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ABSTRACT
Hyperspectral (HS) images contain detailed spectral information that
has proven crucial in applications like remote sensing, surveillance,
and astronomy. However, because of hardware limitations of HS
cameras, the captured images have low spatial resolution. To im-
prove them, the low-resolution hyperspectral images are fused with
conventional high-resolution RGB images via a technique known as
fusion based HS image super-resolution. Currently, the best perfor-
mance in this task is achieved by deep learning (DL) methods. Such
methods, however, cannot guarantee that the input measurements are
satisfied in the recovered image, since the learned parameters by the
network are applied to every test image. Conversely, model-based al-
gorithms can typically guarantee such measurement consistency. In-
spired by these observations, we propose a framework that integrates
learning and model based methods. Experimental results show that
our method produces images of superior spatial and spectral reso-
lution compared to the current leading methods, whether model- or
DL-based.

Index Terms— Deep learning, super-resolution, hyper-spectral
imaging, optimization, total variation.

1. INTRODUCTION

Hyperspectral (HS) cameras sense the electromagnetic spectrum to
produce images that depict a scene across several contiguous bands.
Such technology has led to improved performance in various tasks,
including anomaly detection [1] and remote sensing [2].

HS cameras, however, suffer from low spatial and temporal res-
olution [3]. RGB cameras, on the other hand, acquire images with
high spatial resolution but low spectral resolution, since they split the
spectrum into three broad bands. This tradeoff between spatial and
spectral resolution stems from the physics of the acquisition process.
To overcome it, one can fuse a low (spatial) resolution hyperspectral
(LRHS) image with a high resolution (spatial) RGB/multispectral
(HRMS) image to obtain the high resolution hyperspectral (HRHS)
image, a method known as fusion based HS image super-resolution.

Acquisition model. Let X ∈ RM0·N0×S0 denote the unknown
HRHS that we wish to reconstruct. Each column represents a vec-
torized HRHS of size M0 ×N0 on a given spectral band, and there
are S0 spectral bands. We assume access to a low-resolution HS im-
age acquired by a HS camera, Z ∈ RM·N×S0 , where M < M0

and N < N0, and to a high-resolution RGB image acquired by a
conventional camera, Y ∈ RM0·N0×S , where S < S0. Typically,
S = 3 and S0 is greater than 20. All these quantities are related as

Z = AX, Y = XR, (1)

where A ∈ RM·N×M0·N0 is the downscaling operator, and R ∈
RS0×S is the camera spectral response (CSR) function of the RGB

Fig. 1: Our framework. A high-resolution RGB image Y
(HRMS) and a low-resolution HS image Z (LRHS) are first super-
resolved into W with a fusion-based hyperspectral imaging method
(typically, a convolutional neural network). We then create a
measurement-consistent high-resolution HS image X̂ (HRHS) by
solving TV-TV minimization using Z, Y , and W as inputs.

camera i.e., it integrates all bands of the spectrum into the RGB im-
age.

Overview of existing approaches. Reconstructing X from Z
and Y in (1) is an ill-posed problem, as there are generally more
unknowns than equations. This task thus requires assumptions about
the structure of X (prior knowledge). Examples include sparsity [4]
and spectral correlation [5]. Other approaches to recover X encode
prior knowledge about the HS observations via matrix [6,7] and ten-
sor [8] factorization. We refer to this class of methods, in which
prior knowledge is explicitly encoded, as model-based methods.

Deep learning (DL) methods have also been applied to recon-
struct X from Z and Y , e.g., [9, 10]. Although they require exten-
sive training datasets, they bypass the need to encode assumptions
explicitly and are computationally efficient once trained. Currently,
they are the state-of-the-art for this task. DL methods, however, suf-
fer from two important drawbacks: they generally lack interpretabil-
ity, and during testing, they are unable to enforce measurement con-
sistency between the inputs (Z,Y ) and their output, i.e., enforce (1)
after they have been trained. Conventional model-based algorithms
do not suffer from these drawbacks, but produce outputs of lower
quality.

Problem statement. Our aim is then to design a method for
fusion based HS image super-resolution that not only produces high
quality outputs, but also guarantees measurement consistency for ev-
ery test image. By guaranteeing such consistency, we aim to pre-
serve fine details in the measurements, which can be critical in ap-
plications like airport security and space surveillance.

We propose to combine DL (or any other RGB-guided HS im-
age super-resolution method) with model-based methods. Fig. 1



illustrates our scheme, described in Section 3. In brief, the inputs
Y and Z are passed through a fusion based super-resolution method
to obtain W . We then solve an optimization problem termed as
TV-TV minimization that takes W ,Z and Y as inputs to gener-
ate an improved version of W denoted by X̂ . This approach ex-
tends our original work [11, 12], where we considered single image
super-resolution. In this paper, we generalize our original framework
to fusion based HS images by considering the additional constraint
Y = XR, which relates data from different modalities. Our ex-
tensive experiments show that the proposed method surpasses the
current state-of-the-art for fusion HS super-resolution in terms of
several reconstruction metrics. To the best of our knowledge, this
is the first work that tackles the data consistency problem character-
izing DL networks in the field of fusion based HS imaging super-
resolution.

