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ABSTRACT

The remarkable performance of deep neural networks (DNNs) cur-
rently makes them the method of choice for solving linear inverse
problems. They have been applied to super-resolve and restore im-
ages, as well as to reconstruct MR and CT images. In these applica-
tions, DNNs invert a forward operator by finding, via training data,
a map between the measurements and the input images. It is then
expected that the map is still valid for the test data. This framework,
however, introduces measurement inconsistency during testing. We
show that such inconsistency, which can be critical in domains like
medical imaging or defense, is intimately related to the generaliza-
tion error. We then propose a framework that post-processes the out-
put of DNNs with an optimization algorithm that enforces measure-
ment consistency. Experiments on MRI images show that enforcing
measurement consistency via our method can lead to large gains in
reconstruction performance.

Index Terms— Neural networks, linear inverse problems, med-
ical imaging, optimization, total variation.

1. INTRODUCTION

Many applications in science and engineering require solving inverse
problems in which the number of available measurements is much
smaller than the number of parameters to be estimated. Examples
include various medical imaging modalities, remote sensing, image
restoration, seismography, and LiDAR depth estimation. In such
problems, we have access tom linear measurements of a vector x? ∈
Cn that we wish to estimate. Formally, we have the linear system

b = Ax? + e , (1)

where b ∈ Cm is the vector of known measurements, A ∈ Cm×n

is a known measurement matrix with more columns than rows, i.e.,
m < n, and e ∈ Cm is a noise vector. As the number of measure-
ments in (1) is smaller than the number of variables, there is often an
infinite number of vectors x ∈ Cn satisfying (1).

The classical approach of inferring x? from (1) formulates an
optimization problem for finding the simplest solution of (1) ac-
cording to the known structure of x?. Such structure is captured
by regularizers such as the `1-norm [1], which enforces sparsity in
a given domain, or different versions like the total variation (TV)
norm [2] and structural or hierarchical priors [3]. In recent years,
however, these optimization-based methods for linear inverse prob-
lems have been surpassed by data-driven approaches, specifically,
deep (convolutional) neural networks (DNNs). By leveraging large
datasets of input-output pairs (x?, b) during training, DNNs are able
to automatically learn the structure of typical signals. During de-
ployment, this enables them not only to reconstruct x? with quality
better than optimization approaches, but also to do it faster. This

phenomenon has been observed in several linear inverse problems,
including single-image super-resolution [4], denoising [5], biomedi-
cal imaging [6], and LiDAR depth estimation [7].

Despite these successes, DNNs still suffer from important draw-
backs that have slowed down their application in critical domains,
such as autonomous driving or fully automated medical diagnosis.
These include overfitting, lack of sharp theoretical guarantees, and
instability with respect to small data perturbations [8]. A related
drawback, which is particularly important in linear inverse problems
and which we explore in this paper, is measurement inconsistency.

Measurement inconsistency in DNNs. Typically, DNNs for
linear inverse problems are trained by minimizing a real-valued loss
function ` : Cn × Cn → R, usually the `2-norm, over all the T
samples {x(t)}Tt=1 of the training set. That is, if fθ : Cm → Cn

represents a DNN with parameters θ, one finds the optimal set of
parameters θ? by solving

minimize
θ

1

T

T∑
t=1

`
(
x(t), fθ(Ax

(t))
)
, (2)

where, to simplify, we assumed that the noise e in (1) is negligible.
Hence, the argument of fθ in (2) represents the tth instance of the
measurement vector b in (1) with e = 0. Once trained, given a vector
of measurements b from a sample x? absent from the training set, the
DNN estimates x? by simply applying a forward pass to b:

w := fθ?(b) . (3)

We say that the trained DNN fθ? is measurement inconsistent when
Aw 6= b.1 In fact, we show in Proposition 1 that measurement in-
consistency is a by-product of generalization errors, even when the
DNN is trained to minimize inconsistency, i.e., when the loss func-
tion in (2) is `(x, w) := ‖Ax−Aw‖22.

This calls for a new framework that not only enforces data con-
sistency, but also can harness the excellent performance of DNNs.
And while the data consistency problem has been identified as an im-
portant one, for example, in medical imaging, the existing solutions
consist mostly of modifying the network architecture. For instance,
[9, 10] introduce skip-connections between the input and output, and
[11] trains a DNN using different models of A. These solutions still
fall under the framework of (2) and, thus, suffer from the problem
highlighted in Proposition 1. Our approach to solve this problem
consists of post-processing the output of the DNN, w in (3), with an
optimization algorithm that enforces consistency.

