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Abstract—We address the problem of compressed sensing (CS)
with prior information: reconstruct a target CS signal with the
aid of a similar signal that is known beforehand, our prior
information. We integrate the additional knowledge of the similar
signal into CS via ℓ1-ℓ1 and ℓ1-ℓ2 minimization. We then
establish bounds on the number of measurements required by
these problems to successfully reconstruct the original signal.
Our bounds and geometrical interpretations reveal that if the
prior information has good enough quality, ℓ1-ℓ1 minimization
improves the performance of CS dramatically. In contrast, ℓ1-
ℓ2 minimization has a performance very similar to classical
CS and brings no significant benefits. In addition, we use the
insight provided by our bounds to design practical schemes to
improve prior information. All our findings are illustrated with
experimental results.

Index Terms — Compressed sensing, prior information, ba-

sis pursuit, ℓ1-ℓ1 and ℓ1-ℓ2 minimization, Gaussian width.

I. INTRODUCTION

Nearly a decade ago, compressed sensing (CS) emerged as a

new paradigm for signal acquisition [2], [3]. By assuming that

signals are compressible rather than bandlimited, CS enables

signal acquisition using far less measurements than classical

acquisition schemes [4], [5]. Since most signals of interest

are indeed compressible, CS has found many applications,

including medical imaging [6], radar [7], camera design [8],

and sensor networks [9].

We show that whenever a signal similar to the signal to

reconstruct is available, the number of measurements can

be reduced even further. Such additional knowledge is often

called prior [10]–[20] or side [21]–[23] information.

Compressed Sensing (CS). Let x⋆ ∈ R
n be an unknown

s-sparse signal, i.e., with at most s nonzero entries. Assume

we have m linear measurements y = Ax⋆, where the matrix

Copyright (c) 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work was supported by the EPSRC grant EP/K033166/1, the VUB
Research Programme M3D2, the FWO grant G0A2617N, the VUB-UGent-
UCL-Duke International Joint Research Group, and by Heriot-Watt University.
Part of this work was presented at the GlobalSIP 2014 conference [1].

J. F. C. Mota is with the Institute of Sensors, Signals, and Systems at Heriot-
Watt University, Edinburgh, EH14 4AS, U.K. He was with the Department of
Electronic and Electrical Engineering, University College London, London,
WC1E 6BT, U.K. (e-mail: j.mota@hw.ac.uk).

N. Deligiannis is with the Department of Electronics and Informatics, Vrije
Universiteit Brussel, Brussels 1050, Belgium. He was with the Department of
Electronic and Electrical Engineering, University College London, London,
WC1E 6BT, U.K. (e-mail: ndeligia@etrovub.be).

M. R. D. Rodrigues is with the Electronic & Electrical Engineering
Department at University College London, London, WC1E 6BT, U.K. (e-
mail: m.rodrigues@ucl.ac.uk).

A ∈ R
m×n is known. CS answers two fundamental questions:

How to reconstruct the signal x⋆ from the measurements y?

And how many measurements m are required for successful

reconstruction? A remarkable result states that if A satisfies

a restricted isometry [24]–[26] or nullspace [27] property,

then x⋆ can be reconstructed perfectly by solving Basis Pursuit

(BP) [28]:

minimize
x

‖x‖1
subject to Ax = y ,

(BP)

where ‖x‖1 :=
∑n

i=1 |xi| is the ℓ1-norm of x; see [24]–

[27]. For example, if m > 2s log(n/s) + (7/5)s, and the

entries of A ∈ R
m×n are drawn independently and identically

distributed (i.i.d.) from the Gaussian distribution, then A
satisfies a nullspace property (and thus BP recovers x⋆) with

high probability [27]. See [2], [3], [29]–[36] for related results.

CS with prior information. Consider that, in addition to

the set of measurements y = Ax⋆, we also have access to

prior information, that is, to a signal w ∈ R
n similar to the

original signal x⋆. This occurs in many scenarios: for example,

in video acquisition [21], [37]–[41], tracking [42], [43], and

medical imaging [6], [11], [20], [44], past signals can be used

to create an estimate of the target signal; concretely, if x⋆ is

a sparse representation of the target signal, then w can be a

sparse representation of an estimate of x⋆, created from past

reconstructed signals, e.g., via extrapolation. Similarly, signals

captured by nearby sensors in sensor networks [45] and images

in multiview camera systems [46] are (or can be made) similar

and, hence, used as prior information. The goal of this paper

is to answer the following two key questions:

• How to reconstruct the signal x⋆ from the measurements

y = Ax⋆ and the prior information w?

• And how many measurements m are required for suc-

cessful reconstruction?

A. Overview of Our Approach and Main Results

We address CS with prior information by solving an ap-

propriate modification of BP. Suppose g : R
n −→ R is a

function that measures the similarity between x⋆ and the prior

information w, in the sense that g(x⋆ − w) is expected to be

small. Then, given y = Ax⋆ and w, we solve

minimize
x

‖x‖1 + β g(x− w)

subject to Ax = y ,

(1)

where β > 0 establishes a tradeoff between signal sparsity and

fidelity to prior information. We consider two specific, convex
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models for g: g1 := ‖ · ‖1 and g2 := 1
2‖ · ‖22, where ‖z‖2 :=√

z⊤z is the ℓ2-norm. Then, problem (1) becomes

minimize
x

‖x‖1 + β‖x− w‖1
subject to Ax = y

(2)

minimize
x

‖x‖1 + β
2 ‖x− w‖22

subject to Ax = y ,

(3)

which we will refer to as ℓ1-ℓ1 and ℓ1-ℓ2 minimization,

respectively. The use of the constraints Ax = y implicitly

assumes that y was acquired without noise. However, our re-

sults also apply to the noisy scenario, i.e., when the constraints

are ‖Ax− y‖2 ≤ σ instead of Ax = y.

Overview of results. Problems (2) and (3), as well as their

Lagrangian versions, have rarely appeared in the literature (see

Section II). For instance, [11], [20] (resp. [12]) considered

problems very similar to (2) (resp. (3)). Yet, to the best of

our knowledge, no CS-type results have ever been provided

for either (2), (3), their variations in [11], [12], [20], or their

Lagrangian versions.

Our goal is to establish bounds on the number of measure-

ments that guarantee that (2) and (3) reconstruct x⋆ with high

probability, when A has i.i.d. Gaussian entries. Our bounds

are a function of the prior information “quality” and the

tradeoff parameter β. Hence, they not only help us understand

what “good” prior information is, but also to select a β that

minimizes the number of measurements. The main elements

of our contribution can be summarized as follows:

• Our bound for (2) is minimized when β = 1, a value

independent of w, x⋆, or any other problem parameter.

We will see that the best β in practice is indeed very

close to 1. In contrast, the optimal β for (3) depends on

several parameters, including the unknown entries of x⋆.

• We also establish sharper versions of our bounds, which

have to be computed numerically, but precisely describe

the experimental performance of (2) and (3). Our analyses

of the bounds, sharp and non-sharp, reveal that, typically,

(2) requires much fewer measurements than both BP

(classical CS) and (3). This superior performance is also

observed experimentally, and we interpret it in terms of

the underlying geometry of the problem.

• Based on the measures for the quality of prior information

revealed by our bounds, we propose schemes that modify

prior information in order to improve its quality. The

schemes are validated with simulations, which also show

that (2) outperforms Modified-CS [12], another strategy

for integrating prior information.

A representative result. To give an example of our re-

sults, we state a simplified version of Theorem 12 from

Section IV-C, which establishes bounds on the number of

measurements for successful ℓ1-ℓ1 reconstruction. Here, we

rewrite it for β = 1, which gives not only the simplest result,

but also the best bound. Define

h :=
∣
∣{i : x⋆

i > 0, x⋆
i > wi} ∪ {i : x⋆

i < 0, x⋆
i < wi}

∣
∣

ξ :=
∣
∣{i : wi 6= x⋆

i = 0}
∣
∣−

∣
∣{i : wi = x⋆

i 6= 0}
∣
∣ ,

where | · | denotes the cardinality of a set. Note that h is

defined on the support I := {i : x⋆
i 6= 0} of x⋆. Recall

that s = |I|. Later, we will call h the number of bad

components of w. For example, if x⋆ = (0, 3,−2, 0, 1, 0, 4)
and w = (0, 4, 3, 1, 1, 0, 0), then h = 2 (due to 3rd and last

components) and ξ = 1− 1 = 0 (4th and 5th components).

Theorem 1 (ℓ1-ℓ1 minimization: simplified). Let x⋆ ∈ R
n

be the vector to reconstruct and let w ∈ R
n be the prior

information. Assume h > 0 and that there exists at least one

index i for which x⋆
i = wi = 0. Let the entries of A ∈ R

m×n

be i.i.d. Gaussian with zero mean and variance 1/m. If

m ≥ 2h log
( n

s+ ξ/2

)

+
7

5

(

s+
ξ

2

)

+ 1 , (4)

then, with probability greater than 1−exp
(
− 1

2 (m−√
m)2

)
,

x⋆ is the unique solution of (2) with β = 1.

Recall that, with a similar probability, classical CS requires

m ≥ 2s log
(n

s

)

+
7

5
s+ 1 (5)

measurements to reconstruct x⋆ [27]; see also Theorem 4 and

Proposition 6 in Section III below. These bounds say that,

for large n, (2) requires O(2h log n) measurements whereas

classical CS requires O(2s log n). Recall that, by definition,

h ≤ s. Equality holds, i.e., h = s, only when the supports

of x⋆ and w are disjoint. This means ℓ1-ℓ1 minimization is

robust to inaccurate prior information; yet, if h is small, (4)

can be much smaller than (5). For ℓ1-ℓ2 minimization (3), we

establish a similar bound: O(vβ log n), where

vβ ≃
∑

i∈I

(
1 + β sign(x⋆

i )(x
⋆
i − wi)

)2
, (6)

and sign(·) returns the sign of a number. The approximation

is due to neglecting a term that depends on the disjointness of

the supports of x⋆ and w; thus, (6) is accurate when x⋆ and

w have similar supports. Notice that while h is independent

from β and is determined only by the signs of the entries of

x⋆ and x⋆−w, vβ depends on β and also on the actual values

of x⋆ and w. Furthermore, as shown by our experiments, in

practice, it is much easier to obtain smaller values for h than

it is for vβ .

A numerical example. We provide a numerical example

to illustrate further our results. We generated x⋆ with 1000
entries, 70 of which were nonzero, i.e., n = 1000 and s = 70.

The nonzero components of x⋆ were drawn from a standard

Gaussian distribution. The prior information w was created

as w = x⋆ + z, where z is a 28-sparse vector whose nonzero

entries were drawn from a zero-mean Gaussian distribution

with standard deviation 0.8. The supports of x⋆ and z co-

incided in 22 positions and differed in 6. This pair of x⋆

and w yielded h = 11 and ξ = −42. Plugging the previous

values into (4) and (5), we see that ℓ1-ℓ1 minimization and

classical CS require 136 and 472 measurements for perfect

reconstruction with high probability, respectively.

Fig. 1 shows the experimental performance of classical CS

and ℓ1-ℓ1 and ℓ1-ℓ2 minimization, i.e., problems (BP), (2)

and (3), respectively. More specifically, it depicts the rate
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Figure 1. Experimental rate of reconstruction of classical CS (BP), ℓ1-ℓ1
minimization, and ℓ1-ℓ2 minimization, both with β = 1. The vertical lines
are the bounds for classical CS, and ℓ1-ℓ1 and ℓ1-ℓ2 minimization.

of success of each problem versus the number of measure-

ments m. For a fixed m, the success rate is the number of times

a given problem recovered x⋆ with an error smaller than 1%
divided by the total number of 50 trials (each trial considered

different pairs of A and b). The plot shows that ℓ1-ℓ1 minimiza-

tion required less measurements to reconstruct x⋆ successfully

than both CS and ℓ1-ℓ2 minimization. The curves of the last

two, in fact, almost coincide, with ℓ1-ℓ2 minimization (line

with triangles) having a slightly sharper phase transition. The

vertical lines show the bounds (4), (5), and the bound for ℓ1-

ℓ2 minimization, provided in Section IV. We see that, for this

particular example, the bound (4) is quite sharp, while the

bound for ℓ1-ℓ2 minimization is quite loose (the sharpness

of our bounds is discussed in Sections IV and VI). More

importantly, this example shows that using prior information

properly can improve the performance of CS dramatically.

Our bounds have been used to design an adaptive-rate

scheme for state estimation with applications in compressive

video background subtraction [40], [41], a reweighted ℓ1-ℓ1
minimization scheme [47], [48], and also to design measure-

ments in CS-based communication systems [49].

B. Outline

In Section II, we discuss related work, including the use

of other types of “prior information” in CS. Section III

introduces fundamental tools in our analysis, which are also

used to provide geometrical interpretations of ℓ1-ℓ1 and ℓ1-

ℓ2 minimization. The main results are stated and discussed

in Section IV. There, we also provide guidelines on how

to improve the prior information in practice. Section V de-

scribes experimental results. The main results are proven in

Section VI, and the appendix is used for auxiliary results.

II. RELATED WORK

There is a clear analogy of CS with prior information and

the distributed source coding problem. Namely, we can view

the number of measurements and the reconstruction quality in

CS as the information rate and the incurred distortion in coding

theory, respectively. As such, CS with prior information at the

reconstruction side is reminiscent of the problem of coding

with side/prior information at the decoder, a field founded by

Slepian and Wolf [50], and Wyner and Ziv [51].

The concept of prior information has appeared in CS under

many guises [11], [12], [20], [23], [42]. The work in [11]

was apparently the first to consider (1), in particular ℓ1-ℓ1
minimization. Specifically, [11] considers dynamic computed

tomography, where a prior image helps reconstructing the

current one, which is accomplished by solving (2). That work,

however, neither provides any kind of analysis nor highlights

the benefits of solving (2) with respect to classical CS, i.e.,

BP. Very recently, [20] considered a variation of (2) where the

second term of the objective penalizes differences between x
and w, rather than in the sparse domain, in the signals’ original

domain. Specifically, [20] solves (a Lagrangian version of)

minimize
x

‖x‖1 + β‖Ψ(x− w)‖1
subject to ΦΨx = y ,

(7)

where A was decomposed as the product of a sensing matrix Φ
and a transform matrix Ψ that sparsifies both x⋆ and w.

Although [20] shows experimentally that (7) requires less mea-

surements than conventional CS to reconstruct MRI images,

no analysis or reconstruction guarantees are given for (7).

In [12], prior information refers to an estimate T ⊆
{1, . . . , n} of the support of x⋆ (see [10], [16], [18] for related

approaches). Using the restricted isometry constants of A, [12]

provides exact recovery conditions for BP when its objective

is modified to ‖xT c‖1, where xT denotes the components

of x indexed by the set T , and T c is the complement of T
in {1, . . . , n}. The resulting problem is called Modified-CS

(Mod-CS), against which we benchmark the performance

of (2) and (3) in Section V. When T is a reasonable estimate

of the support of x⋆, those conditions are shown to be milder

than the ones in [24], [25] for standard BP. Then, [12]

considers prior information as we do: there is an estimate of

the support of x⋆ as well as of the value of the respective

nonzero components. However, it solves a problem slightly

different from (3). Namely, the objective of (3) is replaced

with ‖xT c‖1 + β‖xT − wT ‖22. Although some experimental

results are presented, no analysis is given for that problem.

A popular modification of BP, of which Mod-CS is a

particular instance, considers the weighted ℓ1-norm ‖x‖r :=
∑n

i=1 rixi, where ri ≥ 0 is a known weight. This norm penal-

izes each component of x according to the magnitude of the

corresponding weight and, thus, requires “prior information”

about x. The weight ri associated to the component xi can, for

example, be proportional to the probability of x⋆
i = 0. Several

works studied weighted ℓ1-norm minimization [13]–[17], and

some [19] used tools similar to ours.

