unknown, but rank k

|^{iid} entries $\mathcal{N}(0,1)$ $a_l = \operatorname{tr}(XM_l), \ l = 1, \dots, p$ measurements

$$p \ge 3k (m + n - k) + 1 \qquad \Longrightarrow \qquad X^* = \underset{X}{\operatorname{argmin}} \quad \|X\|_{\star} \qquad \text{w.h.p.}$$

s.t. $\operatorname{tr}(XM_l) = a_l, \quad l = 1, \dots, p$

 $\begin{array}{ll} \underset{X \in \mathbb{R}^{m \times n}}{\text{minimize}} & \|X\|_{\star} \\ \text{subject to} & \operatorname{tr}(XM_l) = a_l \,, \quad l = 1, \dots, p \end{array}$

 X^{\star} : 30 × 30

$\underset{X \in \mathbb{R}^{m \times n}}{\operatorname{minimize}}$	$ X _{\star}$	
	$\operatorname{tr}(XM_l) = a_l ,$	$l = 1, \ldots, p$

 X^{\star} : 30 × 30

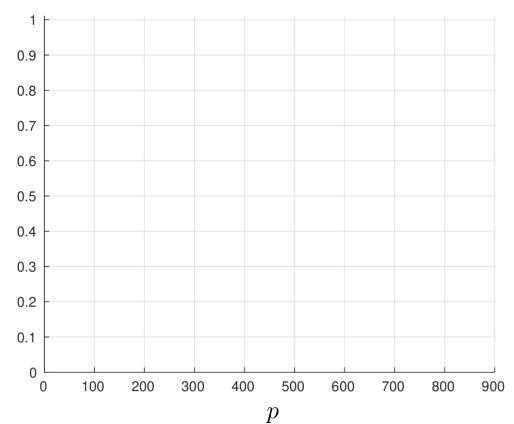
$$\operatorname{rank}(X^{\star}) = 3$$

 $\begin{array}{ll} \underset{X \in \mathbb{R}^{m \times n}}{\text{minimize}} & \|X\|_{\star} \\ \text{subject to} & \operatorname{tr}(XM_l) = a_l \,, \quad l = 1, \dots, p \end{array}$

 X^{\star} : 30×30

$$\operatorname{rank}(X^{\star}) = 3$$

 $\begin{array}{ll} \underset{X \in \mathbb{R}^{m \times n}}{\text{minimize}} & \|X\|_{\star} \\ \text{subject to} & \operatorname{tr}(XM_l) = a_l \,, \quad l = 1, \dots, p \\ \\ & & \\$



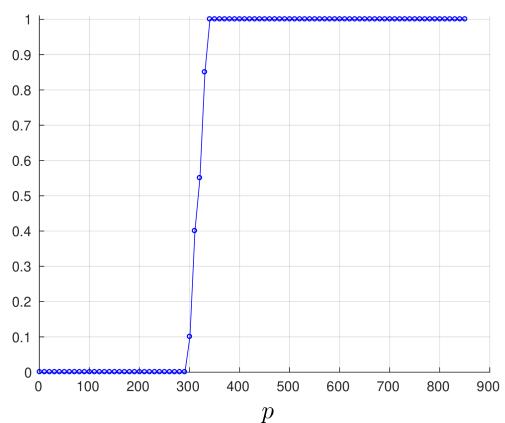
 X^{\star} : 30 × 30

$$\operatorname{rank}(X^{\star}) = 3$$

 $\begin{array}{ll} \underset{X \in \mathbb{R}^{m \times n}}{\text{minimize}} & \|X\|_{\star} \\ \text{subject to} & \operatorname{tr}(XM_l) = a_l \,, \quad l = 1, \dots, p \\ \\ & & \\$

Sucess rate (20 trials)

297/40

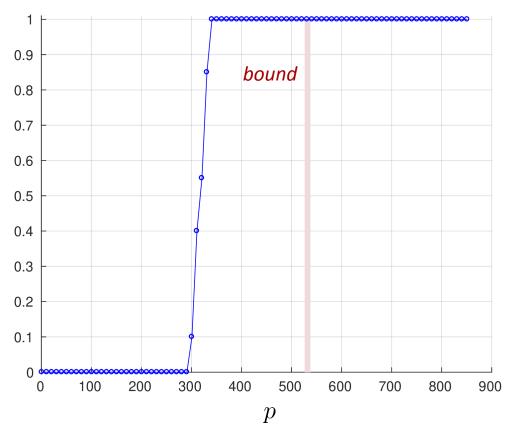


 X^{\star} : 30×30 rank (X^{\star})

$$\operatorname{rank}(X^{\star}) = 3$$

 $||X||_{\star}$ $\underset{X \in \mathbb{R}^{m \times n}}{\text{minimize}}$ subject to $\operatorname{tr}(XM_l) = a_l$, $l = 1, \dots, p$ iid entries $\mathcal{N}(0, 1)$

Sucess rate (20 trials)