Our approach and contributions. Fig. 1 shows a diagram
of the scheme we propose. The scheme addresses the measure-
ment consistency problem by formulating an optimization problem,

1This definition can be extended to the case in which e is non-negligible
but, for example, bounded: ‖e‖2 ≤ σ. In this case, we say the DNN is
measurement inconsistent when ‖Aw − b‖2 > σ.



Fig. 1: Our framework. Measurement consistency is enforced by
post-processing the output of a DNN designed for a linear inverse
problem with an optimization problem with Ax = b as a constraint.

named TV-TV minimization, that explicitly enforces consistency via
constraints, while minimizing a cost function that balances a small
total variation (TV) of the reconstructed image — as in classical
optimization-based approaches — and proximity to the output of the
DNN, as measured by the TV-norm. This last term is the key el-
ement of our approach: it allows combining the major benefit of
optimization-based methods, i.e., the ability to enforce constraints
explicitly, with the major benefit of data-driven methods, i.e., their
outstanding performance. Our experiments show that our framework
improves the reconstruction performance of state-of-the-art DNNs
for MRI reconstruction, e.g., MoDL [12], by 5 dB in PSNR. We
summarize our contributions as follows:

• We show that the conventional method for training DNNs ac-
cording to empirical loss minimization (2) cannot solve the
measurement consistency problem in linear inverse problems;
this is done in Proposition 1 and illustrated with experiments.

• We propose a framework that addresses the measurement
consistency problem by combining an optimization-based
method, TV-TV minimization, with DNNs.

• We apply our framework to MRI and show that it can lead to
significant gains with respect to state-of-the-art DNNs.

We point out that we proposed a particular instance of this frame-
work in [13, 14] for single-image super-resolution. There, the ob-
served gains in PSNR were much smaller (< 1 dB) than the ones
observe here for MRI. In this paper, we address the consistency prob-
lem theoretically. And to apply TV-TV minimization to MRI, we had
to generalize the algorithm to handle complex vectors and matrices.

After overviewing prior work in Section 2, we present our the-
oretical result on consistency in Section 3. Section 4 describes our
framework, and Section 5 our experiments on MRI reconstruction.

2. RELATED WORK

Optimization-based approaches. Inverse linear problems have tra-
ditionally been solved via optimization algorithms. The associated
optimization problem is formulated such that its solution simulta-
neously conforms to the observed measurements and is sufficiently
simple according to some prior knowledge. The latter is usually en-
coded by sparsity in some domain, such as wavelet or DCT represen-
tations [1], or in gradient space [2]. Sparsity can be encoded directly
via an `0-pseudo-norm, which leads to nonconvex problems that can
be solved via greedy approaches [15, 16], or via a convex relaxation
such as the `1-norm, which leads to convex problems that can be
provably solved [17]. Convex formulations also usually have strong
theoretical reconstruction guarantees [18]. Indeed, [18] generalizes

the concept of simplicity via sparsity to atomic norms, which apply
to a wider range of problems. In the field of MRI reconstruction,
a common choice for simplicity is sparsity in the gradient domain,
which is captured by a total variation (TV) norm [2, 19, 20] or gen-
eralizations of the TV-norm [21].

DNN-based methods. Deep neural networks (DNNs) have been
successfully applied in various linear inverse problems [4, 5, 6, 7,
10, 22]. These networks learn to invert a forward model by leverag-
ing several input-output pairs obtained from a single measurement
operator. Once trained, they can be used to reconstruct the input
of the operator from its output by a simple forward pass. This op-
erator, however, often fails to guarantee measurement consistency.
Attempts to solve this problem include adding skip-connections to
share information from the input to the final layer [9, 10, 23], and
embedding a data consistency layer in the network [22, 24]. Another
approach is to unroll iterative optimization algorithms that alternate
between data consistency and a nonlinear operation related to prior
knowledge. This idea was first proposed [25], and it spawned dif-
ferent lines of research, e.g., [26, 12, 27]. For example, [12] trains
a DNN denoiser whose output is then fed to an optimization block
that acts as a data consistency layer [12]. As our experiments show,
this is still not enough to guarantee consistency.