Alternative work has considered

minimize
x

‖x‖1 + β g(x− w) + λ‖Ax− y‖22 , (8)

with λ > 0, which can be viewed as a Lagrangian version of

minimize
x

‖x‖1 + β g(x− w)

subject to ‖Ax− y‖2 ≤ σ .

(9)

Problem (9) is a generalization of (1) for noisy scenarios, and

we will provide bounds on the number of measurements that
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x⋆ + null(A)

x⋆

S‖·‖1 (x
⋆)

T‖·‖1 (x
⋆)

Figure 2. Visualization of the nullspace property in Proposition 2 for BP.

it requires for successful reconstruction with g = ‖ · ‖1 and

g = 1
2‖ · ‖22. Problem (8) has appeared before in [42], in

the context of dynamical system estimation. Specifically, the

state xt of a system at time t evolves as xt+1 = ft(x
t) + ǫt,

where ft models the system’s dynamics at time t, and ǫt

accounts for modeling errors. Observations of the state xt

are taken as yt = Atx
t + ηt, where At is the observation

matrix and ηt is noise. The goal is to estimate the state xt

given the observations yt. The state of the system in the

previous instant, xt−1, can be used as prior information by

making wt = ft−1(x
t−1). If the modeling error ǫt is Gaussian

and the state xt is assumed sparse, then xt can be estimated by

solving (8) with g = ‖ ·‖22; if the modeling noise is Laplacian,

we set g = ‖ · ‖1 instead. Although [42] does not provide any

analysis, their experimental results show that, among several

strategies for state estimation, including Kalman filtering, (8)

with g = ‖ · ‖1 yields the best results. If we take into account

the relation between (8) and (9), our theoretical analysis can be

used to provide an explanation. Applying the KKT conditions

to problem (9) reveals that it has the same solution x as (8)

if ‖Ax − y‖2 = σ and λ is the optimal dual variable of (9).

Note that obtaining such λ without first solving (9) is nearly

impossible. In contrast, in several applications, it is relatively

easy to obtain accurate bounds σ on the magnitude of the

acquisition noise. For related approaches, see [23], [52].

Finally, we mention that the phase transition phenomenon in

sparse recovery problems was first studied in [33], [53], [54],

and that alternative reconstruction problems, such as message

passing [55], also have precise phase transitions [55]–[57].

III. THE GEOMETRY OF ℓ1-ℓ1 AND ℓ1-ℓ2 MINIMIZATION

This section introduces concepts and results in CS used in

our analysis. We follow the approach of [27], since it leads to

the current best CS bounds for Gaussian measurements, and

provides the means to understand some of our definitions.

A. Known Results and Tools

The concept of Gaussian width plays a key role in [27].

Originally proposed in [58] to quantify the probability of a

randomly oriented subspace intersecting a cone, the Gaussian

width has been used in several CS-related results [27], [32],

[34], [36]. Before defining it, we analyze the optimality con-

ditions of linearly constrained convex optimization problems.

dist(g, C◦)
C

C◦

g

Figure 3. Illustration of how the Gaussian width measures the width of a
cone, according to Proposition 3.

The nullspace property. Consider a real-valued convex

function f : Rn −→ R and the following optimization problem:

minimize
x

f(x)

subject to Ax = y .

(10)

Assume Ax = y has at least one solution, say, x⋆. The set

of all solutions of Ax = y, i.e., the feasible set of (10), is

A := x⋆ + null(A), where null(A) := {x : Ax = 0} is the

nullspace of A. To determine if a given x⋆ ∈ A is a solution

of (10), we use the concept of tangent cone of f at x⋆:

Tf (x
⋆) := cone

(
Sf (x

⋆)− x⋆
)
, (11)

where coneC := {αc : α ≥ 0, c ∈ C} is the cone generated

by the set C, and Sf (x
⋆) := {x : f(x) ≤ f(x⋆)} is the

sublevel set of f at x⋆. See [59, Prop. 5.2.1, Thm. 1.3.4].

Proposition 2 (Prop. 2.1 in [27]). x⋆ is the unique optimal

solution of (10) if and only if Tf (x
⋆) ∩ null(A) = {0}.

Although this proposition was stated in [27, Prop.2.1] for f
equal to an atomic norm, its proof holds for any real-valued

convex function. Fig. 2 illustrates it for f(x) = ‖x‖1, i.e., for

BP. It shows the respective sublevel set S‖·‖1
(x⋆) and tangent

cone T‖·‖1
(x⋆) at a “sparse” point x⋆. In the figure, A =

x⋆+null(A) intersects T‖·‖1
(x⋆) at x⋆ only, that is, T‖·‖1

(x⋆)∩
(x⋆+null(A)) = {x⋆}. Subtracting x⋆ to both sides, we obtain

the condition in Proposition 2.

Gaussian width. When A is generated randomly, its

nullspace has a random orientation, and the condition in

Proposition 2 holds or not with a given probability. The

smaller the width (or aperture) of Tf (x
⋆), the more likely

that condition will hold. Such a statement was formalized for

Gaussian matrices A by Gordon in [58]. To measure the width

of a set S ∈ R
n, Gordon defined the Gaussian width:

w(S) := Eg

[

sup
z∈S

g⊤z
]

, (12)

where g ∼ N (0, In) is a vector of n independent, zero-mean,

and unit-variance Gaussian random variables, and Eg[·] is the

expected value with respect to g. When the set is a cone C,

i.e., x ∈ C ⇒ αx ∈ C for all α ≥ 0, we have to intersect C
with the unit ℓ2-norm sphere in R

n: Sn(0, 1) := {x ∈ R
n :

‖x‖2 = 1}. To simplify notation, we define

w(C) := w(C ∩ Sn(0, 1)) = Eg

[

sup
z∈C ∩ Sn(0,1)

g⊤z
]

. (13)
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It turns out that w(C ∩ Sn(0, 1)) = w(C ∩ Bn(0, 1)),
where Bn(0, 1) := {x ∈ R

n : ‖x‖2 ≤ 1} is the unit ℓ2-norm

ball in R
n.1 As a result, the Gaussian width of a cone C is

the expected distance of a Gaussian vector g to the polar cone

of C, defined as C◦ := {y : y⊤z ≤ 0 , ∀ z ∈ C}:

Proposition 3 (Example 2.3.1 in [59]; Prop. 3.6 in [27]). The

Gaussian width of a cone C can be written as

w(C) = Eg

[

dist(g, C◦)
]

, (14)

where dist(x, S) := min{‖z − x‖2 : z ∈ S} denotes the

distance of the point x to the set S.2

This follows from the fact that the support function of a

“truncated” cone is the distance to its polar cone [59, Ex.

2.3.1]; and can be proved by computing the dual of the

optimization problem in (12) [27, Prop. 3.6]. Proposition 3

provides not only a way easier than (12) to compute Gaussian

widths of cones, but also a geometrical explanation of why the

Gaussian width measures the width of a cone. The wider the

cone C, the smaller its polar cone C◦. Therefore, the expected

distance of a Gaussian vector g to C◦ increases as C◦ gets

smaller or, equivalently, as C gets wider; see Fig. 3.

From geometry to CS bounds. In [58], Gordon used the

concept of Gaussian width to compute bounds on the proba-

bility of a cone intersecting a subspace whose orientation is

uniformly distributed, e.g., the nullspace of a Gaussian matrix.

More recently, [60] showed that those bounds are sharp. Based

on Gordon’s result, on Proposition 2 (and its generalization for

the case where the constraints of (10) are ‖Ax − y‖2 ≤ σ),

and a concentration of measure result, [27] establishes:

Theorem 4 (Corollary 3.3 in [27]). Let A ∈ R
m×n be a matrix

whose entries are i.i.d., zero-mean Gaussian random variables

with variance 1/m. Assume f : Rn −→ R is convex, and let

λm := Eg[‖g‖2] denote the expected length of a zero-mean,

unit-variance Gaussian vector g ∼ N (0, Im) in R
m.

1) Suppose y = Ax⋆ and let

x̂ = argmin
x

f(x)

s.t. Ax = y ,

(15)

and

m ≥ w(Tf (x
⋆))2 + 1 . (16)

Then, x̂ = x⋆ is the unique solution of (15) with prob-

ability greater than 1− exp
(
− 1

2

[
λm − w(Tf (x

⋆))
]2)

.

2) Suppose y = Ax⋆ + η, where ‖η‖2 ≤ σ and let

x̂ ∈ argmin
x

f(x)

s.t. ‖Ax− y‖2 ≤ σ .

(17)

Define 0 < ǫ < 1 and let

m ≥ w(Tf (x
⋆))2 + 3/2

(1− ǫ)2
. (18)

1That is because the maximizer of the problem in (13) is always in Sn(0, 1).
To see that, suppose it is not, i.e., for a fixed g, zg := sup{g⊤z : z ∈
C∩Bn(0, 1)} and zg 6∈ Sn(0, 1). This means ‖zg‖2 < 1. Since C is a cone,

ẑg := zg/‖zg‖2 ∈ C ∩ Sn(0, 1). And g⊤ẑg = (1/‖ẑg‖2)g⊤zg > g⊤zg ,
contradicting the fact that zg is optimal.

2This result is stated in [27] as an inequality, i.e., with ≤ in place of =.
Because of the previous footnote, the result is in fact an equality.

Then, ‖x̂ − x⋆‖2 ≤ 2σ/ǫ with probability greater than

1− exp
(
− 1

2

[
λm − w(Tf (x

⋆))− ǫ
√
m
]2)

.

Theorem 4 was stated in [27] for f equal to an atomic norm.

Its proof, however, remains valid when f is any convex func-

tion. Note, in particular, that (15) becomes (BP), (2), and (3)

when f(x) is ‖x‖1, ‖x‖1+β‖x−w‖1, and ‖x‖1+ β
2 ‖x−w‖22,

respectively; and (17) becomes the noise-robust version of

these problems. In this paper, we focus on the noise-free

versions of (2) and (3). However, we remark that the bounds

we derive also apply to their noise-robust versions because of

part 2) of Theorem 4. The quantity λm can be sharply bounded

as m/
√
m+ 1 ≤ λm ≤ √

m [27]. One of the steps of the

proof of Theorem 4 shows that (16) implies w(Tf (x
⋆)) ≤ λm

and (18) implies w(Tf (x
⋆))+ǫ

√
m ≤ λm. Roughly, the theo-

rem says that, given the noiseless (resp. noisy) measurements

y = Ax⋆ (resp. y = Ax⋆+η), we can recover x⋆ exactly (resp.

with an error of 2σ/ǫ), provided the number of measurements

is larger than a function of the Gaussian width of Tf (x
⋆).

It is rare, however, to be able to compute Gaussian widths in

closed-form; instead, one usually upper bounds it. As proposed

in [27], a useful tool to obtain such bounds is Jensen’s

inequality [59, Thm.B.1.1.8], Proposition 3, and the following

proposition. Recall that the normal cone Nf (x) of a function f
at a point x is the polar of its tangent cone: Nf (x) := Tf (x)

◦.

Also, ∂f(x) := {d : f(y) ≥ f(x) + d⊤(y − x), for all y} is

the subgradient of f at a point x [59].

Proposition 5 (Theorem 1.3.5, Chapter D, in [59]). Let f :
R

n −→ R be a convex function and suppose 0 6∈ ∂f(x) for a

given x ∈ R
n. Then, Nf (x) = cone ∂f(x).

Using Propositions 3 and 5, [27] proves:3

Proposition 6 (Proposition 3.10 in [27]). Let x⋆ 6= 0 be an

s-sparse vector in R
n. Then,

w
(
T‖·‖1

(x⋆)
)2 ≤ 2s log

(n

s

)

+
7

5
s . (19)

Together with Theorem 4, this means that if m ≥
2s log(n/s) + (7/5)s + 1, then BP recovers x⋆ from m
noiseless Gaussian measurements with high probability. A

similar result holds for noisy measurements.

B. The Geometry of ℓ1-ℓ1 and ℓ1-ℓ2 Minimization

Theorem 4 applies to CS by making f(x) = ‖x‖1. Since

it is applicable to any convex function f , we will use it

to characterize problems (2) and (3), that is, when f is

f1(x) := ‖x‖1+β‖x−w‖1 and f2(x) := ‖x‖1+ β
2 ‖x−w‖22,

respectively. In particular, we want to understand the relation

between the Gaussian widths of the tangent cones associated

with these functions and the one associated with the ℓ1-norm.

If the former is smaller, we may obtain reconstruction bounds

for (2) and (3) smaller than the one in (19). In the same way

that Proposition 6 bounded the squared Gaussian width of the

3We noticed an extra factor of
√
π in equation (73) of [27] (proof of Propo-

sition 3.10). Namely, π in (73) should be replaced by
√
π. As a consequence,

equation (74) in that paper can be replaced, for example, by our equation (59).
In that case, the number of measurements in Proposition 3.10 in [27] should
be corrected from 2s log(n/s) + (5/4)s to 2s log(n/s) + (7/5)s.



6

x⋆

w(1)

w(2)

S
(1)
f1S

(2)
f1

S‖·‖1

(a) ℓ1-ℓ1: good components

x⋆

w(1)

w(2)

S
(1)
f2S

(2)
f2

S‖·‖1

(b) ℓ1-ℓ2: good components

x⋆

w(3)

w(4)

S
(3)
f1

S
(4)
f1

S‖·‖1

(c) ℓ1-ℓ1: bad components

x⋆

w(3)

w(4)

S
(3)
f2

S
(4)
f2

S‖·‖1

(d) ℓ1-ℓ2: bad components

Figure 4. Sublevel sets of functions f1 and f2 with β = 1 for x⋆ = (0, 1). In both (a) and (b), the prior information is w(1) = (0, 1.6) and w(2) = (0, 1.3),
while in (c) and (d) it is w(3) = (0, 0.5), and w(4) = (0,−0.5). For reference, the sublevel set S‖·‖1 of the ℓ1-norm at x⋆ is also shown in all figures.

ℓ1-norm in terms of the key parameters n and s, we seek to

do the same for f1 and f2. To find out the key parameters in

this case and also to gain some intuition about the problem,

Fig. 4 shows the sublevel sets of f1 and f2 with β = 1 and in

two dimensions, i.e., for n = 2. Recall that, according to (11),

one can estimate tangent cones by observing the sublevel sets

that generate them. We set x⋆ = (0, 1) in all plots of Fig. 4

and consider four different vectors as prior information w:

w(1) = (0, 1.6) and w(2) = (0, 1.3) in Figs. 4(a) and 4(b); and

w(3) = (0, 0.5) and w(4) = (0,−0.5) in Figs. 4(c) and 4(d).

The sublevel sets are denoted with

S
(j)
fi

:= {x : ‖x‖1 + gi(x−w(j)) ≤ ‖x⋆‖1 + gi(x
⋆ −w(j))} ,

where i = 1, 2, j = 1, 2, 3, 4, and g1 = ‖ ·‖1 and g2 = 1
2‖ ·‖22.