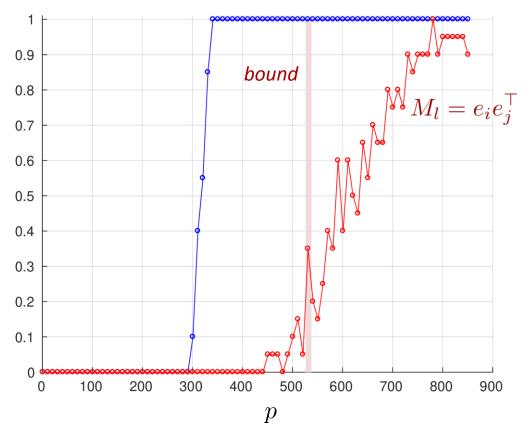


 X^{\star} : 30 × 30 rank (X^{\star})

$$\operatorname{rank}(X^{\star}) = 3$$

$$\begin{array}{ll} \underset{X \in \mathbb{R}^{m \times n}}{\text{minimize}} & \|X\|_{\star} \\ \text{subject to} & \operatorname{tr}(XM_l) = a_l \,, \quad l = 1, \dots, p \\ \\ & & \\$$

Sucess rate (20 trials)

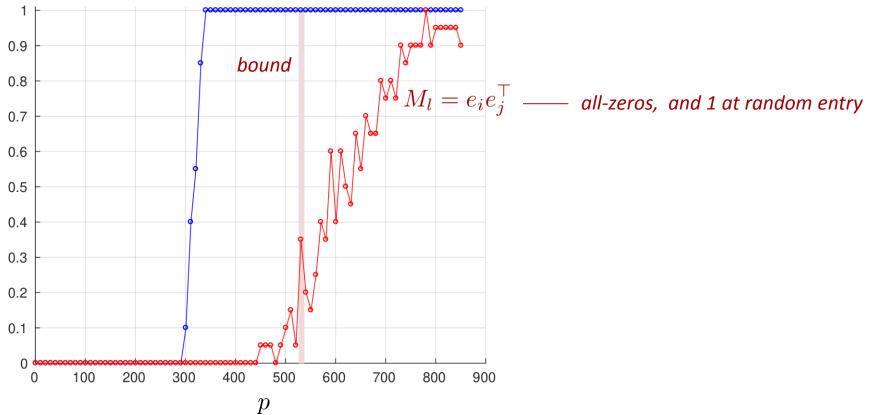


 X^{\star} : 30 × 30

$$\operatorname{rank}(X^{\star}) = 3$$

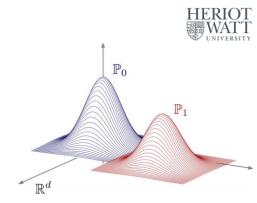
Sucess rate (20 trials)

300/40



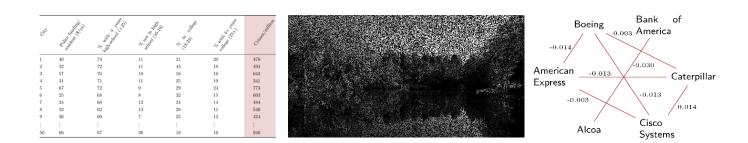
 X^{\star} : 30 × 30

$$\operatorname{rank}(X^{\star}) = 3$$


 $\begin{array}{ll} \underset{X \in \mathbb{R}^{m \times n}}{\text{minimize}} & \|X\|_{\star} \\ \text{subject to} & \operatorname{tr}(XM_l) = a_l \,, \quad l = 1, \dots, p \\ & & \\ &$

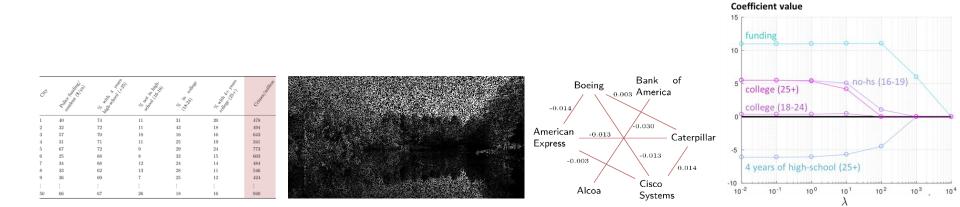
Sucess rate (20 trials)

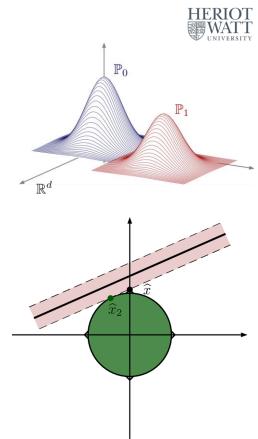
Structure is key in *high-dimensional* problems



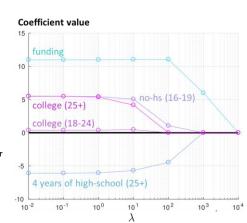
- Structure is key in *high-dimensional* problems
- Sparsity encodes several types of structure

- Structure is key in *high-dimensional* problems
- Sparsity encodes several types of structure
- Several applications (and theory)