Instability in DNNs. In recent years, several issues have been
identified in the deployment of DNNs, including overfitting and data
memorization [28], and adversarial examples [29]. For linear inverse
problems, [8] studied how small perturbations to the measurement
or to the sampling method can lead to artefacts in the reconstruc-
tion. Moreover, the reconstructed outputs may miss fine details that
are present in measurements, a feature that can have critical conse-
quences in medical imaging.

To overcome this, we present a framework that leverages the
good performance of DNNs, while enforcing measurement consis-
tency. Consequently, the risk of missing such details is reduced.
Before presenting our framework, we first see how inconsistency in
DNNs is related to the generalization error.

3. THE PROBABILITY OF INCONSISTENCY IN DNNS

Here we adopt a probabilistic setting to analyze the measurement
inconsistency problem of DNNs. Henceforth, we assume the model
in (1) with negligible noise, i.e., e = 0. Let X ∈ Cn represent
a vector of n random complex variables whose ith component is
Xi = Re{Xi} + jIm{Xi}. To avoid technicalities, we assume all
the functions we deal with are measurable, including the DNN fθ :
Cm → Cn, for any θ. Without loss of generality, we assume the
following squared `2-norm loss: `(x, w) := ‖Ax− Aw‖22. Hence,
the expected loss associated to fθ is defined as

`exp(fθ) := E
[∥∥AX −Afθ(AX)

∥∥2
2

]
, (4)

where expectation is with respect to X . The empirical loss of fθ on
the training set T := {x(t)}Tt=1, where x(t) is a realization of X , is

`emp
(
fθ ; T

)
:=

1

T

∑
t∈T

∥∥Ax(t) −Afθ(Ax(t))∥∥22 . (5)

Notice that these definitions differ from conventional definitions of
expected and empirical loss in two ways (see, e.g., [30, 27] for ex-
amples in linear inverse problems). First, the probability distribution
is defined over the output space X only. Indeed, under the assump-
tion that the measurements in (1) are noiseless, the input random



variable B ∈ Cm is completely specified by X: B = AX . Sec-
ond, the `2-norm is applied to the output rather than to the input
space: that is, in (4), we consider ‖AX − Afθ(AX)‖22 rather than
‖X − fθ(AX)‖22. This reflects a training strategy to minimize in-
consistency, and captures the type of regularization terms used in
deep prior or network unrolling models, e.g., MoDL [12]. This is
without loss of generality, as the loss can include additional terms.
The following proposition bounds the probability of the DNN out-
putting an inconsistent result as a function of the generalization error
c := `exp(fθ)− `emp(fθ ; T ).

Proposition 1. Consider fθ? with a parameter θ? that achieves an
empirical loss ε := `emp(fθ? ; T ) > 0. Assume the random variable
Y := ‖AX − Afθ?(AX)‖22 is upper bounded by C almost surely.
Assume a positive generalization error c := `exp(fθ)−ε > 0. Then,
for any δ such that 0 < δ < c+ ε,

P
(∥∥AX −Afθ?(AX)

∥∥2
2
≥ δ
)
≥ 1− exp

(
− 2

(c+ ε− δ)2

C2

)
.

(6)

Proof. By assumption, 0 ≤ Y ≤ C almost surely, which implies
that Y is sub-Gaussian with parameter σ := C/2 [31]. Therefore,
for any t > 0,

P(Y < δ) = P
(
Y − E[Y ] < δ − E[Y ]

)
(7)

= P
(
Y − E[Y ] < δ − c− ε

)
(8)

≤ P
(
|Y − E[Y ]| > c+ ε− δ

)
(9)

≤ exp
(
− t(c+ ε− δ) + t2σ2

2

)
. (10)

From (7) to (8), we used the definition of c = E[Y ] − ε. From (8)
to (9), we used the fact that δ < c + ε. And from (9) to (10), we
applied a Chernoff bound [32, §4.2] taking into account that Y is
sub-Gaussian with parameter σ [31, §2.2.1]. Setting t = (c + ε −
δ)/σ2, replacing σ = C/2, and taking the complementary event
in (10) yields (6).