For reference, we also show the sublevel set S‖·‖1
associated

with BP. The sublevel sets of f1 are shown in Figs. 4(a)

and 4(c), whereas the sublevel sets of f2 are shown in

Figs. 4(b) and 4(d). For example, the sublevel set S
(1)
f1

in

Fig. 4(a) can be computed in closed-form as S
(1)
f1

= {(0, x2) :
0 ≤ x2 ≤ 1.6}. The cone generated by this set is the axis x1 =

0. In the same figure, S
(2)
f1

= {(0, x2) : 0 ≤ x2 ≤ 1.3} and it

generates the same cone. Hence, both S
(1)
f1

and S
(2)
f1

generate

the tangent cone {(0, x2) : x2 ∈ R}, which has Gaussian

width smaller than w(T‖·‖1
(x⋆)).4 When we consider f2 and

the same prior information vectors, as in Fig. 4(b), the tangent

cones have larger widths, which are still smaller than the width

of T‖·‖1
(x⋆). Since small widths are desirable, we say that

the nonzero components of the w’s in Figs. 4(a) and 4(b)

are good components. On the other hand, the cones generated

by the sublevel sets of Fig. 4(c) coincide with T‖·‖1
(x⋆),

and the cones generated by the sublevel sets of Fig. 4(d)

have widths larger than T‖·‖1
(x⋆). Therefore, we say that the

nonzero components of the w’s in Figs. 4(c) and 4(d) are bad

components. Fig. 4 illustrates the concepts of good and bad

components only for x⋆
i > 0. For x⋆

i < 0, there is geometric

symmetry. This motivates the following definition.

4Using (13) and denoting g = (g1, g2) ∼ N (0, I2), it can be shown that

w(Tf1 (x
⋆)) = Eg [supz{g⊤z : z = (0,±1)}] = Eg [|g2|] = 2/

√
2π ≃

0.8. In contrast, noting that T‖·‖1 (x
⋆) is a rotation of the nonnegative orthant

and using [60, §3], we have w(T‖·‖1 (x
⋆)) = n/2 = 1 > 0.8. Note that the

difference between the Gaussian widths increases with the ambient dimension.

Definition 7 (Good and bad components). Let x⋆ ∈ R
n be the

vector to reconstruct and let w ∈ R
n be the prior information.

For i = 1, . . . , n, a component wi is considered good if

x⋆
i > 0 and x⋆

i < wi or x⋆
i < 0 and x⋆

i > wi ,

and wi is considered bad if

x⋆
i > 0 and x⋆

i > wi or x⋆
i < 0 and x⋆

i < wi .

Note that good and bad components are defined only on

the support of x⋆ and that the inequalities in the definition

are strict. Although good and bad components were moti-

vated geometrically, they arise naturally in our proofs. Notice

that Definition 7 (and Fig. 4) consider only components wi

such that wi 6= x⋆
i and for which x⋆

i 6= 0. The other

components, of course, also influence the Gaussian width; note

the role of ξ in Theorem 1. This will be clear when we present

our main results in the next section.

IV. MAIN RESULTS

In this section we present our main results, namely re-

construction guarantees for ℓ1-ℓ1 and ℓ1-ℓ2 minimization.

After some definitions and preliminary results, we present the

results for ℓ1-ℓ1 minimization first, and the results for ℓ1-ℓ2
minimization next. All proofs are relegated to Section VI.

A. Definitions and Preliminary Results

Definition 8 (Support sets). Let x⋆ ∈ R
n be the vector to

reconstruct and let w ∈ R
n be the prior information. We define

I :=
{
i : x⋆

i 6= 0
}

J :=
{
j : x⋆

j 6= wj

}

Ic :=
{
i : x⋆

i = 0
}

Jc :=
{
j : x⋆

j = wj

}

I+ :=
{
i : x⋆

i > 0
}

J+ :=
{
j : x⋆

j > wj

}

I− :=
{
i : x⋆

i < 0
}

J− :=
{
j : x⋆

j < wj

}
.

To simplify notation, we denote the intersection of two

sets A and B with the product AB := A ∩ B. Then, the

set of good components can be written as I+J− ∪ I−J+, and

the set of bad components can be written as I+J+ ∪ I−J−.

Definition 9 (Cardinality of sets). The number of good com-

ponents, the number of bad components, the sparsity of x⋆,
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the sparsity of x⋆ −w, and the cardinality of the union of the

supports of x⋆ and x⋆ − w are represented, respectively, by

h :=
∣
∣I+J−

∣
∣+

∣
∣I−J+

∣
∣

h :=
∣
∣I+J+

∣
∣+

∣
∣I−J−

∣
∣

s := |I|
l := |J |
q :=

∣
∣I ∪ J

∣
∣ .

All these quantities are nonnegative. Before moving to our

main results, we present the following useful lemma:

Lemma 10. For x⋆ and w as in Definition 8,
∣
∣IJ

∣
∣ = h+ h (20)

|IJc| = s− (h+ h) . (21)

|IcJ | = q − s (22)
∣
∣IcJc

∣
∣ = n− q (23)

Proof. Identity (20) is proven by noticing that I+ and I−
partition I , and J+ and J− partition J . Then,

∣
∣IJ

∣
∣ =

∣
∣I+J

∣
∣+

∣
∣I−J

∣
∣

=
∣
∣I+J+

∣
∣+

∣
∣I+J−

∣
∣+

∣
∣I−J+

∣
∣+

∣
∣I−J−

∣
∣

= h+ h .

To prove (21), we use (20) and the fact that J and Jc are a

partition of {1, . . . , n}:

s =
∣
∣I
∣
∣ =

∣
∣IJ

∣
∣+

∣
∣IJc

∣
∣ = (h+ h) +

∣
∣IJc

∣
∣ ,

from which (21) follows. To prove (22), we use the identity

I ∪ J =
(
IcJ

)
∪
(
IJ

)
∪
(
IJc

)
, where IcJ , IJ and IJc are

pairwise disjoint. Then, using (20) and (21),

q =
∣
∣I ∪ J

∣
∣ =

∣
∣IcJ

∣
∣+

∣
∣IJ

∣
∣+

∣
∣IJc

∣
∣ =

∣
∣IcJ

∣
∣+ s .

Finally, (23) holds because

n =
∣
∣I
∣
∣+

∣
∣Ic

∣
∣ =

∣
∣IJ

∣
∣+

∣
∣IJc

∣
∣+

∣
∣IcJ

∣
∣+

∣
∣IcJc

∣
∣ = q+

∣
∣IcJc

∣
∣ ,

where we used (20), (21), and (22).

From Lemma 10, we can easily obtain the following iden-

tities, which will be frequently used:
∣
∣IcJ

∣
∣+

∣
∣IJc

∣
∣ = q − (h+ h) (24)

∣
∣IcJ

∣
∣+

∣
∣IJc

∣
∣+ 2

∣
∣IcJc

∣
∣ = 2n− (q + h+ h) (25)

∣
∣IcJ

∣
∣−

∣
∣IJc

∣
∣ = q + h+ h− 2s . (26)

Finally, note that (23) allows interpreting q as the size of the

union of the supports of x⋆ and w: since both x⋆ and w are

zero in IcJc, q is the number of components in which at least

one of them is not zero.

B. ℓ1-ℓ1 Minimization

We now state our results for ℓ1-ℓ1 minimization, which

come into two forms of bounds for w(Tf1(x
⋆))2: sharp

but uninformative bounds, and not so sharp but informative

bounds. We start with the latter. To simplify the presentation,

we first enumerate some conditions used for β 6= 1:

Definition 11 (Conditions for β 6= 1).

q − s

2n− (q + h+ h)
≤ 1− β

1 + β

(
q + h+ h

2n

) 4β

(β+1)2

(C1)

q − s

2n− (q + h+ h)
≥ 1− β

1 + β

(
s

q

) 4β

(1−β)2

(C2)

s− (h+ h)

2n− (q + h+ h)
≤ β − 1

β + 1

(
q + h+ h

2n

) 4β

(β+1)2

(C3)

s− (h+ h)

2n− (q + h+ h)
≥ β − 1

β + 1

(
h+ h

s

) 4β

(β−1)2

. (C4)

Theorem 12 (ℓ1-ℓ1 minimization). Let x⋆ ∈ R
n be the vector

to reconstruct and let w ∈ R
n be the prior information.

Let f1(x) = ‖x‖1+β‖x−w‖1 with β > 0, and assume x⋆ 6=
0, w 6= x⋆, and q < n.

1) Let β = 1, and assume there exists at least one bad

component, i.e., h > 0. Then,

w
(
Tf1(x

⋆)
)2 ≤ 2h log

( 2n

q + h+ h

)

+
7

10
(q + h+ h) .

(27)

2) Let β < 1.

a) If (C1) holds, then

w
(
Tf1(x

⋆)
)2 ≤ 2

[

h+ (s− h)
(1− β)2

(1 + β)2

]

×

× log
( 2n

q + h+ h

)

+ s+
2

5
(q + h+ h) . (28)

b) If q > s and (C2) holds, then

w
(
Tf1(x

⋆)
)2 ≤ 2

[

h
(1 + β)2

(1− β)2
+ s− h

]

log
(q

s

)

+
7

5
s . (29)

3) Let β > 1.

a) If (C3) holds, then

w
(
Tf1(x

⋆)
)2 ≤ 2

[

h+ (q + h− s)
(β − 1)2

(β + 1)2

]

×

× log
( 2n

q + h+ h

)

+ l +
2

5
(q + h+ h) . (30)

b) If s > h+ h > 0 and (C4) holds, then

w
(
Tf1(x

⋆)
)2 ≤ 2

[

h
(β + 1)2

(β − 1)2
+ q + h− s

]

×

× log
( s

h+ h

)

+ l +
2

5
(h+ h) . (31)

The proof can be found in Section VI-B. Similarly to Propo-

sition 6, the previous theorem establishes upper bounds

on w(Tf1(x
⋆))2 that depend only on the key parameters n, s,

β, q, h, and h. Together with Theorem 4, it then provides (use-

ful) bounds on the number of measurements that guarantee ℓ1-

ℓ1 reconstruction with high probability. The assumption q < n
means that the union of the supports of x⋆ and w differs from

the full set {1, . . . , n} or, equivalently, there is at least one

index i for which x⋆
i = wi = 0. Assuming w 6= x⋆ and x⋆ 6= 0
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Figure 5. Values of the right-hand side (RHS) of conditions (C1) and (C2)
from case 2) of Theorem 12, for the example of Fig. 1.

is equivalent to assuming that the sets J and I are nonempty,

respectively.5

The theorem is divided into three cases: 1) β = 1, 2) β < 1,

and 3) β > 1. We will see that, although rare in practice, the

theorem may not cover all possible values of β, due to the

conditions imposed in cases 2) and 3). Recall that Theorem 1

in Section I instantiates case 1), i.e., β = 1, but in a slightly

different format. Namely, to obtain (4) from (27), notice that

ξ = |IcJ | − |IJc| and that (26) implies (q + h+ h)/2 = s+
ξ/2. Therefore, the observations made for Theorem 1 apply to

case 1) of the previous theorem. We add to those observations

that the assumption that there is at least one bad component,

i.e., h > 0, is necessary to guarantee 0 6∈ ∂f1(x
⋆) and, hence,

that we can use Proposition 5. In fact, it will be shown in

part 1) of Lemma 19 that 0 6∈ ∂f1(x
⋆) if and only if h > 0

or β 6= 1. Thus, the assumption h > 0 can be dropped in cases

2) and 3), where β 6= 1. Note that the quantities on the right-

hand side of (27) are well defined and positive: the assumption

that x⋆ 6= 0 implies q = |I ∪ J | > 0; and the assumption that

q < n, i.e., |IcJc| > 0, and (25) imply 2n > q + h+ h.

In case 2), β < 1 and we have two subcases: when

condition (C1) holds, w(Tf1(x
⋆))2 is bounded as in (28);

when condition (C2) holds, it is bounded as in (29). These

subcases are not necessarily disjointed nor are they guaranteed

to cover the entire interval 0 < β < 1.6 Fig. 5 shows how

conditions (C1) and (C2) vary with β for the example in Fig. 1.

There, we had n = 1000, s = 70, h = 11, h = 11, and q = 76.

The right-hand side of conditions (C1) and (C2) vary with β
as shown in the figure, and the dashed line represents the left-

hand side of (C1) and (C2), which does not vary with β. We

can see that (C1) holds for 0 < β / 0.88, and (C2) holds

for 0.75 / β < 1. Therefore, both conditions are valid in the

interval 0.75 < β < 0.88. For instance, if β = 0.8, the bounds

in (28) and (29) give 180 and 255 (rounding up), respectively.

Both values are larger than the one for β = 1, which is given

5Assuming x⋆ 6= w is necessary to guarantee 0 6∈ ∂f1(x⋆), as shown in
Lemma 19. Of course, taking w = x⋆ works well in practice; our theory,
however, does not cover that specific case.

6If, for example, n = 20, s = 15, q = 16, h = 10, and h = 5, neither (C1)
nor (C2) hold for β = 0.9. In this case, however, x⋆ is not “sparse,” as 75%
of its entries are nonzero. Increasing n to, e.g., 40, makes (C1) hold.

by (27) and equal to 135. Indeed, the bound in (27) is almost

always smaller than the one in (28): using (26), it can be

shown that the linear, non-dominant terms in (27) are smaller

than the linear terms in (28) whenever

ξ <
2

5
(q + h+ h) . (32)

Furthermore, the dominant term in (27), namely the one

involving the log, is always smaller than the dominant term

in (28). So, even if (32) does not hold, (27) is in general

smaller than (28). Curiously, the bound in (28) is minimized

for β = 1 but, in that case, condition (C1) will not hold

unless q = s [according to (22), that would mean that x⋆

and w have exactly the same support]. The bound in (29),

valid only if q > s, can be much larger than both (27) and (28)

when β is close to 1: this is due to the term (1+β)2/(1−β)2

and to the fact that (29) is valid only for values of β near 1
[cf. (C2) and Fig. 5]. From this analysis, we conclude that

the bounds given in case 2) will not be sharp near 1. Yet,

the bound for β = 1, i.e., (27), is the sharpest one in the

theorem since, as we will see in its proof, is the one with

the fewest number of approximations. Case 3) in the theorem

is similar to case 2): the expression for both the conditions

and the bounds are very similar. The observations made to

case 2) then also apply to case 3). Note, for example, that in

case 3b) it is assumed s > h + h > 0. According to (20)

and (21), this is equivalent to saying that there is at least

one index i for which x⋆
i 6= 0 and wi 6= x⋆

i and another

index j for which x⋆
j 6= 0 and wj = x⋆

j . The most striking

fact about Theorem 12 is that its expressions depend only on

the quantities given in Definition 9, which depend on the signs

of x⋆
i and x⋆

i −wi, but not on their magnitude. As we will see

shortly, that is no longer the case for ℓ1-ℓ2 minimization.

A sharper bound. We now present a bound for ℓ1-ℓ1
minimization that is sharper than the ones in Theorem 12.

However, it is not as informative and has to be computed

numerically. We use the following notation for intervals in the

real line: for b ≥ 0, I(a, b) := [a− b, a+ b].

Theorem 13 (ℓ1-ℓ1 minimization: shaper bound). Let x⋆, w ∈
R

n be as in Theorem 12. Assume x⋆ 6= 0, w 6= x⋆, and that

either h > 0 or β 6= 1. Then,

w(Tf1(x
⋆))2 ≤ h+ h+min

t≥0

{[

h(β + 1)2 + h(β − 1)2
]

t2

+
∑

i∈IJc

Egi

[

dist
(

gi, I(t sign(x⋆
i ), tβ)

)2]

+
∑

i∈IcJ

Egi

[

dist
(

gi, I(−t β sign(wi), t)
)2]

+
∑

i∈IcJc

Egi

[

dist
(

gi, I(0, t(β + 1))
)2]

}

. (33)

The proof can be found in Section VI-C. The expected

distance of a Gaussian scalar random variable to an interval

can be computed exactly, as a function of the Q-function;

see (52) in Lemma 17, Section VI. Therefore, the right-

hand side of (33) can also be computed exactly, although

it requires a numerical procedure to solve the optimization
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problem in t. The bound in (33) is reminiscent of the bounds

in [60, Theorem 4.3] and [36, Proposition 2], which have

sharpness guarantees, i.e., there are polynomial expressions

on the Gaussian width that upper bound the respective bound.