2. RELATED WORK

In recent years, single-image super-resolution methods that process
conventional RGB images have been extended to HS imaging. Tra-
ditional HS image super-resolution methods take a LRHS image as
an input and output a HRHS image, without the aid of any other
modality. Because of this, such methods have two shortcomings: the
scaling factor is usually limited to four, and they increase the spec-
tral resolution only. To overcome these shortcomings, several tech-
niques fuse a LRHS image with a conventional HRMS image. Most
methods are model-based and require explicit assumptions about the
HRHS image, but more recent algorithms build on DL networks.
The latter is still an emerging field with limited literature. We give a
brief overview of both techniques since we utilize both in our work.

Model-based methods. Classic model-based methods recover
X by making explicit assumptions about it. For example, in [13], it
is assumed that X has a small TV norm. The work in [4] assumes
that the spatial information of the HRHS image has a sparse repre-
sentation that can be learned from a dictionary.

A different line of work is based on matrix factorization meth-
ods [6, 7]. These assume that the HS observations can be factorized
into two matrices, one representing the spectral response of the ma-
terial, and the other containing the proportion of materials at each
pixel location. For example, [7] proposed an algorithm that uses
coupled non-negative matrix factorization (CNMF) and assumes no
sparsity constraints. Even though matrix factorization approaches
are popular, they ignore the spectral-spatial correlations. Motivated
by this, more recent methods use tensor factorization. For exam-
ple, [8] uses non-local sparse tensor factorization to decompose each
cube of the HS image as a sparse tensor and dictionaries of three dif-
ferent modes. In addition, similar cubes are processed together to
leverage the non-local self-similarities of the HS image. Such as-
sumptions are common in other HS-related tasks, for example, ten-
sor denoising [14].

Deep learning methods. DL has been widely applied to com-
puter vision and image processing, e.g., [15, 16], but its application
to HS image super-resolution is still relatively recent [9,17–20]. DL
methods are computationally efficient during testing and offer su-
perior performance. In reconstruction tasks, trained DL networks,
however, cannot ensure that the output is consistent with the in-
put [21]. This is because the weights learned during training are
applied to all test images, which makes it difficult for such networks
to ensure that the observation model holds in the testing stage. The
work in [9] attempts to solve this problem by unfolding an iterative
algorithm into a deep network that takes into consideration the low
rankness and sparsity of the HRHS image. Also, [10] proposed an

Table 1: Average PSNR, SSIM, SAM, ERGAS and RMSE on all
HS images from the Harvard dataset.

Metric CNMF [7] Ours uSDN [10] Ours

PSNR 41.381 41.574 38.564 41.120

SSIM 0.985 0.986 0.990 0.993

SAM 3.951 3.831 4.503 3.441

ERGAS 0.314 0.311 0.563 0.431

RMSE 2.456 2.407 2.753 1.817

unsupervised method consisting of two networks with an encoder-
decoder structure used for representation learning. The first network
takes the HRMS image as an input while the other network pro-
cesses the LRHS image. To exploit spectral and spatial information,
the learned weights are then shared before reconstructing the HRHS
image. The proposed network also forces the representations of both
inputs to follow a sparse Dirichlet distribution. Unsupervised net-
works solve a fundamentally harder task, thus their performance is
naturally worse than supervised methods [22].

3. PROPOSED FRAMEWORK

Our goal is to recover the HRHS image X ∈ RM0.N0×S0 from a
LRHS image Z ∈ RM.N×S0 and an RGB image Y ∈ RM0.N0×S .
To achieve this, we use the scheme depicted in Fig. 1. First, the in-
puts Z and Y are super-resolved into W ∈ RM0.N0×S0 via a fusion
based HS image super-resolution method. We use a combination of
both model and DL based methods and then post-process W via an
additional block, TV-TV minimization, which enforces consistency
for both the spatial and spectral measurements.