The left-hand side of (6) expresses the probability that the output
of the DNN is inconsistent, and the right-hand side increases as a
function of the generalization gap c as well as the empirical loss ε.
The assumption that the random variable Y = ‖AX−Afθ?(AX)‖22
is bounded above can be easily relaxed: the proof can be adapted if
we assume Y is sub-Gaussian or even sub-exponential (fat tails).

4. OUR FRAMEWORK

To address the measurement inconsistency problem studied in the
previous section, we propose the framework represented in Fig. 1. In
order to understand how it differs from previous approaches, recall
that conventional DNN-based methods for linear inverse problems
use empirical loss minimization (2) to find a good-enough parame-
ter θ? of a DNN fθ : Cm → Cn. Then, during testing, they sim-
ply apply w := fθ?(b) to measurements b = Ax? of unseen data
x?.2 This framework applies to DNNs designed for a specific inverse
problem, e.g., single-image super-resolution [4], as well as unrolled
networks, e.g., [25, 27]. However, as shown in Proposition 1, a gen-
eralization error typically implies inconsistency of the DNN output
to the measurements, i.e., Afθ?(b) 6= b.

TV-TV minimization. To overcome this problem, and as shown
in Fig. 1, we feed the measurements b together with the output w =

2As mentioned, here, we consider the acquisition noise e in (1) negligible.

fθ?(b) of a given DNN, which is generally very close to the desired
x?, but measurement inconsistent, into an optimization problem that
we call TV-TV minimization:

minimize
x

‖x‖TV + β‖x− w‖TV

subject to Ax = b .

(11)

In the objective function, ‖ · ‖TV stands for the 2D TV semi-norm
of an image x ∈ CM×N [whose vectorization is x ∈ Cn with n =
M · N ]. It is defined as ‖x‖TV :=

∑M
i=1

∑N
j=1 |v

>
ijx| + |h>ijx| =

‖Dx‖1, where vij , hij ∈ Rn are real vectors that extract the vertical
and horizontal differences at pixel (i, j) of x, and D ∈ R2n×n is
the vertical concatenation of v>ij and h>ij for all i = 1, . . . ,M and
j = 1, . . . , N . The first term, ‖x‖TV, encodes the assumption that
the image to reconstruct has a small number of edges compared to its
dimension. This is a standard approach in optimization-based meth-
ods for image restoration [2, 33] and MRI reconstruction [20]. The
second term, β‖x− w‖TV, specifies that the solution of (11) should
be close to the output w of the DNN, in a TV-norm sense. Here, β
balances between the two terms of the objective. According to the
theory in [34] and the experiments in [13, 14], a value close to β = 1
yields the best results. Finally, consistency is achieved by constrain-
ing the solution of (11) to satisfy Ax = b. Notice that (11) can be
modified to accommodate noisy measurements as in (1). However,
as will be shown section 5, we found that even when considering a
noiseless (and thus inaccurate) model, post-processing the output w
of a state-of-the-art DNN for MRI reconstruction via (11) leads to
significant performance gains.

Algorithm for solving (11). We apply ADMM [35] to a refor-
mulation of (11). The main idea and algorithm are described in [14].
But to apply the resulting algorithm to MRI reconstruction, we had
to slightly change the reformulations in order to handle complex vec-
tors and matrices. Details will be described in a forthcoming paper.

5. APPLICATION TO MRI RECONSTRUCTION

We now describe our experiments for MRI reconstruction. After ex-
plaining the setup, we illustrate how the proposed framework solves
the measurement consistency problem and how this leads to signifi-
cant gains in reconstruction performance.

Experimental setup. We applied our framework to two state-
of-the-art MRI reconstruction DNNs: MoDL [12] and CRNN [24].
MoDL reconstructs multichannel MRI images in which data is ac-
quired by a 12-channel head coil, and was trained on the multi-
channel brain dataset acquired by the authors of [12]. For test-
ing, we used 164 slices from a single subject, resulting in a test
dataset of dimensions 256 × 232 × 164 × 12 (rows × columns ×
slices×number of coils). CRNN, in turn, applies to data acquired by
a single-channel coil, and was trained on cardiac images from vari-
ous subjects [24]. To avoid retraining CRNN, we used a pretrained
version of the network, which was trained for a single subject. As
we will see, this led to low quality outputs. Both methods process
the real and imaginary parts of the complex MRI data separately. We
set an acceleration factor of 6 for MoDL and of 4 for CRNN. During
testing, we added no artificial noise to the data.