Unfortunately, the proof techniques used in those sharpness

results cannot be used in our case, since they only apply to

norms and f1(x) = ‖x‖1+β‖x−w‖1 is not a norm. Yet, as we

will see in Section V, (33) describes precisely the experimental

performance of ℓ1-ℓ1 minimization.

C. ℓ1-ℓ2 Minimization

Stating our results for ℓ1-ℓ2 minimization requires additional

notation. Namely, we use the following subsets of IcJ :

K= :=
{

i ∈ IcJ : |wi| =
1

β

}

(34)

K 6= :=
{

i ∈ IcJ : |wi| >
1

β

}

, (35)

where we omit their dependency on β for notational simplicity.

The most important parameter in our bounds will be

vβ :=
∑

i∈I

(
1 + β sign(x⋆

i )(x
⋆
i − wi)

)2
+

∑

i∈K 6=

(β|wi| − 1)2 ,

(36)

which is the complete version of (6). We also define w :=
|wk|, where

k := argmin
i∈IcJ

∣
∣
∣|wi| −

1

β

∣
∣
∣ . (37)

In words, w is the absolute value of the component of w whose

absolute value is closest to 1/β, in the set IcJ . We will assume

IcJ 6= ∅, i.e., s < q [cf. (22)], so that k and w are well defined.

As in ℓ1-ℓ1 minimization, we state our results in two

forms: sharp but uninformative bounds, and not so sharp but

informative bounds. We start with the latter.

Theorem 14 (ℓ1-ℓ2 minimization). Let x⋆ ∈ R
n be the vector

to reconstruct, w ∈ R
n the prior information. Let f2(x) =

‖x‖1 + β
2 ‖x − w‖22 with β > 0, and assume 0 < s < q < n.

Also, assume that there exists i ∈ Ic such that |wi| > 1/β or

that there exists i ∈ IJ such that β 6= sign(x⋆
i )/(wi − x⋆

i ).

1) If

q − s

n− q
≤ |1− β w| exp

((
(β w)2 − 2β w

)
log

(n

q

))

,

(38)

then

w
(
Tf2(x

⋆)
)2 ≤ 2vβ log

(n

q

)

+s+|K 6=|+ 1

2
|K=|+ 4

5
q .

(39)

2) If

q − s

n− q
≥ |1− β w| exp

(

4
(β w − 2)β w

|1− βw|2 log
(q

s

))

,

(40)

then

w
(
Tf2(x

⋆)
)2 ≤ 2vβ

(1− β w)2
log

(q

s

)

+|K 6=|+1

2
|K=|

+
9

5
s . (41)

Similarly to Theorem 12 and Proposition 6, this theorem up-

per bounds w(Tf2(x
⋆))2 with expressions that depend on key

problem parameters, namely n, q, s, β, vβ , w, |K 6=|, and |K=|.
Together with Theorem 4, it then provides a sufficient number

of measurements that guarantee that (3) reconstructs x⋆ with

high probability. The assumption 0 < s < q < n translates

into the sets I , IcJ , and IcJc being nonempty. It will be shown

in Lemma 19 that the remaining assumptions are equivalent

to 0 6∈ ∂f2(x
⋆) and, hence, that we can use Proposition 5. It

is relatively easy to satisfy one of these assumptions, namely

that there exists i ∈ IJ such that β 6= sign(x⋆
i )/(wi − x⋆

i );
a sufficient condition is that there are at least two indices i, j
in I such that sign(x⋆

i )/(wi−x⋆
i ) 6= sign(x⋆

j )/(wj −x⋆
j ). The

alternative is to set β > 1/|wi| for all i ∈ Ic. Setting large

values for β, however, will not only make the bounds in the

theorem very large, but also degrade the performance of ℓ1-ℓ2
minimization significantly, as we will see in the experimental

results section. Note that if there exists i ∈ IJ such that

β 6= sign(x⋆
i )/(wi − x⋆

i ), the first term of vβ in (36) has

at least one nonzero summand; if, on the other hand, there

exists i ∈ Ic such that |wi| > 1/β, the second term of vβ has

a nonzero summand. We thus conclude that these assumptions

are equivalent to vβ > 0.

The theorem is divided into two cases: 1) if condition (38)

is satisfied, the bound in (39) holds; 2) if condition (40) is

satisfied, the bound in (41) holds. As in ℓ1-ℓ1 minimization,

the conditions (38) and (40) are neither necessarily disjointed

nor are they guaranteed to cover all the possible values of β
(although such a case is rare in practice). Case 1) is the most

interesting in practice, since condition (38) holds when n is

large with respect to q. In that case, the bound in (39) is mostly

determined by the dominant term 2vβ log(n/q). We then see

that the role played by the number of bad components h in

ℓ1-ℓ1 minimization is now played by vβ in ℓ1-ℓ2 minimization.

Curiously, the first term of vβ captures the notion of good and

bad components: consider x⋆
i > 0; clearly, a bad component

wi < x⋆
i yields a larger vβ than a good component wi > x⋆

i

does. The same happens for x⋆
i < 0. Finally, note that vβ is

the only term in (39) that depends on β. Therefore, that bound

is minimized when vβ is minimized, which occurs for

β⋆ =
‖wK 6=‖1 + 1⊤(x⋆

I−
− wI−)− 1⊤(x⋆

I+
− wI+)

‖x⋆
I − wI‖22 + ‖wK 6=‖22

, (42)

where zS denotes the subvector of z whose components are

indexed by the set S, and 1 denotes the vector of ones with

appropriate dimensions. Selecting β as in (42) leads to

vβ⋆ = s+ |K 6=|

−
[
1⊤(x⋆

I+
− wI+)− 1⊤(x⋆

I−
− wI−)− ‖wK 6=‖1

]2

‖x⋆
I − wI‖22 + ‖wk 6=‖22

. (43)

The numerator of the last term of (43) can be written as the

square of the inner product z⊤
[
(x⋆

I − w⋆
I )

⊤ w⊤
K 6=

]
, where

zi = 1 for i ∈ I+, zi = −1 for i ∈ I−, and zi = −sign(wi)
for i ∈ K 6=. That is, all entries of z are ±1, and thus

‖z‖22 = s + |K 6=|. Applying the Cauchy-Schwarz inequality

to the last term of (43), we obtain vβ⋆ ≥ 0. Although this

is a trivial identity [see (36)], the conditions under which
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it is achieved reveal the type of “good” prior information

w for ℓ1-ℓ2 minimization. Concretely, the Cauchy-Schwarz

inequality becomes an equality when z is a multiple of
[
(x⋆

I − w⋆
I )

⊤ w⊤
K 6=

]
which, in our case, translates into







wi = x⋆
i + c , i ∈ I+

wi = x⋆
i − c , i ∈ I−

|wi| = c , i ∈ K 6= ,

(44)

for some positive constant c (positivity is imposed by the

last condition). As we had seen before, Theorem 14 does

not hold for such a w: at least one of the conditions in (44)

must not hold. Yet, asymptotically, the more conditions hold

in (44), the better the performance of ℓ1-ℓ2 minimization

or, in other words, the better the prior information w. To

establish a parallel with ℓ1-ℓ1 minimization, note that h is

the number of components that satisfy the first two conditions

of (44) without the requirement that c is the same in all

equations. In other words, components considered good for

ℓ1-ℓ1 minimization (i.e., contributing to h) may not be “good”

for ℓ1-ℓ2 minimization, since they may not satisfy one of the

first two equations of (44). This shows that conditions for

“good” prior information are much easier to satisfy in ℓ1-ℓ1
minimization than in ℓ1-ℓ2 minimization.

Regarding case 2) of Theorem 14, it holds when n is

comparable to q, and β is close to 1/w. The bound in that

case depends on β through the term vβ/(1−βw)2. Although it

can be minimized in closed-form, its expression is significantly

more complicated than (42).

A sharper bound. Now we present a bound for ℓ1-ℓ2
minimization that is sharper than the ones in Theorem 14.

Recall the notation I(a, b) := [a− b, a+ b], for b ≥ 0.

Theorem 15 (ℓ1-ℓ2 minimization: sharper bound). Let x⋆, w ∈
R

n be as in Theorem 14. Assume s := |I| > 0 and also that

there exists i ∈ Ic such that |wi| > 1/β or that there exists

i ∈ IJ such that β 6= sign(x⋆
i )/(wi − x⋆

i ). Then,

w(Tf2(x
⋆))2 ≤ s+min

t≥0

{

t2
∑

i∈I

(1+β sign(x⋆
i )(x

⋆
i −wi))

2

+
∑

i∈Ic

Egi

[

dist
(

gi, I(−tβwi, t)
)2]

}

. (45)

The proof is in Appendix VI-E. As in the sharper bound

for the ℓ1-ℓ1 case (Theorem 13), computing (45) requires a

numerical procedure. Also, because f2(x) = ‖x‖1+(β/2)‖x−
w‖22 is not a norm, the techniques used in [60, Theorem 4.3]

and [36, Proposition 2] to prove sharpness of Gaussian width-

type of bounds cannot be used in our case. In Section V, we

will see that (45) precisely describes the performance of ℓ1-ℓ2
minimization.

D. ℓ1-ℓ1 minimization versus ℓ1-ℓ2 minimization

The bounds in Theorem 12 for ℓ1-ℓ1 minimization are min-

imized when β = 1, a value that leads to excellent results in

practice, as we will see in Section V. In that case and for large

n, ℓ1-ℓ1 minimization requires O(2h log n) measurements for

perfect recovery. Theorem 14, in turn, establishes that ℓ1-

ℓ2 minimization requires O(2vβ log n) measurements. The

optimal value of β in this case depends on x⋆ and w. This

section starts by analyzing how the dominant factors h and vβ
compare under additive modeling noise.7 Then, it establishes

a (deterministic) sufficient condition under which the sharp

bound for ℓ1-ℓ1 minimization in (33) is smaller than the sharp

bound for ℓ1-ℓ2 minimization in (45).

Dominant factors under additive modeling noise. We

consider w = x⋆ + γ, where γ ∈ R
n is modeling noise.

For simplicity, assume γ and x⋆ have the same support and

each entry of γ is drawn i.i.d. from a distribution symmetric

around the origin with finite expected value (which is 0, due

to the symmetry). The objective functions of (2) and (3) may

lead us to think that ℓ1-ℓ1 minimization (2) performs better

for a Laplacian γ and ℓ1-ℓ2 minimization (3) performs better

for a Gaussian γ. This intuition is actually wrong in terms

of the dominant parameters h and vβ : ℓ1-ℓ1 minimization

performs better in both cases; in fact, it performs better for

any distribution symmetric around the origin. To see why, note

that γ having the same support as x⋆ implies IcJ = ∅, and

thus K 6= = ∅. Denote the variance of the entries of γ with σ.

According to our model, both h and vβ are random variables.

For example, h can be written as h =
∑

i∈I+
Z−
i +

∑

i∈I−
Z+
i ,

where Z−
i (resp. Z+

i ) is the indicator of the event “γi < 0”

(resp. “γi > 0”). We have E[Z−
i ] = P(γi < 0) = 1/2 and

E[Z+
i ] = P(γi > 0) = 1/2, due to the symmetry of the

distribution of γ. The expected values of h and vβ are then

E

[

h
]

=
∑

i∈I+

E[Z−
i ] +

∑

i∈I−

E[Z+
i ] =

s

2
(46)

E[vβ ] =
∑

i∈I+

E[(1− β γi)
2] +

∑

i∈I−

E[(1 + β γi)
2]

= s(1 + β2σ2) , (47)

where, in the last step, we used E[γi] = 0 and E[γ2
i ] = σ2,

for all i. Under this model, the assumptions of Theorems 12

and 14 [in cases 1)] hold with probability 1.8 Due to concentra-

tion of measure [61], the larger the support I , the more h and

vβ concentrate around their expected values in (46) and (47).

This shows that, under the above model, ℓ1-ℓ1 minimization

requires about half of the number of measurements than

classical CS, whereas ℓ1-ℓ2 minimization actually requires

more measurements, by a factor of β2σ2.

Comparing sharp bounds. We now establish a sufficient

condition for the ℓ1-ℓ1 sharp bound (33) with β = 1 being

smaller than the ℓ1-ℓ2 sharp bound (45) for any β > 0.

Corollary 16. Let x⋆ ∈ R
n be the signal to reconstruct, w ∈

R
n the prior information. Assume h > 0 and IJc = ∅, i.e.,

x⋆
i 6= 0, wi 6= 0 ⇒ x⋆

i 6= wi. Consider ℓ1-ℓ1 minimization

with β1 = 1 and ℓ1-ℓ2 minimization with arbitrary β2 > 0. If

|wi| ≥
1

β2
, for all i ∈ IcJ (48a)

7A more complete analysis for the case of a Laplacian distribution can be
found in [41], which analyzes the ℓ1-ℓ1 minimization bound (4), and not just

its dominant parameter h.
8In reality, the assumption s < q of Theorem 14 does not hold. An

inspection of its proof, however, reveals that the role of s < q is just to make
w well defined. The proof still holds for case 1) if k in (37) is undefined and
w is set to +∞.
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|x⋆
i − wi| ≥

1

β2
, for all i ∈ I+J+ ∪ I−J− , (48b)

where (48b) holds strictly for at least one component, then the

right-hand side of (33) is always smaller than the right-hand

side of (45), i.e., the sharp bound for ℓ1-ℓ1 minimization is

smaller than the one for ℓ1-ℓ2 minimization.

The proof, in Section VI-F, shows that each term in (33) is

smaller than the respective term in (45). This indicates that the

assumptions of the corollary are strong and that its conclusions

also hold under weaker assumptions.

E. Practical guidelines: improving the prior information

Our results indicate that h and vβ are the key parameters in

ℓ1-ℓ1 and ℓ1-ℓ2 minimization, respectively. We now describe

how to decrease them by modifying the prior information w.

One way to reduce h we find extremely effective in practice

is to amplify w by a moderate factor. To give a concrete

example, consider x⋆ = (−3, 2, 2, 4,−1) and the baseline

prior information wb = (−2, 3, 1,−1, 0). Take w = c · wb,

for some c ≥ 1. If c = 1, w has one good component (the

2nd one) and four bad components (the remaining ones), i.e,

h = 1, h = 4. When 3/2 < c < 2, the first component

becomes good, i.e., h = 2, h = 3. When c > 2, the third

component also becomes good, yielding h = 3 and h = 2.

So, by amplifying the components of the baseline wb we

reduced its number of bad components to half their initial

value. This is the maximum reduction we can get in this

example because of the fourth and fifth components: the signs

of w4 = −1 and x⋆
4 = 4 are different so, no matter how large

c is, w4 is always a bad component; similarly, w5 = 0 remains

unchanged under multiplication. If no such components exist,

i.e., if sign(x⋆
i ) = sign(wi) for all x⋆

i 6= 0, there is a c above

which w has no bad components. In that case, Theorem 12 no

longer applies and the number of measurements might actually

increase. This is why we recommend a moderate value for c,
e.g., 1.3, which should be tuned according to the application.

Applying the same technique to ℓ1-ℓ2 minimization does

not work as well. Recall that improving the quality of w
in this case means satisfying as many conditions in (44)

as possible. The previous technique then does not work if

the magnitudes of x⋆
i have large variability. So, instead of

amplifying w, we recommend adding a small quantity, say

c, to the positive components of w and subtracting c from

the negative components, i.e., wi = wb
i + c if wb

i > 0, and

wi = wb
i − c if wb

i < 0 [notice the similarity with the first two

equations of (44)]. In vector form, w = wb+c·sign(wb), where

sign(·) is applied component-wise. Since a w that satisfies (44)

yields β⋆ = 1/c in (42), we also recommend setting β = 1/c
in this case. Finally, we note that this technique works for

ℓ1-ℓ1 minimization as well; of course, we recommend using

β = 1 in that case.

