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I. Introduction
In several applications, from biological microscopy and

healthcare to consumer electronics, imaging sensors produce
images with sub-optimal resolution. To super-resolve them, one
has to make assumptions about the unobserved pixels; and
different methods make different types of assumptions. Super-
resolution (SR) methods can be divided into interpolation-
based (e.g., [1]), sparsity-based, and learning-based.

Sparsity-based methods assume that images have parsimo-
nious representations in some domain, e.g., in the edge-space
[2]. As, in general, they are based on convex optimization, such
methods are robust and have strong theoretical guarantees.
Currently, however, the best performing methods are learning-
based (e.g., [3]–[5]). These consist of deep neural networks
(DNNs) that map low-resolution (LR) to high-resolution (HR)
images and whose weights are learned by solving a nonconvex
optimization problem using extensive training data. Although
learning-based methods have outstanding performance, they
are unstable, lack theoretical foundations, and suffer from
generalization issues, i.e., may fail to super-resolve an image
that differs significantly from the images in the training set.

In this paper, we propose a robust method that combines the
advantages of both sparsity-based and learning-based methods.
The method has as inputs the LR image and the (super-
resolved) output of a DNN. It can thus be viewed as a post-
processing step. Experiments using the DNNs in [4], [5] show
that our scheme not only systematically improves the outputs
of those networks, but also mitigates generalization problems.
For example, for upscaling factors of 2 and 4, it leads to a gain
of 0.8 − 2.6 dB in the average PSNR.

II. Our Method

Problem statement. Let X⋆ ∈ RM×N represent a HR image
and let x⋆ ∈ Rn be its vectorization, with n = MN . Here,
X⋆ is either a grayscale image or, as in [4], [5], represents the
luminance channel of a color image in YCrCb space. Suppose
we have access to a LR version of x⋆, denoted b ∈ Rm, where
m < n, and which can be related to x⋆ linearly: b = Ax⋆,
with A ∈ Rm×n being a subsampling matrix. Our goal is to
reconstruct x⋆ from b and A, i.e., to super-resolve b.

Our method. As the equation b = Ax has an infinite number
of solutions, to be able to reconstruct x⋆ one has to make as-
sumptions about its structure. A common assumption in many
imaging tasks is that x⋆ has a small number of edges, which can
be captured by a small 2D TV-norm ∥x⋆∥TV = ∥Dx⋆∥1, where
D is a circulant matrix that computes horizontal and vertical
gradients. As mentioned, however, such a sparsity-based prin-
ciple, although stable and well understood, is outperformed by
learning-based algorithms. We thus propose to reconstruct x⋆

using both TV minimization and information from the output
w ∈ Rn of a DNN that super-resolves x⋆ (by using b). Fig.

1 illustrates our scheme, which is inspired by the framework
of ℓ1-ℓ1 minimization [6]. Given the LR image b, and a HR
image w computed by a DNN, it integrates b and w via TV-
TV minimization:

min
x

∥x∥TV + β∥x − w∥TV s.t. Ax = b , (1)

with β ≥ 0. As suggested in [6], we set β = 1. Problem (1) is
convex and can be solved, e.g., using ADMM [7].

III. Experimental Results

Experimental setup. We instantiated the DNNs in Fig. 1
with two pretrained networks: the coupled deep autoencoder
(CDA) [4], and the cascaded sparse coding based network
(CSCN) [5]. CDA consists of two autoencoders that learn in-
trinsic representations of image patches: one of a HR patch, and
another of the corresponding LR patch (previously upsampled
via bi-cubic interpolation). A one-layer network connects the
intrinsic representations. CSCN [5] takes as input a LR patch
(previously upsampled via bi-cubic interpolation) and extracts
its features with a convolutional layer. The features are then
fed to a LISTA [8] network, yielding a sparse representation.
The HR patch is reconstructed by multiplying the sparse code
by a HR dictionary. We used the Matlab implementation in [9].

For each DNN instantiation, we super-resolved the test im-
ages in datasets Set5 [10] and Set14 [11] using upscaling factors
of 2 and 4, and compared three SR procedures: simple TV
minimization, i.e., (1) with β = 0 using the TVAL3 solver [12],
DNN (CDA or CSCN), and our proposed method, i.e., (1) with
β = 1 and w equal to the output of the DNN. Whole images
were considered as inputs to the solvers for β = 0 and β = 1.

Results. Table I (resp. II) shows the average PSNR and SSIM
[13], both computed on the luminance channel, of the super-
resolved images using CDA (resp. CSCN). It can be observed
that our method achieves better results in both metrics.

Figures 2 and 3 show the results for an example test image,
for each of the two DNN instantiations: Fig. 2 for CDA, Fig. 3
for CSCN. These images were obtained by merging the output
of the DNN and the bi-cubic upscaled chrominance channels
of the original image and converting them to RGB. The region
highlighted in the figures illustrates that our method preserves
the details of the parrot’s eye better than both simple TV
minimization and the DNNs implemented by CDA and CSCN.

IV. Conclusion
We introduced a robust super-resolution (SR) algorithm that

takes as input the output of another SR method, and improves
it. Our experiments showed that the proposed algorithm leads
to 0.8 − 2.6 dB improvement in the average PSNR over two
state-of-the-art SR methods based on deep neural networks.
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Fig. 2. Results on Bird image using CDA [4]. (a) Original (b) (1) with β = 0 (c) CDA [4] (d) (1) with β = 1.
Ground truth (1) with β = 0 CSCN [5] (1) with β = 1
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Fig.3. Results on Bird image using CSCN [5]. (a) Original (b) (1) with β = 0 (c) CSCN [5] (d) (1) with β = 1.

Fig. 1. Block diagram representation of our method.

TABLE I: Average PSNR (SSIM) results using CDA [4].

Dataset Scale (1), β = 0 CDA [4] (1), β = 1

Set5 ×2 32.89 (0.95) 36.52 (0.96) 38.63 (0.98)
×4 26.08 (0.84) 30.39 (0.87) 31.54 (0.91)

Set14 ×2 29.83 (0.94) 32.44 (0.96) 34.37 (0.97)
×4 24.29 (0.79) 27.54 (0.83) 28.37 (0.87)

TABLE II: Average PSNR (SSIM) results using CSCN [5].

Dataset Scale (1), β = 0 CSCN [5] (1), β = 1

Set5 ×2 33.04 (0.96) 36.52 (0.96) 38.95 (0.98)
×4 26.21 (0.84) 30.50 (0.88) 31.80 (0.92)

Set14 ×2 29.87 (0.95) 31.48 (0.95) 34.04 (0.97)
×4 24.60 (0.81) 26.22 (0.81) 27.96 (0.88)
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