TV-TV minimization. The images W , Y and Z are then si-
multaneously processed via TV-TV minimization, which generates
an estimate X̂ that satisfies the model in (1), is not too different from
W , and has a small total variation (TV) norm. More specifically, we
solve

minimize
X∈RM0.N0×S0

‖X‖TV + β‖X −W ‖TV

subject to AX = Z
XR = Y ,

(2)

where X ∈ RM0.N0×S0 is the optimization variable and β ≥ 0 is
a trade-off parameter. We chose the TV norm since it is a widely
used prior for image processing tasks. Our framework can be easily
adapted to accommodate other priors. The TV-norm ‖X‖TV in (2)
for 3D tensors is defined as the sum of the 2D TV-norms of each
spectral band i.e., ‖X‖TV =

∑S0
i=1 ‖Xs‖TV where Xs ∈ RM0×N0

represents the band s of X . The 2D TV norm of a vectorized image
x ∈ RM0.N0 is defined as

‖x‖TV :=

M∑
i=1

N∑
j=1

∣∣Dv
ijx
∣∣+ ∣∣Dh

ijx
∣∣ = ‖Dx‖1,

whereDv
ij (resp. Dh

ij) is a row-vector that extracts the vertical (resp.
horizontal) difference at pixel (i, j) of X , and D is the vertical con-
catenation of all the Dv

ij and Dh
ij .

To solve (2), we use the alternating direction method of multi-
pliers (ADMM) [23]. First we introduce a set of auxiliary variables,
us and vs, which we constrain as Dvs = us and xs = vs where



Table 2: Average PSNR, SSIM, SAM, ERGAS and RMSE on 12 test HS images used by MHF from the CAVE dataset.

Metric CNMF [7] Ours NLSTF [8] Ours uSDN [10] Ours MHF-net [9] Ours

PSNR 37.149 37.881 40.859 40.942 36.365 39.712 37.507 38.151

SSIM 0.982 0.984 0.991 0.991 0.979 0.987 0.977 0.982

SAM 7.482 7.263 4.723 4.719 6.823 6.051 8.221 7.946

ERGAS 0.629 0.568 0.384 0.379 0.716 0.533 0.590 0.541

RMSE 3.805 3.487 2.598 2.568 4.235 2.877 3.845 3.565

us (resp. vs and xs) represents the vectorized sth spectral band of
u (resp. v and x), as suggested in [24], and dualize both constraints.
Specifically, we rewrite (2) as

minimize
(u,X),v

∑S0
s=1

(
‖us‖1 + β‖us − ws‖1+

i{xs:Axs=zs}(xs)
)
+ i{X:XR=Y }(X)

subject to Dvs = us, s = 1, · · · , S0

vs = xs, s = 1, · · · , S0 ,

(3)

where ws := Dws ∈ RM0.N0 and iF (u) is an indicator function,
i.e., iF (u) = 0 if u ∈ F , and iF (u) = +∞ otherwise. Once we
obtain a solution (u?, X?, v?) of (3), a solution of (2) is given by
X? =

[
x?1 · · · x?S0

]
.

ADMM iterates. We use two dual variables λ ∈ R2·M·N and
µ ∈ RM·N and solve (3) via the following ADMM iterates:

Uk+1 = argmin
u1···uS0

S0∑
s=1

‖us‖1 + β‖us − ws‖1+

(
λk
s − ρDvks

)T
us +

ρs
2
‖us‖22 (4)

Xk+1 = argmin
X

µkT

X +
ρ

2
‖X − V k‖22 + i{X:AX=Z}(X)

+ i{X:XR=Y }(X) (5)

V k+1 = argmin
v1···vS0

S0∑
s=1

−λkT

s Dvs − µkT
s vs +

ρ

2
‖xk+1

s − vs‖22

+
ρ

2
‖xk+1

s − vs‖22 +
ρ

2
‖uk+1

s −Dvs‖22 (6)

λk+1 =

S0∑
s=1

λk
s + ρ(uk+1

s −Dvk+1
s ) (7)

µk+1 =

S0∑
s=1

µk
s + ρ(xk+1

s − vk+1
s ) , (8)

where ρ > 0 is the augmented Lagrangian parameter. Recall that
the subscript s represents the sth band of each of the hyperspectral
image. Then the concatenation of each band gives the corresponding
hyperspectral cube. Problem (4) is solved by equating the element-
wise derivative with respect to us to zero, (5) is the projection of
a point onto a linear subspace, and (6) can be solved by equating
the first order derivative with respect to vs to zero. Thus, each sub-
problem has a closed form solution. Note that problems (4) and (6)
can each be decomposed into S0 independent problems that can be
solved in parallel, which considerably speeds up the ADMM iterates.

4. EXPERIMENTS

We now describe our testing procedure and present visual and quan-
titative results. Code to replicate our experiments is available on-
line1.

Datasets. In this paper we run experiments on two popular HS
imaging datasets, CAVE [25] and Harvard [26]. The CAVE dataset
consists of 32 HRHS images, each with dimensions 512 × 512 and
31 spectral bands. The spectral images are taken with a wavelength
ranging between 400 ∼ 700nm at an interval of 10nm. The Harvard
dataset consists of 50 HRHS images with dimensions 1392 × 1040
and 31 spectral bands each. Each spectral image is taken at 10nm
intervals and the wavelength ranges between 420 ∼ 720nm. For
this dataset, the top left 1024 × 1024 pixels were considered.