V. EXPERIMENTAL RESULTS

We describe two types of experiments: one that assesses the

sharpness of our bounds for a wide range of β’s, and another

that illustrates the effectiveness of our practical guidelines for

improving the prior information.

Figure 6. Experimental performance of ℓ1-ℓ1 minimization for 5 different
Gaussian matrices as a function of β (solid lines). The upper dotted line
depicts the bounds of Theorem 12, which are minimized for β = 1 (vertical
line). Horizontal lines: bound in (59) for CS and its sharp version in [60].

A. Sharpness of the bounds

Experimental setup. The data was generated as in Fig. 1,

but for smaller dimensions. Namely, x⋆ had n = 500 entries,

s = 50 of which were nonzero. The values of these entries

were drawn from a zero-mean Gaussian distribution with unit

variance. We then generated the prior information as w =
x⋆ + z, where z was 20-sparse and whose support coincided

with the one of x⋆ in 16 entries and differed in 4 of them.

The nonzero entries were zero-mean Gaussian with standard

deviation 0.8. This yielded h = 6, h = 11, q = 53, and l = 20.

The experiments were conducted as follows. We created a

square matrix A ∈ R
500×500 with entries drawn independently

from the standard Gaussian distribution. We then set y = Ax⋆.

Next, for a fixed β, we solved problem (2), first by using only

the first row of A and the first entry of y. If the solution of (2),

say x̂1(β), did not satisfy ‖x̂1(β) − x⋆‖2/‖x⋆‖2 ≤ 10−2,

we proceeded by solving (2) with the first two rows of A
and the first two entries of y. This procedure was repeated

until ‖x̂m(β) − x⋆‖2/‖x⋆‖2 ≤ 10−2, where x̂m(β) denotes

the solution of (2) when A (resp. y) consists of the first m
rows (resp. entries) of A (resp. y). In other words, we stopped

when we found the minimum number of measurements that

ℓ1-ℓ1 minimization requires for successful reconstruction, that

is, min {m : ‖x̂m(β) − x⋆‖2/‖x⋆‖2 ≤ 10−2}. The values

of β varied between 0.01 and 100. We then repeated the entire

procedure for 4 other randomly generated pairs (A, y).

Results for ℓ1-ℓ1 minimization. Fig. 6 shows the results

of these experiments. It displays the minimum number of

measurements for successful reconstruction versus β. The 5
solid lines give the experimental performance of (2) for the 5
different pairs (A, y). The upper dotted line shows the bounds

given by Theorem 12. When β 6= 1, the subcases of cases 2)

and 3) of that theorem may give two different bounds, from

which we select the smallest one. For reference, we use a

vertical line to mark the value that minimizes the bounds in

Theorem 12: β = 1. Another dotted line shows the sharper

bound in Theorem 13, computed numerically: it coincides with

the experimental curves. Two horizontal lines depict values of

two bounds for classical CS: the upper one the simple bound
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Figure 7. Same as Fig. 6, but for ℓ1-ℓ2 minimization. The data is the same
as in Fig. 6, but the vertical scales are different. For β > 1, the bounds given
by Theorem 14 are larger than 500 and, hence, are not shown.

in (19), the lower one the sharper bound in [60], computed

numerically. We point out that we removed the point of the

ℓ1-ℓ1 bound corresponding to β = 0.9, since it was 576, a

value larger than the signal dimensionality, 500. As we had

seen before, values of β close to 1 in cases 2.b) and 3.b)

yield large bounds in Theorem 12. We had also stated that the

bound for β = 1 is not only the sharpest one in that theorem,

but also the smallest one. Fig. 6 also shows that setting β
to 1 leads to a performance in practice close to the optimal

one. Indeed, three out of the five solid curves in the figure

achieved their minimum at β = 1; the remaining ones achieved

it at β = 2.5. We also observe that the bound for β = 1 is

quite sharp: its value is 97, and the maximum among all of the

solid lines for β = 1 was 75 measurements. The figure also

shows that the bounds are looser for β < 1 and, eventually,

become larger than the bound in (19). For β > 1, the bound

is relatively sharp. Regarding the experimental performance of

ℓ1-ℓ1 minimization, it degrades for small β, towards standard

CS, achieving top performance around β = 1. For large β, the

performance also degrades, however, without becoming worse

than for small β.

Results for ℓ1-ℓ2 minimization. Fig. 7 shows the same

experiments, with the same data, for ℓ1-ℓ2 minimization. The

scale of the vertical axis is different from the one in Fig. 6.

We do not show the bounds for β > 1, because they were

larger than 500 (e.g., the bound for β = 2.5 was 820). The

minimum value of the bound was 315 (β = 0.01), which

is slightly larger than the bound for standard CS in (19). In

fact, for this example, the bounds given by Theorem 14 were

always larger than the one for standard CS; as we will see in

the next set of experiments, ℓ1-ℓ2 minimization can generally

outperform standard CS if we improve the prior information as

recommended in Section IV-E. The experimental performance

curves in Fig. 7 behaved differently from the ones for ℓ1-ℓ1
minimization: from β = 0.01 to β = 0.05, they decreased

slightly and remained approximately constant until β = 1.

After that point, their performance degraded sharply. For

instance, for β = 50, (3) was able to reconstruct x⋆ for one

pair (A, y) only; and this required using the full matrix A. In

conclusion, although prior information helped (slightly) for β

Figure 8. Prior information improvement with a multiplicative factor: w =
c · wb, where wb is the baseline prior information. The vertical axis shows
the minimum number of measurements to achieve 1% error. The horizontal
lines show the CS bound in [60] and the performance of Mod-CS [12].

Figure 9. Same as Fig. 8, but for an additive factor. The data is the same,
but the prior information is generated as w = wb + c · sign(wb), for c ≥ 0.

between 0.01 and 1, the bounds of Theorem 14 were not sharp.

B. Improving the prior information

These experiments illustrate the gains obtained by following

the guidelines of Section IV-E on how to improve prior

information.

Experimental setup. The vector x⋆ was generated exactly

as before, with n = 1000 and s = 70. To better illustrate

the gains, the prior information was generated differently: the

base prior information was created as wb = x⋆+z with a 104-

sparse z, whose support coincided with the one of x⋆ in 56
entries and differed in 49. The nonzero components of z were

zero-mean Gaussian with variance 0.3. This yielded h = 32,

h = 25, q = 117, and l = 104.

In these experiments, we modified wb as in Section IV-E:

by a multiplicative factor w = c ·wb, with c varying between

1 and 7, and by an additive factor w = wb+ c · sign(wb), with

c varying between 0.01 and 20. For ℓ1-ℓ1 minimization, we

set always β = 1. For ℓ1-ℓ2 minimization, we set β = 1 in the

multiplicative factor case and β = 1/c in the additive case.

In contrast with the previous experiments, we generated just

one pair (A, y), where y = Ax⋆. The experiments consisted of

computing the minimum number of rows of A that guaranteed

a relative error smaller than 1%, for different values of c.
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Results for a multiplicative factor. Fig. 8 shows the

results for a multiplicative factor improvement. The solid lines

represent the experimental performance of ℓ1-ℓ1 and ℓ1-ℓ2
minimization, the dotted line the bound in (4) (the bound for

ℓ1-ℓ2 was too large to be displayed), and the horizontal lines

the classical CS (sharp) bound in [60] and the performance of

Modified-CS (Mod-CS) [12]. Mod-CS integrates prior infor-

mation in CS via an estimate of the support of x⋆; naturally,

we used the support of wb for such estimate. The plot shows

that both the experimental performance of ℓ1-ℓ1 and its bound

are nondecreasing with c, confirming the effectiveness of our

strategy to improve the prior information. Both curves decrease

monotonically until around c = 3.5, after which they reach

a plateau: 121 for ℓ1-ℓ1 and 154 for the bound. Mod-CS

requires 148 measurements to solve this particular problem,

a value smaller than the number of measurements required

by ℓ1-ℓ1 minimization for c ≤ 1.2. For any c > 1.2, ℓ1-

ℓ1 minimization required less measurements than Mod-CS.

Regarding ℓ1-ℓ2 minimization, its performance improved for

1 < c ≤ 2: for example, it required 305 measurements for

c = 1.5. For c > 2, its performance degraded quickly. In

conclusion, as predicted in Section IV-E, improving the prior

information via a multiplicative factor works well for ℓ1-ℓ1
minimization, but not as well for ℓ1-ℓ2 minimization.

Results for an additive factor. The results for an additive

factor are shown in Fig. 9. The curves are the same as in

Fig. 8, but now we show the bound for ℓ1-ℓ2 minimization.

The bound was quite sharp for c = 1, but became loose for

larger c. In spite of this, the performance of ℓ1-ℓ2 minimization

improved with increasing c, outperforming classical CS for

c ≥ 1. This improvement was not enough to reach the 148
measurements required by Mod-CS. We can also see that

both the performance of ℓ1-ℓ1 minimization and the respective

bound (4) decreased with c and, in fact, reached the same

plateaus as in Fig. 8.

These experiments confirm that improving side information

with an additive factor works well for ℓ1-ℓ2 minimization,

and improving it with both an additive and a multiplicative

factor works well for ℓ1-ℓ1 minimization. They also show

that, in general, ℓ1-ℓ1 minimization performs better than ℓ1-ℓ2
minimization and, if the prior information has enough quality,

also better than state-of-the-art approaches like Mod-CS [12].

VI. PROOF OF MAIN RESULTS

In this section, we present the proofs of all results from

Section IV. We start with some auxiliary results.

A. Auxiliary Results

The following lemma plays an important role in our proofs.

Its first part gives an exact expression for the expected squared

distance of a scalar Gaussian random variable to an interval

as a function of the Q-function, defined as

Q(x) :=
1√
2π

∫ +∞

x

exp
(

− u2

2

)

du =

∫ +∞

x

ϕ(u) du , (49)

where

ϕ(x) :=
1√
2π

exp
(

− x2

2

)

(50)

is the probability density function of a zero-mean, unit vari-

ance scalar Gaussian random variable. To obtain the closed-

form bounds in Theorem 12, we will need to (upper) bound

the exact expression. That is done in the second part of the

lemma. We represent an interval in R as

I(a, b) :=
{
x ∈ R : |x− a| ≤ b

}
=

[
a− b, a+ b

]
. (51)

Lemma 17. Let g ∼ N (0, 1) be a scalar, zero-mean Gaussian

random variable with unit variance. Let a, b ∈ R and b ≥ 0.

Part I) Exact expression

There holds

Eg

[

dist
(
g, I(a, b)

)2
]

= (a− b)ϕ(a− b)

− (a+ b)ϕ(a+ b) +
[
1 + (a+ b)2

]
Q(a+ b)

+
[
1 + (a− b)2

][
1−Q(a− b)

]
. (52)

Part II) Bounds

1) If b = 0, then I(a, b) = {a} and

Eg

[
dist(g, a)2

]
= a2 + 1 . (53)

2) If b > 0 and |a| < b, i.e., 0 ∈ I(a, b), then

Eg

[

dist
(
g, I(a, b)

)2
]

≤ ϕ(b− a)

b− a
+

ϕ(a+ b)

a+ b
. (54)

3) If b > 0 and a+ b < 0, then

Eg

[

dist
(
g, I(a, b)

)2
]

≤ 1+(a+ b)2+
ϕ(b− a)

b− a
. (55)

4) If b > 0 and a− b > 0, then

Eg

[

dist
(
g, I(a, b)

)2
]

≤ 1+(a− b)2+
ϕ(a+ b)

a+ b
. (56)

5) If b > 0 and a+ b = 0, then

Eg

[

dist
(
g, I(a, b)

)2
]

≤ ϕ(b− a)

b− a
+

1

2
. (57)

6) If b > 0 and a− b = 0, then

Eg

[

dist
(
g, I(a, b)

)2
]

≤ ϕ(a+ b)

a+ b
+

1

2
. (58)

The proof can be found in Appendix A. In part II), each

case considers a different relative position between the in-

terval I(a, b) and zero, which is the mean of the random

variable g. In case 1), the interval is simply a point. In case 2),

I(a, b) contains zero. In cases 3) and 4), I(a, b) does not

contain zero. And, finally, in cases 5) and 6), zero is one of

the endpoints of I(a, b). Notice that addressing cases 5) and

6) separately from cases 4) and 5) leads to sharper bounds on

the former: for example, making a+ b −→ 0 in the right-hand

side of (55) gives 1+ϕ(b−a)/(b−a), which is larger than the

right-hand side of (57). We note that the proof of Proposition 4

in [27] for standard CS uses the bound (54) with a = 0. The

following result will be used frequently.

Lemma 18. There holds

1− 1
x√

π log x
≤ 1√

2π
≤ 2

5
, (59)
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for all x > 1.

The proof can be found in Appendix B. Recall the defini-

tions of functions f1 and f2:

f1(x) := ‖x‖1 + β‖x− w‖1 (60)

f2(x) := ‖x‖1 +
β

2
‖x− w‖22 . (61)

To apply Proposition 5 to these functions, i.e., to say that their

normal cones at a given x⋆ is equal to the cone generated by

their subdifferentials at x⋆, we need to guarantee that their

subdifferentials do not contain the zero vector: 0 6∈ ∂fj(x
⋆),

j = 1, 2. The next two lemmas give a characterization of this

condition in terms of the problem parameters in Definition 9.

Before that, let us compute ∂f1(x
⋆) and ∂f2(x

⋆). A key prop-

erty of functions f1 and f2, and on which our results deeply

rely, is that they admit a component-wise decomposition:

f1(x) =
n∑

i=1

f
(i)
1 (xi) f2(x) =

n∑

i=1

f
(i)
2 (xi) ,

where f
(i)
1 = |xi|+β|xi−wi| and f

(i)
2 = |xi|+ β

2 (xi−wi)
2.

Therefore,

∂f1(x
⋆) =

(

∂f
(1)
1 (x⋆

1), ∂f
(2)
1 (x⋆

2), . . . , ∂f
(n)
1 (x⋆

n)
)

∂f2(x
⋆) =

(

∂f
(1)
2 (x⋆

1), ∂f
(2)
2 (x⋆

2), . . . , ∂f
(n)
2 (x⋆

n)
)

.

Recall that ∂|s| = sign(s) for s 6= 0, and ∂|s| = [−1, 1]
for s = 0. The function sign(·) returns the sign of a number,

i.e., sign(a) = 1 if a > 0, and sign(a) = −1 if a < 0. We

then have

∂f
(i)
1 (x⋆

i ) =







sign(x⋆
i ) + β sign(x⋆

i − wi) , i ∈ IJ

sign(x⋆
i ) + [−β, β] , i ∈ IJc

β sign(x⋆
i − wi) + [−1, 1] , i ∈ IcJ

[
−β − 1, β + 1

]
, i ∈ IcJc

(62)

and

∂f
(i)
2 (x⋆

i ) =

{

sign(x⋆
i ) + β(x⋆

i − wi) , i ∈ I
[
−1, 1

]
− βwi , i ∈ Ic ,

(63)

for i = 1, . . . , n.

Lemma 19. Assume x⋆ 6= 0 or, equivalently, that I 6= ∅.

Assume also w 6= x⋆ or, equivalently, that J 6= ∅. Consider f1
and f2 in (60) and (61), respectively.

1) 0 6∈ ∂f1(x
⋆) if and only if h > 0 or β 6= 1.

2) 0 6∈ ∂f2(x
⋆) if and only if there is i ∈ IJ such that

β 6= sign(x⋆
i )/(wi − x⋆

i ) or there is i ∈ Ic such that

β > 1/|wi|.
The proof is in Appendix C.