For MoDL (resp. CRNN), we set β = 1 (resp. β = 0.8) in (11)
and ran our algorithm a maximum number of 100 (resp. 50) ADMM
iterations. The measurement matrix A in (1) for MoDL was the
product of a sampling mask S, a coil sensitivity map C, and a 2D
discrete Fourier transform F , i.e., A = SFC, and for CRNN it was
just A = SF , as this network operates on a single coil only. Be-
cause background noise in the images introduced some variation in
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(a) Result on a sample image using MoDL

GT MoDL Ours

(b) Result on a sample image using MoDL

GT CRNN Ours

(c) Result on a sample image using CRNN

Fig. 2: Reconstruction of two test images (a)-(b) for MoDL [12], and (c) one test image for CRNN [24]. Each figure shows the full image in
the top row, and two zoomed regions in the two bottom rows; the left column shows the groundtruth (GT), and the right one our method.

Table 1: Measurement consistency of MoDL, CRNN (2nd column),
and corresponding consistency of our method (3rd column).

Method ‖Aw − b‖2 ‖Ax̂− b‖2

MoDL [12] 3.10× 10−1 9.88× 10−5

CRNN [24] 2.06× 10−6 7.71× 10−15

Table 2: PSNR and SSIM in the format average ± std, min/max.
The best values are higlighted in bold.

Method PSNR SSIM

MoDL 39.53 ± 1.40, 34.07/41.22 0.93 ± 0.05, 0.70/ 0.97

Ours 45.10 ± 3.08, 37.73/52.60 0.92 ± 0.05, 0.72/0.99

CRNN 21.72 ± 0.53, 20.61/23.03 0.51 ± 0.03, 0.46/0.57

Ours 21.84 ± 0.58, 20.75/23.16 0.61 ± 0.04, 0.56/0.69

the results, we evaluated the performance metrics, PSNR and SSIM,
on images cropped to the relevant anatomy content.

Measurement consistency. Table 1 displays the consistency
metric ‖Ax − b‖2 for the outputs of MoDL and CRNN (2nd col-
umn), and the respective metric after post-processing with our algo-
rithm (3rd column). The input and output images are displayed in
Fig. 2a for MoDL and in Fig. 2c for CRNN. It can be seen that our
algorithm reduces this metric by 4 orders of magnitude for MoDL,
and by 9 orders of magnitude for CRNN. Although ‖Aw − b‖2 for
CRNN is already very small, this does not necessarily translate into
good reconstruction performance, as we will see next.

Reconstruction performance. Table 2 shows the results we
obtained on the brain dataset for MoDL, and on the 30 cardiac test set
for CRNN. The 2nd (resp. 3rd) column displays the average PSNR
(resp. SSIM) and respective standard deviation over the test images.
The first (resp. last) two rows refer to the performance of MoDL
(resp. CRNN) and of the subsequent processing with our method.

In the case of MoDL, it can be seen that our post-processing in-
creased the PSNR performance by more than 5dB. We also observe a
marginal degradation in SSIM. The reason may be because the SSIM
values for MoDL were already large and, being constrained to the in-
terval [0, 1], were difficult to increase. However, Figs. 2a-2b, which
show two examples of test images, demonstrate visually that our
method preserves edges, whereas MoDL over-smooths them. The
results in Table 1 indicate that this is a by-product of enforcing con-
sistency.

For CRNN, the last two rows of Table 2 show that our method
improved both the PSNR and SSIM values. The gains, however,
were much smaller, likely because CRNN enforces consistency bet-
ter than MoDL. The table also shows that the reconstruction perfor-
mance using CRNN is much worse than using MoDL, in part be-
cause this network was trained on a single subject. Fig. 2c demon-
strates visually that our method enables preserving details better.

6. CONCLUSIONS

We studied the phenomenon of measurement inconsistency in DNNs
for linear inverse problems. We achieved this by relating the proba-
bility of obtaining an inconsistent output to the generalization error.
To overcome this problem, we then proposed a post-processing al-
gorithm that improves the output of DNNs by enforcing consistency.
Experimental results on MRI reconstruction showed that applying
our algorithm not only leads to better consistency, but also to signif-
icant reconstruction gains. And the better the improvement in con-
sistency, the larger the gains.
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