- Structure is key in *high-dimensional* problems
- Sparsity encodes several types of structure
- Several applications (and theory)

LASSO, basis pursuit, ... improve *interpretability* and (often) *performance*



- Structure is key in *high-dimensional* problems
- Sparsity encodes several types of structure
- Several applications (and theory)

- LASSO, basis pursuit, ... improve *interpretability* and (often) *performance*
- Didn't cover: optimization theory and *algorithms*

M. J. Wainwright *High-Dimensional Statistics: A Non-Asymptotic Viewpoint* Cambridge University Press, 2019

T. Hastie, R. Tibshirani, M. Wainwright **Statistical Learning with Sparsity: The Lasso and Generalizations** CRC Press, 2016 <u>https://web.stanford.edu/~hastie/StatLearnSparsity/</u>

M. J. Wainwright *High-Dimensional Statistics: A Non-Asymptotic Viewpoint* Cambridge University Press, 2019

T. Hastie, R. Tibshirani, M. Wainwright **Statistical Learning with Sparsity: The Lasso and Generalizations** CRC Press, 2016 <u>https://web.stanford.edu/~hastie/StatLearnSparsity/</u>

V. Chandrasekaran, B. Recht, P. A. Parrilo, A. S. Willsky *The Convex Geometry of Linear Inverse Problems* Foundations of Computational Mathematics, Vol. 12, pp. 805-849, 2012

	COMPUTATIONAL MATTEMATICS
he Corners Gootsutry of Linear	Inverse Publicias
akat Chandrowkaran - Response Hadd Ale A. Panella - Alea N. Villela	
nad Marcan Michael Phone VI State at a State Bill State 4	Summer 1965 Tel:
Indexed is apply assumption operation wave a delayer of the grant of a set of assump- ing production in the set of a set of a set of applying the set of a set of a set of a set of the set of a	when the restant of the second restant of the second second second restant of the second seco
managad b Ionand Gody Gale at a Stranger State part and Carlos Stranger State at a stranger (1912) 1913	di nishadar di Kaladap, Kashas,
Enter Andre Sonne Desetuet de mette et Persone	Pic.m. PLINC DA
 Farris, J. C. (2004) Francisco M. Martinez, Probability Systems, Toport, Systems Farriers, Martinezza, Probability, Columbus, Systems Farriers, Martinezza, Probability, Columbus, 2014. 	Association (Research Institution) and a second secon
(feat)	
The state of the s	

M. J. Wainwright *High-Dimensional Statistics: A Non-Asymptotic Viewpoint* Cambridge University Press, 2019

T. Hastie, R. Tibshirani, M. Wainwright **Statistical Learning with Sparsity: The Lasso and Generalizations** CRC Press, 2016 <u>https://web.stanford.edu/~hastie/StatLearnSparsity/</u>

V. Chandrasekaran, B. Recht, P. A. Parrilo, A. S. Willsky *The Convex Geometry of Linear Inverse Problems* Foundations of Computational Mathematics, Vol. 12, pp. 805-849, 2012

J. F. C. Mota, N. Deligiannis, M. R. D. Rodrigues *Compressed sensing with side information: Geometrical interpretation and performance bounds* IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2014

P. Ravikumar, M. J. Wainwright, G. Raskutti, B. Yu *High-dimensional covariance estimation by minimizing L1-penalized log-determinant divergence* Electronic Journal of Statistics, Vol. 5, pp. 935-980, 2011

Ten o Conservation de la Conservation les activités alles de la Conservation	FOUNDATIONS of COMPUTATIONAL MATHEMATICS	
The Corners Gourantry of Line		
Valid Candinataran Regards R. Reb A Paully, Alex 5 Wilds	and a	
Second Theorem 2014 Index 7 Strang Science and a 14 State 2014 COLUMN 1	NICONSIST 100 NIC	
The defining part of sing and the real scatter incomparison of reacher than the dimension party appropriate standard of property and	to a subject of the state of the low to the opportune of the state of	
transition, and the transmission opticalistic	much that to how, a first broad in.	
where problems. The class of a region models considered includes these investigations of the second se		
Communitable Incomed Conduc School and access School School and Access Separation of Control and School Sch	en falfasis inder ef Friedrig, Friday,	
er al solution, makete		
Side in the second second second of Paul and Complex Second Seco		
14. Parties A. & Statey Concerning the following contribution Systems 1 Computer Vision Manufacture Induction Table	Space and Restal Report of the	
the second se		
and an inclusion		
	0.000	

V. Chandrasekaran *Convex Optimization Methods for Graphs and Statistical Modeling* PhD thesis, MIT, 2011

M. S. Brown, M. Pelosi, H. Dirska *Dynamic-radius species-conserving genetic algorithm for the financial forecasting of Dow Jones index stocks* Machine Learning and Data Mining in Pattern Recognition, Vol. 7988, pp. 27-41, 2013

Code & presentation

https://github.com/joaofcmota/udrc-summerschool

http://jmota.eps.hw.ac.uk/documents/Mota21-HighDimensionalStatsAndSparsity-UDRC.pdf