B. Proof of Theorem 12

Proposition 3 establishes that w(C) = Eg

[
dist(g, Co)

]
,

for a cone C and its polar cone Co, where g ∼ N (0, I).
Using Jensen’s inequality [59, Thm. B.1.1.8], w(C)2 ≤
Eg

[
dist(g, Co)2

]
. The polar cone of the tangent cone Tf1(x

⋆)

is the normal cone Nf1(x
⋆) which, according to Proposi-

tion 5, coincides with the cone generated by the subdif-

ferential ∂f1(x
⋆) whenever 0 6∈ ∂f1(x

⋆). In other words,

if 0 6∈ ∂f1(x
⋆), then

w
(
Tf1(x

⋆)
)2 ≤ Eg

[

dist
(
g, cone ∂f1(x

⋆)
)2
]

. (64)

Part 1) of Lemma 19 establishes that 0 6∈ ∂f1(x
⋆) is equivalent

to β 6= 1 or h > 0. So, provided we assume that h > 0 for

part 1) of the theorem, we can always use (64). The proof is

organized as follows. First, we compute a generic upper bound

on (64), using the several cases of Lemma 17. This will give

us three bounds, each one for a specific case of the theorem,

i.e., β = 1, β < 1, and β > 1. These bounds, however, will

be uninformative since they depend on unknown quantities

and on a free variable. We then address each case separately,

selecting a specific value for the free variable and “getting rid”

of the unknown quantities. In this last step, we will use the

bound in Lemma 18 frequently.

1) Generic Bound: A vector d ∈ R
n belongs to the cone

generated by ∂f1(x
⋆) if d = ty for some t ≥ 0 and some

y ∈ ∂f1(x
⋆). According to (62), each component di satisfies







di = t sign(x⋆
i ) + tβ sign(x⋆

i − wi) , if i ∈ IJ

|di − t sign(x⋆
i )| ≤ tβ , if i ∈ IJc

|di − tβ sign(x⋆
i − wi)| ≤ t , if i ∈ IcJ

|di| ≤ t(β + 1) , if i ∈ IcJc,

for some t ≥ 0. Thus, the right-hand side of (64) is written as

Eg

[

dist
(
g, cone ∂f1(x

⋆)
)2
]

= Eg

[

min
t≥0

{
∑

i∈IJ

dist
(

gi , t sign(x⋆
i ) + tβ sign(x⋆

i − wi)
)2

+
∑

i∈IJc

dist
(

gi , I
(
t sign(x⋆

i ), tβ
))2

+
∑

i∈IcJ

dist
(

gi , I
(
− tβ sign(wi), t

))2

+
∑

i∈IcJc

dist
(

gi , I
(
0, t(β + 1)

))2
}]

,

where, in the third term, we used sign(x⋆
i −wi) = −sign(wi),

since x⋆
i = 0 for i ∈ IcJ . As in the proof of Proposition 6

(in [27]), we fix t now and select a particular value for it

later. Our choice for t will not necessarily be optimal, but it

will give bounds that can be expressed as a function of the

parameters in Definition 9. In other words, if h is a function

of t and g, we have

Eg

[

min
t

h(g, t)
]

≤ min
t

Eg

[
h(g, t)

]
≤ Eg

[
h(g, t)

]
, ∀t .

(65)

The value we will select for t does not necessarily minimize

the second term in (65), but allows deriving useful bounds.

For a fixed t, we then have:

Eg

[

dist
(
g, cone ∂f1(x

⋆)
)2
]
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≤
∑

i∈IJ

Egi

[

dist
(

gi , t sign(x⋆
i ) + tβ sign(x⋆

i − wi)
)2

]

(66a)

+
∑

i∈IJc

Egi

[

dist
(

gi , I
(
t sign(x⋆

i ), tβ
))2

]

(66b)

+
∑

i∈IcJ

Egi

[

dist
(

gi , I
(
− tβ sign(wi), t

))2
]

(66c)

+
∑

i∈IcJc

Egi

[

dist
(

gi , I
(
0, t(β + 1)

))2
]

. (66d)

Next, we use Lemma 17 to compute (66a) in closed-form and

to upper bound (66b), (66c), and (66d).

Expression for (66a). By partitioning the set IJ
into I+J+ ∪ I−J− ∪ I−J+ ∪ I+J−, we obtain

(66a) =
∑

i∈I+J+

Egi

[

dist
(

gi , t(β + 1)
)2

]

+
∑

i∈I−J−

Egi

[

dist
(

gi , −t(β + 1)
)2

]

+
∑

i∈I−J+

Egi

[

dist
(

gi , t(β − 1)
)2

]

+
∑

i∈I+J−

Egi

[

dist
(

gi , t(1− β)
)2

]

.

And using (53) in Lemma 17 and h and h in Definition 9,

(66a) =
∑

i∈I+J+

[

t2(β + 1)2 + 1
]

+
∑

i∈I−J−

[

t2(β + 1)2 + 1
]

+
∑

i∈I−J+

[

t2(β − 1)2 + 1
]

+
∑

i∈I+J−

[

t2(β − 1)2 + 1
]

=
∣
∣IJ

∣
∣+

(∣
∣I+J+

∣
∣+

∣
∣I−J−

∣
∣

)

t2(β + 1)2

+
(∣
∣I−J+

∣
∣+

∣
∣I+J−

∣
∣

)

t2(β − 1)2

= t2
(

h(β + 1)2 + h(β − 1)2
)

+
∣
∣IJ

∣
∣ . (67)

Note that h and h appear here naturally, before selecting any t.
Bounding (66b). If we decompose IJc = I+J

c∪I−Jc, we

see that

(66b) =
∑

i∈I+Jc

Egi

[

dist
(

gi , I(t, tβ)
)2

]

+
∑

i∈I−Jc

Egi

[

dist
(

gi , I(−t, tβ)
)2

]

. (68)

There are three cases: β = 1, β < 1, and β > 1.

• If β = 1, then I(t, tβ) = [0, 2t] and I(−t, tβ) =
[−2t, 0]. Applying (58) (resp. (57)) to each summand in

the first (resp. second) term of (68) we conclude that

(66b) ≤
∣
∣IJc

∣
∣

[
ϕ(2t)

2t
+

1

2

]

. (69)

• If β < 1, then 0 6∈ I(t, tβ) and 0 6∈ I(−t, tβ). If we

apply (56) to the summands in the first term of (68)

and (55) to the summands in the second term, and take

into account that |I+Jc|+ |I−Jc| = |IJc|,

(66b) ≤
∣
∣IJc

∣
∣

[

1 + t2(1− β)2 +
ϕ(t(β + 1))

t(β + 1)

]

. (70)

• Finally, if β > 1, then 0 ∈ I(t, tβ) and 0 ∈ I(−t, tβ).
Applying (54) to each summand in both terms of (68) we

conclude

(66b) ≤
∣
∣IJc

∣
∣

[
ϕ(t(β − 1))

t(β − 1)
+

ϕ(t(β + 1))

t(β + 1)

]

. (71)

Bounding (66c). Decompose IcJ = IcJ+∪IcJ− and write

(66c) =
∑

i∈IcJ+

Egi

[

dist
(

gi , I
(
tβ, t

))2
]

+
∑

i∈IcJ−

Egi

[

dist
(

gi , I
(
− tβ , t

))2
]

. (72)

As before, we have three cases: β = 1, β < 1, and β > 1.

• If β = 1, then I(tβ, t) = [0, 2t] and I(−tβ, t) =
[−2t, 0]. If we apply (58) (resp. (57)) to each summand

in the first (resp. second) term of (72), we conclude

(66c) ≤
∣
∣IcJ

∣
∣

[
ϕ(2t)

2t
+

1

2

]

. (73)

• If β < 1, then 0 ∈ I(tβ, t) and 0 ∈ I(−tβ, t). Therefore,

according to (54),

(66c) ≤
∣
∣IcJ

∣
∣

[
ϕ(t(1 + β))

t(1 + β)
+

ϕ(t(1− β))

t(1− β)

]

. (74)

• If β > 1, then 0 6∈ I(tβ, t) and 0 6∈ I(−tβ, t). If we

apply (56) to each summand in the first term of (72)

and (55) to each summand in the second term, we find

(66c) ≤
∣
∣IcJ

∣
∣

[

1 + t2(β − 1)2 +
ϕ(t(β + 1))

t(β + 1)

]

. (75)

Bounding (66d). The interval I(0, t(β + 1)) contains the

origin, so we can apply (54) directly to each summand

in (66d):

(66d) ≤ 2
∣
∣IcJc

∣
∣
ϕ(t(β + 1))

t(β + 1)
. (76)

Bounding (66a) + (66b) + (66c) + (66d). Given all the

previous bounds, we can now obtain a generic bound for (64).

Naturally, there are three cases: β = 1, β < 1, and β > 1.

• For β = 1, we sum (67) (with β = 1), (69), (73), and (76)

(with β = 1):

Eg

[

dist
(
g, cone ∂f1(x

⋆)
)2
]

≤ 4ht2 +
∣
∣IJ

∣
∣

+
1

2

[
|IJc|+ |IcJ |

]
+
[
|IJc|+ |IcJ |+2|IcJc|

]ϕ(2t)

2t
.

(77)

• For β < 1, we sum (67), (70), (74), and (76):

Eg

[

dist
(
g, cone ∂f1(x

⋆)
)2
]

≤ t2
[

h(β + 1)2

+ (h+ |IJc|)(β − 1)2
]

+ |I|+ |IcJ |ϕ(t(1− β))

t(1− β)
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+
[

|IJc|+ |IcJ |+ 2|IcJc|
]ϕ(t(β + 1))

t(β + 1)
. (78)

• For β > 1, we sum (67), (71), (75), and (76):

Eg

[

dist
(
g, cone ∂f1(x

⋆)
)2
]

≤ t2
[

h(β + 1)2

+ (h+ |IcJ |)(β − 1)2
]

+ |J |+ |IJc|ϕ(t(β − 1))

t(β − 1)

+
[
|IJc|+ |IcJ |+ 2|IcJc|

]ϕ(t(β + 1))

t(β + 1)
. (79)

2) Specification of the Bound for Each Case: We now

address each one of the cases β = 1, β < 1, and β > 1
individually. Before that, recall from (25) that |IcJ |+ |IJc|+
2|IcJc| = 2n− (q+ h+h), a term that appears in (77), (78),

and (79). That term is always positive due to our assumption

that n− q = |IcJc| > 0.

Case 1: β = 1. Notice that, according to (20) and (24),

∣
∣IJ

∣
∣+

1

2

[
|IJc|+|IcJ |

]
= h+h+

1

2
q−1

2
(h+h) =

1

2
(q+h+h) .

This allows rewriting (77) as

Eg

[

dist
(
g, cone ∂f1(x

⋆)
)2
]

≤ 4ht2 +
1

2
(q + h+ h)

+
1

2

[

2n− (q + h+ h)
] 1

t
√
2π

exp(−2t2) , (80)

where we used the definition of ϕ in (50). We now select t as

t⋆ :=

√

1

2
log

( 2n

q + h+ h

)

=

√

1

2
log r ,

where r := 2n/(q + h + h). Notice that t⋆ is well defined

because 2n > q + h + h, i.e., r > 0. It is also finite, as our

assumption that x⋆ 6= 0, or |I| > 0, implies q = |I ∪ J | > 0.

Replacing t⋆ in (80), we obtain

Eg

[

dist
(
g, cone ∂f1(x

⋆)
)2
]

≤ 2h log r +
1

2
(q + h+ h)

+
1

2

[

2n− (q + h+ h)
] 1√

π log r

1
2n

q+h+h

= 2h log r +
1

2
(q + h+ h) +

1

2
(q + h+ h)

1− 1
r√

π log r

≤ 2h log r +
1

2
(q + h+ h) +

1

5
(q + h+ h)

= 2h log
( 2n

q + h+ h

)

+
7

10
(q + h+ h) ,

where we used (59) in the second inequality. This is (27).

Case 2: β < 1. We rewrite (78) as

Eg

[

dist
(
g, cone ∂f1(x

⋆)
)2
]

≤ s+ F (β, t) +G(β, t)

t2
[

h(β + 1)2 + (s− h)(β − 1)2
]

, (81)

where we used s := |I|, |IJc| = s− (h+ h) (cf. (21)), and

F (β, t) := (q − s)
ϕ(t(1− β))

t(1− β)

G(β, t) := (2n− (q + h+ h))
ϕ(t(β + 1))

t(β + 1)
. (82)

Note that we used (22) and (25) when defining F and G. We

will consider two cases: F (β, t) ≤ G(β, t) and F (β, t) ≥
G(β, t). Note that

F (β, t)

G(β, t)
⋚ 1

⇐⇒ q − s

2n− (q + h+ h)
⋚

1− β

1 + β
exp

(
− 2βt2

)
. (83)

• Suppose F (β, t) ≤ G(β, t), i.e., (83) is satisfied with ≤.

The bound in (81) implies

Eg

[

dist
(
g, cone ∂f1(x

⋆)
)2
]

≤ t2
[

h(β + 1)2 + (s− h)(β − 1)2
]

+ s+ 2G(β, t)

= t2
[

h(β + 1)2 + (s− h)(β − 1)2
]

+ s

+ 2
[

2n− (q + h+ h)
]exp

(
− t2

2 (β + 1)2
)

√
2πt(β + 1)

,

(84)

where we used the definition of ϕ. We now select t as

t⋆ =
1

β + 1

√

2 log
( 2n

q + h+ h

)

=
1

β + 1

√

2 log r ,

where r := 2n/(q + h + h) is as before. Replacing t⋆

in (84) yields

Eg

[

dist
(
g, cone ∂f1(x

⋆)
)2
]

≤ 2

[

h+ (s− h)
(β − 1)2

(β + 1)2

]

log r + s

+ 2
[

2n− (q + h+ h)
] 1√

2 log r

1√
2π

1
2n

q+h+h

= 2

[

h+ (s− h)
(β − 1)2

(β + 1)2

]

log r + s

+ (q + h+ h)
1− 1

r√
π log r

≤ 2

[

h+ (s− h)
(β − 1)2

(β + 1)2

]

log
( 2n

q + h+ h

)

+ s

+
2

5
(q + h+ h) ,

which is (28). We used (59) in the last inequality. This

bound is valid only when (83) with ≤ is satisfied with t =
t⋆, i.e.,

q − s

2n− (q + h+ h)
≤ 1− β

1 + β

(q + h+ h

2n

) 4β

(β+1)2

,

which is condition (C1).

• Suppose now that F (β, t) ≥ G(β, t), i.e., (83) is satisfied

with ≥. Then, (81) becomes

Eg

[

dist
(
g, cone ∂f1(x

⋆)
)2
]

≤ t2
[

h(β + 1)2 + (s− h)(β − 1)2
]

+ s+ 2F (β, t)

= t2
[

h(β + 1)2 + (s− h)(β − 1)2
]

+ s
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+ 2(q − s)
exp

(
− t2

2 (1− β)2
)

√
2π t(1− β)

. (85)

We select t as

t⋆ =
1

1− β

√

2 log
(q

s

)

=
1

1− β

√

2 log r ,

where r is now r := q/s. Since in case 2b) of the

theorem, we assume 0 < |IcJ | = q− s, we have t⋆ > 0.

Notice that t⋆ is finite, because s > 0 (given that x⋆ 6= 0).

Replacing t⋆ into (85) yields

Eg

[

dist
(
g, cone ∂f1(x

⋆)
)2
]

≤ 2

[

h
(1 + β)2

(1− β)2
+ s− h

]

log r + s

+ 2(q − s)
1√

2 log r

1√
2π

1
q
s

= 2

[

h
(1 + β)2

(1− β)2
+ s− h

]

log r + s+ s
1− 1

r√
π log r

≤ 2

[

h
(1 + β)2

(1− β)2
+ s− h

]

log r + s+
2

5
s

= 2

[

h
(1 + β)2

(1− β)2
+ s− h

]

log
(q

s

)

+
7

5
s ,

which is (29). Again, we used (59) in the last inequality.