Base methods. We use and compare against four state-of-the-
art base methods: CNMF [7], NLSTF [8], MHF [9] and uSDN [10].
The first and second methods are based on matrix and tensor fac-
torization, respectively, while the last two use DL networks. The
outputs from each base method were obtained using the default set-
tings and parameters provided by the respective authors. We assume
noiseless images and thus remove any added noise in any of the com-
parison methods.

Experimental Settings. All images were first normalized be-
tween 0 and 1. For the CAVE dataset, we used the same 12 HS im-
ages/cubes tested with MHF while for the Harvard dataset, we use
all the 50 available HS images/cubes. The HSLR images Z were ob-
tained according to (1) with A representing the averaging operation
over non-overlapping blocks of size 32×32, that is, as a downscaling
operation with a factor of 32. The HRMS images Y were generated
according to (1), with R representing either the camera spectral re-
sponse of Nikon D700 [8, 10] or an estimate as in [7]. Details about
the CSR function used in MHF [9] are omitted in that paper but we
used the matrix provided in the official repository2. Since the CSR
function varies in different methods, our aim is not to compare base
methods against each other, but rather how our framework improves
each of their outputs.

For all base methods, we set β = 1 as the trade-off parameter in
(2), and ρ = 0.2 as the augmented Lagragian parameter in (4)-(8).
The algorithm was terminated when the primal or dual residual was
smaller than 0.001, or the number of iterations exceeded 120.

The performance of each method was assessed by the following
quantitative measures: peak-signal-to-noise ratio (PSNR), structural
similarity (SSIM) [27], spectral angle mapper (SAM) [28], relative
dimensionless global error in synthesis (ERGAS) [29] and root mean
squared error (RMSE).

Experiments on the CAVE and Harvard datasets. Table 1
(resp. 2) shows the average PSNR, SSIM, SAM, ERGAS and RMSE

1https://github.com/marijavella/hs-sr-tvtv
2https://github.com/XieQi2015/MHF-net/tree/master/CMHF-net



(a) GT (b) RGB/LR

(c) CNMF (d) Ours+CNMF (e) uSDN (f) Ours+uSDN

Fig. 2: Reconstruction of band 15 from a sample image from the
Harvard dataset using CNMF and uSDN as base methods.

of [7–10] and of our algorithm using those base methods as input,
on the Harvard and CAVE datasets. Larger PSNR and SSIM and
smaller ERGAS, SAM and RMSE indicate images of better quality.
The results clearly show that our framework consistently achieves
better metric scores on all the datasets and methods considered, con-
firming that we are able to obtain better spatial and spectral reso-
lution by enforcing measurement consistency. For example, for the
CAVE dataset, the SAM gains range between 0.004 and 0.772, while
the improvements of the ERGAS range between 0.005 and 0.183.
Also, note that our method provides larger gains for DL based meth-
ods, which cannot easily enforce consistency during testing.

We also present visual results, using the jet colormap for easier
visualizations, in Figs. 2 and 3 on a sample image from each dataset.
The first subfigure a) of each figure contains the ground truth (GT)
image and a patch extracted from it, while the second subfigure b)
presents the RGB and LR image, respectively. Note that the RGB
image corresponds to the one used in MHF. Other networks have a
different RGB image due to a different CSR function. The rest of
the subfigures contain the output from a base method followed by
the output from our method. This is repeated for each base method.

The superiority of our method can be observed from the ex-
tracted patches. The base methods tend to blur out details in the
image, while our method preserves the original measurements in the
outputs. Although the proposed algorithm improves the quality of
the outputs of both model-based and learning-based methods in sev-
eral metrics, one shortcoming is the additional computation it re-
quires. For example, to upsample a 16 × 16 × 31 HS image with
a 32× factor and a 512 × 512 × 3 RGB image, MHF (supervised
method) requires 25 seconds, uSDN (unsupervised method) requires
660 seconds while our method requires 840 seconds.

(a) GT (b) RGB/LR

(c) MHF (d) Ours+MHF (e) uSDN (f) Ours+uSDN

(g) CNMF (h) Ours+CNMF (i) NLSTF (j) Ours+NLSTF

Fig. 3: Reconstruction of band 15 of the flowers image from the
CAVE dataset for all the base methods considered.

5. CONCLUSIONS

We proposed a post-processing step for the fusion of RGB and HS
images that can work with either classic or DL based methods. Re-
sults show that by guaranteeing consistency in the spatial and spec-
tral measurements, the image quality is improved. Moreover, our
method can easily work with different downscaling operators and
camera spectral response functions, unlike DL networks that are
trained for specific operators. The basis of our framework is TV-TV
minimization, which we solve with an ADMM-based algorithm. Fu-
ture lines of work include using different regularizers and unrolling
our algorithm in a neural network to improve reconstruction time.
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