This bound is valid only if (83) with ≥ is satisfied for t =
t⋆, i.e.,

q − s

2n− (q + h+ h)
≥ 1− β

1 + β

(s

q

) 4β

(1−β)2

,

which is condition (C2).

Case 3: β > 1. We rewrite (79) as

Eg

[

dist
(
g, cone ∂f1(x

⋆)
)2
]

≤ t2
[

h(β + 1)2 + (q + h− s)(β − 1)2
]

+ l +H(β, t)

+G(β, t) , (86)

where we used l := |J |, |IcJ | = q− s (cf. (22)), G is defined

in (82), and

H(β, t) := (s− (h+ h))
ϕ(t(β − 1))

t(β − 1)
.

Note that we used (21) when defining H . We also consider

two cases: H(β, t) ≤ G(β, t) and H(β, t) ≥ H(β, t). Note

that

H(β, t)

G(β, t)
⋚ 1

⇐⇒ s− (h+ h)

2n− (q + h+ h)
⋚

β − 1

β + 1
exp

(
− 2βt2

)
. (87)

• Suppose H(β, t) ≤ G(β, t), i.e., (87) is satisfied with ≤.

Then, (86) implies

Eg

[

dist
(
g, cone ∂f1(x

⋆)
)2
]

≤ t2
[

h(β + 1)2 + (q + h− s)(β − 1)2
]

+ l + 2G(β, t)

= t2
[

h(β + 1)2 + (q + h− s)(β − 1)2
]

+ l

+ 2(2n− (q + h+ h))
exp

(

− t2

2 (β + 1)2
)

√
2πt(β + 1)

.

(88)

Now we select

t⋆ =
1

β + 1

√

2 log
( 2n

q + h+ h

)

=
1

β + 1

√

2 log r ,

where r := 2n/(q + h + h). Again, note that our

assumptions imply that t⋆ is well defined and positive.

Replacing t⋆ into (88) yields

Eg

[

dist
(
g, cone ∂f1(x

⋆)
)2
]

≤ 2

[

h+ (q + h− s)
(β − 1

β + 1

)2
]

log r + l

+ (2n− (q + h+ h))
1√

π log r

1
2n

q+h+h

= 2

[

h+ (q + h− s)
(β − 1

β + 1

)2
]

log r + l

+ (q + h+ h)
1− 1

r√
π log r

≤ 2

[

h+ (q + h− s)
(β − 1

β + 1

)2
]

log
( 2n

q + h+ h

)

+ l

+
2

5
(q + h+ h) .

This is (30). Again, (59) was used in the last step. This

bound is valid only when (87) with ≤ is satisfied for t =
t⋆, i.e.,

s− (h+ h)

2n− (q + h+ h)
≤ β − 1

β + 1

(q + h+ h

2n

) 4β

(β+1)2

,

which is condition (C3).

• Suppose now that H(β, t) ≥ G(β, t). Then, (86) implies

Eg

[

dist
(
g, cone ∂f1(x

⋆)
)2
]

≤ t2
[

h(β + 1)2 + (q + h− s)(β − 1)2
]

+ l + 2H(β, t)

= t2
[

h(β + 1)2 + (q + h− s)(β − 1)2
]

+ l

+ 2(s− (h+ h))
exp

(

− t2

2 (β − 1)2
)

√
2πt(β − 1)

. (89)

Given our assumption that |IJ | = h+h > 0 in case 3b),

we can select t as

t⋆ =
1

β − 1

√

2 log
( s

h+ h

)

=
1

β − 1

√

2 log r ,

where r := s/(h + h). We also assume that |IJc| =
s− (h+ h) > 0, making t⋆ > 0. Replacing t⋆ into (89)

gives

Eg

[

dist
(
g, cone ∂f1(x

⋆)
)2
]

≤ 2

[

h
(β + 1

β − 1

)2

+ q + h− s

]

log r + l

+ 2(s− (h+ h))
1√

2 log r

1√
2π

1
s

h+h
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= 2

[

h
(β + 1

β − 1

)2

+ q + h− s

]

log r + l

+ (h+ h)
1− 1

r√
π log r

≤ 2

[

h
(β + 1

β − 1

)2

+ q + h− s

]

log r + l +
2

5
(h+ h) ,

which is (31). Again, (59) was employed in the last

inequality. This bound is valid only when (87) with ≥
holds for t = t⋆, that is,

s− (h+ h)

2n− (q + h+ h)
≥ β − 1

β + 1

(h+ h

s

) 4β

(β−1)2

,

which is condition (C4). This concludes the proof.

Remarks. The bound for case 1), i.e., β = 1, is clearly the

sharpest one, since it does not use inequalities like (83) or (87).

Perhaps the “loosest” inequality it uses is (59) in Lemma 18.

According to its proof in Appendix B, that bound is exact

when x = 2, which means 2n/(q + h + h) = 2, for β = 1.

The bounds for β 6= 1 are not as sharp, due to (83) and (87).

Note also that some sharpness is lost by selecting specific

values of t and not the optimal ones (cf. (65)).

C. Proof of Theorem 13

The proof follows from taking the minimum over t in the

right-hand side of (66) and using (67).

D. Proof of Theorem 14

The steps to prove the theorem are the same steps as the

ones in the proof of Theorem 12. So, we will omit some

details. Whenever 0 6∈ ∂f2(x
⋆), we can use the bound in (64)

with f1 replaced by f2, i.e.,

w
(
Tf2(x

⋆)
)2 ≤ Eg

[

dist
(
g, cone ∂f2(x

⋆)
)2
]

. (90)

Note that this bound results from the characterization of the

normal cone provided in Proposition 5 and from Jensen’s in-

equality. Part 2) of Lemma 19 establishes that our assumptions

guarantee that 0 6∈ ∂f2(x
⋆) and, thus, that we can use (90).

Next, we express the right-hand side of (90) component-wise,

and then we establish bounds for each term.

A vector d ∈ R
n belongs to the cone generated by ∂f2(x

⋆)
if, for some t ≥ 0 and some y ∈ ∂f2(x

⋆), d = ty. According

to (63), each component di satisfies
{

di = t sign(x⋆
i ) + tβ(x⋆

i − wi) , i ∈ I

|di + tβwi| ≤ t , i ∈ Ic ,

for some t ≥ 0. This allows expanding the right-hand side

of (90) as

Eg

[

dist
(
g, cone ∂f2(x

⋆)
)2
]

= Eg

[

min
t≥0

{
∑

i∈I

dist
(

gi , t sign(x⋆
i ) + tβ(x⋆

i − wi)
)2

+
∑

i∈Ic

dist
(

gi , I(−tβwi, t)
)2

}]

.

As in the proof of Theorem 12, we fix t and select it later (cf.

(65)). Doing so, gives

Eg

[

dist
(
g, cone ∂f2(x

⋆)
)2
]

≤
∑

i∈I

Egi

[

dist
(

gi , t sign(x⋆
i ) + tβ(x⋆

i − wi)
)2]

(91a)

+
∑

i∈Ic

Egi

[

dist
(

gi , I(−tβwi, t)
)2]

. (91b)

Next, we use Lemma 17 to derive a closed-form expression

for (91a) and establish a bound on (91b).

Expression for (91a). Using (53),

(91a) =
∑

i∈I

Egi

[

dist
(

gi , t sign(x⋆
i ) + tβ(x⋆

i − wi)
)2]

=
∑

i∈I

[

(t sign(x⋆
i ) + tβ(x⋆

i − wi))
2 + 1

]

= t2
[
∑

i∈I+

(1 + β(x⋆
i − wi))

2 +
∑

i∈I−

(1− β(x⋆
i − wi))

2

]

+ |I| , (92)

where we decomposed I = I+ ∪ I−.

Bounding (91b). We have

(91b) =
∑

i∈IcJ

Egi

[

dist
(

gi , I(−tβwi, t)
)2]

+
∑

i∈IcJc

Egi

[

dist
(

gi , I(0, t)
)2]

. (93)

The second term in the right-hand side of (93) can be bounded

according to (54):

∑

i∈IcJc

Egi

[

dist(gi, I(0, t))2
]

≤ 2|IcJc|ϕ(t)
t

. (94)

The first term, however, is more complicated. Recall that

IcJ = {i : wi 6= x⋆
i = 0}. Let us analyze the several

possible situations for the interval I(−tβwi, t) = [t(−βwi −
1), t(−βwi + 1)]. It does not contain zero whenever

t(−βwi − 1) > 0 ⇐⇒ t 6= 0 and wi < − 1

β
,

or

t(−βwi + 1) < 0 ⇐⇒ t 6= 0 and wi >
1

β
.

In addition to the subsets of IcJ defined in (34)-(35), define

K− :=
{

i ∈ IcJ : wi < − 1

β

}

K+ :=
{

i ∈ IcJ : wi >
1

β

}

K=
− :=

{

i ∈ IcJ : wi = − 1

β

}

K=
+ :=

{

i ∈ IcJ : wi =
1

β

}

L :=
{

i ∈ IcJ : |wi| <
1

β

}

,
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where we omit the dependency of these sets on β for notational

simplicity. Noticing that IcJ = K− ∪ K+ ∪ K=
− ∪ K=

+ ∪ L
and using Lemma 17, we obtain

∑

i∈IcJ

Egi

[

dist
(

gi , I(−tβwi, t)
)2]

≤
∑

i∈K−

[

1 + t2(βwi + 1)2 +
ϕ(t(1− βwi))

t(1− βwi)

]

+
∑

i∈K+

[

1 + t2(1− βwi)
2 +

ϕ(t(1 + βwi))

t(1 + βwi)

]

+
∑

i∈K=
−

[
1

2
+

ϕ(t(1− βwi))

t(1− βwi)

]

+
∑

i∈K=
+

[
1

2
+

ϕ(t(1 + βwi))

t(1 + βwi)

]

+
∑

i∈L

[
ϕ(t(1 + βwi))

t(1 + βwi)
+

ϕ(t(1− βwi))

t(1− βwi)

]

= |K 6=(β)|+ 1

2
|K=(β)|+ t2

[
∑

i∈K−

(βwi + 1)2

+
∑

i∈K+

(βwi − 1)2
]

+
∑

i∈K−∪K=
−

ϕ(t(1− βwi))

t(1− βwi)

+
∑

i∈K+∪K=
+

ϕ(t(1 + βwi))

t(1 + βwi)

+
∑

i∈L

[
ϕ(t(1 + βwi))

t(1 + βwi)
+

ϕ(t(1− βwi))

t(1− βwi)

]

≤ |K 6=(β)|+ 1

2
|K=(β)|+ t2

[
∑

i∈K−

(βwi + 1)2

+
∑

i∈K+

(βwi − 1)2
]

+
[

|K−|+ |K=
− |+ |L|

]ϕ(t(1− β wp))

t(1− β wp)

+
[

|K+|+ |K=
+ |+ |L|

]ϕ(t(1 + β wm))

t(1 + β wm)
, (95)

where, in the second step, we used the definitions of K=

and K 6= in (34) and (35), respectively. In the last step, we

used wp := |wp| and wm := |wm|, for

p := argmin
i∈K− ∪K=

− ∪L
1− βwi

m := argmin
i∈K+ ∪K=

+ ∪L
1 + βwi .

Note that w =
∣
∣ argminw=wp,wm

{
|w| − 1/β

}∣
∣, since the

union of the sets K−, K=
− , L, K+, and K=

+ gives IcJ . There-

fore, ϕ(t(1 − β wj))/(t(1 − β wj)) ≤ ϕ(t(1 − β w))/(t|1 −
β w|), for j = p,m. Using this in the last two terms of (95),

and noticing that

|K−|+|K=
− |+|K+|+|K=

+ | =
{

i ∈ IcJ : |wi| ≥
1

β

}

=: K(β) ,

we obtain

∑

i∈IcJ

Egi

[

dist
(

gi , I(−tβwi, t)
)2]

≤ |K 6=(β)|+1

2
|K=(β)|

+ t2
[

∑

i∈K−

(βwi + 1)2 +
∑

i∈K+

(βwi − 1)2
]

+
[

|K(β)|+ 2|L|
]ϕ(t(1− β w))

t|1− β w| . (96)

Bounding (91a) + (91b). Adding up (92), (94), and (96),

we obtain

Eg

[

dist
(
g, cone ∂f2(x

⋆)
)2
]

≤ |I|+ t2
[
∑

i∈I+

(1 + β(x⋆
i − wi))

2 +
∑

i∈I−

(1− β(x⋆
i − wi))

2

]

+ 2|IcJc|ϕ(t)
t

+ |K 6=(β)|+ 1

2
|K=(β)|

+ t2
[

∑

i∈K−

(βwi + 1)2 +
∑

i∈K+

(βwi − 1)2
]

+
[

|K(β)|+ 2|L|
]ϕ(t(1− β w))

t|1− β w|
= vβt

2 + |I|+ |K 6=(β)|+ 1

2
|K=(β)|+

[

|K(β)|+ 2|L|
]

×

× ϕ(t(1− β w))

t|1− β w| + 2|IcJc|ϕ(t)
t

≤ vβt
2 + |I|+ |K 6=(β)|+ 1

2
|K=(β)|+ 2F (t, β, w) + 2G(t) ,

(97)

where we used |K(β)|+ 2|L| ≤ 2|IcJ | = 2(q − s) (cf. (22))

in the last inequality. Note that vβ is defined in (36) and that

we defined

F (t, β, w) := (q − s)
ϕ(t(1− β w))

t|1− β w|

G(t) := (n− q)
ϕ(t)

t
.

We consider two scenarios: F (t, β, w) ≤ G(t) and

F (t, β, w) ≥ G(t). Note that

F (t, β, w)

G(t)
⋚ 1

⇐⇒ q − s

n− q
⋚ |1− βw| exp

(

t2βw(
βw

2
− 1)

)

, (98)

• Suppose F (t, β, w) ≤ G(t), i.e., (98) is satisfied with ≤.

The bound in (97) implies

Eg

[

dist
(
g, cone ∂f2(x

⋆)
)2
]

≤ vβt
2 + s+ |K 6=(β)|+ 1

2
|K=(β)|+ 4G(t)

= vβt
2 + s+ |K 6=(β)|+ 1

2
|K=(β)|

+ 4(n− q)
1

t

1√
2π

exp
(

− t2

2

)

.

We now select t as

t⋆ =

√

2 log
(n

q

)

=
√

2 log r ,
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where r := n/q. Note that r is well defined, since x⋆ 6= 0
implies q > 0. Also, the assumption q < n implies t⋆ >
0. Setting t to t⋆ and using (59), we get

Eg

[

dist
(
g, cone ∂f2(x

⋆)
)2
]

≤ 2vβ log
(n

q

)

+ s+ |K 6=(β)|+ 1

2
|K=(β)|

+ 4(n− q)
1√

2 log r

1√
2π

1
n
q

= 2vβ log
(n

q

)

+ s+ |K 6=(β)|+ 1

2
|K=(β)|

+ 2q
1− 1

r√
π log r

≤ 2vβ log
(n

q

)

+ s+ |K 6=(β)|+ 1

2
|K=(β)|+ 4

5
q ,

which is (39). This bound is valid only if (98) with ≤ is

satisfied for t⋆, i.e.,

q − s

n− q
≤ |1− β w| exp

(

2β w log
(n

q

)(β w

2
− 1

))

,

which is condition (38).

• Suppose now that F (t, β, w) ≥ G(t), i.e., (98) is satisfied

with ≥. The bound in (97) implies

Eg

[

dist
(
g, cone ∂f2(x

⋆)
)2
]

≤ vβt
2 + s+ |K 6=(β)|+ 1

2
|K=(β)|+ 4F (t, β, w)

= vβt
2 + s+ |K 6=(β)|+ 1

2
|K=(β)|

+ 4(q − s)
1√
2π

1

t|1− β w| exp
(

− t2

2
(1− β w)2

)

.

And we select t as

t⋆ =
1

|1− β w|

√

2 log
(q

s

)

=
1

|1− β w|
√

2 log r ,

where r := q/s. Again, r is well defined because s > 0.

Since we assume q > s, t⋆ > 0. Setting t to t⋆ and

using (59) again, we obtain

Eg

[

dist
(
g, cone ∂f2(x

⋆)
)2
]

≤ 2vβ
|1− β w|2 log

(q

s

)

+ s+ |K 6=(β)|+ 1

2
|K=(β)|

+ 4(q − s)
1√
2π

1√
2 log r

1
q
s

=
2vβ

|1− β w|2 log
(q

s

)

+ s+ |K 6=(β)|+ 1

2
|K=(β)|

+ 2s
1− 1

r√
π log r

≤ 2vβ
|1− β w|2 log

(q

s

)

+ |K 6=(β)|+ 1

2
|K=(β)|+ 9

5
s ,

which is (41). This bound is valid only when (98) with ≥
is satisfied for t⋆, i.e.,

q − s

n− q
≥ |1− βw| exp

(

4
(β w − 2)β w

|1− βw|2 log
(q

s

))

,

which is condition (40).

Remarks. Although these bounds were derived using the

same techniques as the ones for ℓ1-ℓ1 minimization, they are

much looser. The main reason is their dependency on the

magnitudes of x⋆, w, and x⋆ −w. This forced us to consider

a worst-case scenario in the last step of (95).

E. Proof of Theorem 15

The proof follows from taking the minimum over t in the

right-hand side of (91) and using (92).

F. Proof of Corollary 16

First note that the corollary’s assumptions imply the as-

sumptions of both Theorems 13 and 15. In particular, if (48b)

holds strictly for at least one component k, then k ∈ IJ
and β2 6= sign(x⋆

k)/(wk − x⋆
k). We write the right-hand sides

of (33) and (45) as mint≥0 φ1(t) and mint≥0 φ2(t), where

φ1(t) := h+ h+ 4ht2 +
∑

i∈IcJc

Egi

[

dist
(

gi, I(0, 2t)
)2]

+
∑

i∈IcJ

Egi

[

dist
(

gi, I(−t sign(wi), t)
)2]

(99)

φ2(t) := s+ t2
∑

i∈IJ

[

1 + β2 sign(x⋆
i )(x

⋆
i − wi)

]2

+
∑

i∈IcJc

Egi

[

dist
(

gi, I(0, t)
)2]

+
∑

i∈IcJ

Egi

[

dist
(

gi, I(−tβ2wi, t)
)2]

. (100)

Note that we used the assumptions β1 = 1 and IJc = ∅. We

now compare (99) and (100) term-by-term. First, note that

4h = 4
(

|I+J+|+ |I−J−|
)

≤
∑

i∈I+J+

[

1 + β2(x
⋆
i − wi)

]2

+
∑

i∈I−J−

[

1− β2(x
⋆
i − wi)

]2

≤
∑

i∈IJ

[

1 + β2 sign(x⋆
i − wi)

]2

, (101)

where we used (48b) in the first inequality. Furthermore,

h+ h = |IJ | ≤ |I| = s (102)

Egi

[

dist
(

gi, I(0, 2t)
)2]

≤ Egi

[

dist
(

gi, I(0, t)
)2]

(103)

Egi

[

dist
(

gi, I(−t sign(wi), t)
)2]

≤ Egi

[

dist
(

gi, I(−tβ2 wi, t)
)2]

, ∀ i ∈ IcJ . (104)

In (102), we used (20). To get (103), just notice that I(0, t) ⊂
I(0, 2t). To obtain (104), we used (48a) and the fact that

Egi

[

dist
(

gi, I(t, t)
)2]

≤ Egi

[

dist
(

gi, I(c t, t)
)2]

, (105)

for any |c| ≥ 1. To see why (105) holds, write fb(a) :=
Eg

[
dist(g, I(a, b))2

]
, i.e., with b fixed. Using (52) and the
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identities dQ(x)/dx = −ϕ(x), dϕ(x)/dx = −xϕ(x), and

Q(x) = 1−Q(−x), it can be shown that

d

da
fb(a) = 2

[
ϕ(a− b)− ϕ(a+ b) + (a+ b)Q(a+ b)

+ (a− b)Q(b− a)
]
. (106)

The density ϕ(x) is nonincreasing for x ≥ 0 and nondecreas-

ing for x ≤ 0. Therefore, all terms of (106) are nonnegative

for a ≥ b ≥ 0, meaning that fb(a) does not decrease with a.

This shows (105) for c ≥ 1. For c ≤ −1, note that all terms

in (106) are nonpositive whenever −a ≥ b ≥ 0, that is, fb(a)
increases with (a negative) a. To conclude the proof, notice

that (101)-(104) show φ1(t) ≤ φ2(t), for all t ≥ 0. Assume t1
(resp. t2) is a minimizer of φ1 (resp. φ2), which exists due to

the continuity and coercivity of φ1 (the same for φ2). Then,

φ1(t1) ≤ φ1(t2) ≤ φ2(t2), concluding the proof.

VII. CONCLUSIONS

We studied two schemes for integrating prior information

in CS: ℓ1-ℓ1 and ℓ1-ℓ2 minimization. For each scheme, we

established bounds on the number of measurements that

guarantee successful reconstruction with high probability, un-

der Gaussian measurement matrices. The bounds established

for ℓ1-ℓ1 minimization are quite sharp and are minimized

for β = 1. In contrast, the bounds for ℓ1-ℓ2 minimization

can be quite loose, and the β that minimizes them depends on

several unknown problem parameters. According to our theory,

geometrical interpretations, and experimental results, ℓ1-ℓ1
minimization has strong advantages over both standard CS

and ℓ1-ℓ2 minimization. The insights revealed by our theory

also helped us design schemes that improve the quality of

prior information. Possible future research directions include

extending our bounds to more complex signal structures, for

example, block sparsity and the k-support norm.
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APPENDIX A

PROOF OF LEMMA 17

A. Part I) Exact expression

For any a and b ≥ 0,

Eg

[

dist
(
g, I(a, b)

)2
]

= Eg

[

min
u

(u− g)2

s.t. |u− a| ≤ b

]

=
1√
2π

∫ +∞

a+b

(
g − (a+ b)

)2
exp

(

−g2

2

)

dg

+
1√
2π

∫ a−b

−∞

(
g − (a− b)

)2
exp

(

−g2

2

)

dg

= A(a+ b) +B(a− b) , (107)

where

A(x) :=
1√
2π

∫ +∞

x

(g − x)2 exp
(

−g2

2

)

dg

=
1√
2π

∫ +∞

x

g2 exp
(

−g2

2

)

dg (A1(x))

− 2x√
2π

∫ +∞

x

g exp
(

−g2

2

)

dg (−A2(x))

+
x2

√
2π

∫ +∞

x

exp
(

−g2

2

)

dg (A3(x))

=: A1(x)−A2(x) +A3(x) ,

and

B(x) :=
1√
2π

∫ x

−∞
(g − x)2 exp

(

−g2

2

)

dg

=
1√
2π

∫ x

−∞
g2 exp

(

−g2

2

)

dg (B1(x))

− 2x√
2π

∫ x

−∞
g exp

(

−g2

2

)

dg (−B2(x))

+
x2

√
2π

∫ x

−∞
exp

(

−g2

2

)

dg (B3(x))

=: B1(x)−B2(x) +B3(x) .

Using symmetry arguments for even and odd functions, it can

be shown that B1(x) = A1(−x), B2(x) = −A2(x), and

B3(x) = A3(−x). Therefore,

A(x) =
(
A1(x) +A3(x)

)
−A2(x) (108)

B(x) =
(
A1(−x) +A3(−x)

)
+A2(x) . (109)

Next, we compute expressions for A1(x)+A3(x) and A2(x).
Integrating A1(x) by parts, we obtain:

A1(x) +A3(x) =
x√
2π

exp
(

−x2

2

)

+ (1 + x2)
1√
2π

∫ +∞

x

exp
(

−g2

2

)

dg

︸ ︷︷ ︸

:=Q(x)

, (110)

where Q(x) is the Q-function, defined in (49). The integral

in A2(x) can be computed in closed-form as

A2(x) =
2x√
2π

exp
(

−x2

2

)

. (111)

From (108), (109), (110), and (111), we obtain

A(x) = − x√
2π

exp
(

−x2

2

)

+ (1 + x2)Q(x) (112)

B(x) =
x√
2π

exp
(

−x2

2

)

+ (1 + x2)Q(−x) . (113)

Using (107), (112), and (113), and the property Q(x) = 1 −
Q(−x), for all x, we obtain

Eg

[

dist
(
g, I(a, b)

)2
]

= (a− b)ϕ(a− b)

− (a+ b)ϕ(a+ b) +
[
1 + (a+ b)2

]
Q(a+ b)

+
[
1 + (a− b)2

][
1−Q(a− b)

]
,
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where we used ϕ(x) = exp
(
−x2/2

)
/
√
2π [cf. (50)]. This is

exactly (52).

B. Part II) Bounds

Showing (53) is relatively simple: either set b = 0 in (52),

or just use the linearity of the expected value and the fact

that g has zero mean and unit variance:

Eg

[
dist(g, a)2

]
= Eg

[
(a− g)2

]
= Eg

[
a2 − 2ag + g2

]

= a2 + 1 .

We will now focus on proving cases 2), 3), and 4), which are

characterized by b > 0 and |a| 6= b. These will follow by

using bounds on the Q-function. The following bounds, valid

for x > 0, are sharp for large x [62, Eq. 2.121]: 9

x

1 + x2

1√
2π

exp
(

−x2

2

)

≤ Q(x) ≤ 1

x

1√
2π

exp
(

−x2

2

)

.

(114)

Now we compute bounds for A(x) and B(x) based on (114)

and address the cases x < 0 and x > 0 separately. We

will again use the property Q(x) = 1 − Q(−x). Let us start

with A(x). Consider x < 0. Then,

A(x) = −xϕ(x) + (1 + x2)(1−Q(−x))

≤ −xϕ(x) + (1 + x2)

(

1 +
x

1 + x2
ϕ(x)

)

= 1 + x2 , (115)

where the inequality is due to the lower bound in (114). Now,

let x > 0. Applying the upper bound in (114) directly, we

obtain

A(x) ≤ −xϕ(x) + (1 + x2)
1

x
ϕ(x) =

1

x
ϕ(x) . (116)

Now consider B(x) with x < 0. Since Q(−x) has a positive

argument, we use the upper bound in (114):

B(x) ≤ xϕ(x) + (1 + x2)
(

− 1

x
ϕ(x)

)

=
1

|x|ϕ(x) , (117)

where, in the inequality, we used the fact that ϕ(−x) = ϕ(x).
Assume now x > 0. Then,

B(x) = xϕ(x) + (1 + x2)(1−Q(x))

≤ xϕ(x) + (1 + x2)

(

1− x

1 + x2
ϕ(x)

)

= 1 + x2 , (118)

9The lower bound in [62, Eq. 2.121] is actually ((x2 − 1)/x3)ϕ(x). The
lower bound in (114), however, is tighter and stable near the origin. We found
this bound in [63]. Since we were not able to track it to a published reference,
we replicate the proof from [63] here. For x > 0, there holds

(

1 +
1

x2

)

Q(x) =

∫ ∞

x

(

1 +
1

x2

)

ϕ(u) du ≥
∫ ∞

x

(

1 +
1

u2

)

ϕ(u) du

= −
∫ ∞

x

u dϕ(u)/du− ϕ(u)

u2
du = −

∫ ∞

x

d

du

(ϕ(u)

u

)

du =
ϕ(x)

x
,

from which the bound follows. In the third step, we used the property
dϕ(u)/du = −uϕ(u).

where we used the lower bound in (114). In sum, (115), (116),

(117), and (118) tell us that

A(x) ≤
{

1 + x2 , x < 0
1
xϕ(x) , x > 0

(119)

B(x) ≤
{

1
|x|ϕ(x) , x < 0

1 + x2 , x > 0
. (120)

From (107), (119), and (120),

Eg

[

dist
(
g, I(a, b)

)2
]

= A(a+ b) +B(a− b)

≤







ϕ(a+b)
a+b + ϕ(a−b)

|a−b| , |a| < b

1 + (a+ b)2 + ϕ(a−b)
|a−b| , a+ b < 0

ϕ(a+b)
a+b + 1 + (a− b)2 , a− b > 0 .

Taking into account that ϕ(x) = ϕ(−x) for any x, this is

exactly (54), (55), and (56).

We now address cases 5) and 6). Suppose a + b = 0.

Since a− b < 0 (recall that b > 0), (117) applies and tells us

that B(a − b) ≤ ϕ(a − b)/(b − a) . Setting x = 0 in (112),

we obtain A(a + b) = A(0) = Q(0) = 1/2. Therefore,

A(a+ b)+B(a− b) = ϕ(a− b)/(b−a)+1/2, which is (57).

The proof of (58) is identical.
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Denote f(x) := (1− 1/x)/
√
log x. It can be shown that

d

dx
f(x) =

2 log x+ 1− x

2x2 log3/2 x

d2

dx2
f(x) =

3(x− 1)− 8 log2 x+ 2(x− 3) log x

4x3 log5/2 x
.

The stationary points of f are those for which d
dxf(x) = 0,

that is, the points that satisfy the equation 2 log x = x − 1.

This equation has only one solution, say x, for x > 1: log x =
(x− 1)/2. Using this identity, we can conclude that

d2

dx2
f(x) =

3(x− 1)− 2(x− 1)2 + (x− 3)(x− 1)
1√
2
x3(x− 1)5/2

=
2− x

1√
2
x3(x− 1)3/2

< 0 ,

since x > 2. This is because log 2 > 1/2 and, e.g., log 11 < 5
or, in other words, (x − 1)/2 intersects log x somewhere in

the interval 2 < x < 11, that is, 2 < x < 11. This means

that the only stationary point x is a local maximum. Since

limx↓1 f(x) = 0 and limx−→+∞ f(x) = 0 (using for example

l’Hôpital’s rule), x is actually a global maximum. Knowing

that x satisfies log x = (x− 1)/2, we have

f(x) =
x− 1

x
√
log x

=
√
2

x− 1

x
√
x− 1

=
√
2

√
x− 1

x
.

By equating the derivative of the function
√
x− 1/x to zero,

we know that it achieves its maximum at x = 2. Therefore,

f(x) ≤
√
2/2 = 1/

√
2. Dividing by 1/

√
π, we obtain (59).



23

APPENDIX C

PROOF OF LEMMA 19

A. Proof of 1)

According to (62), 0 ∈ ∂f
(i)
1 (x⋆

i ) is equivalent to either:

i ∈ IJ and sign(x⋆
i ) + β sign(x⋆

i − wi) = 0 , or (121a)

i ∈ IJc and β ≥ 1 , or (121b)

i ∈ IcJ and β ≤ 1 , or (121c)

i ∈ IcJc . (121d)

Note that (121a) cannot be satisfied whenever β 6= 1. Hence,

conditions (121a)-(121d) can be rewritten as

• β = 1: sign(x⋆
i ) + sign(x⋆

i − wi) = 0 for i ∈ IJ , or

i ∈ IcJ , or i ∈ IJc, or i ∈ IcJc.

• β > 1: i ∈ IJc or i ∈ IcJc.

• β < 1: i ∈ IcJ or i ∈ IcJc.

We consider two scenarios: IJ 6= ∅ and IJ = ∅.

• Let IJ 6= ∅. When β = 1, 0 6∈ ∂f1(x
⋆) if and only

if there is an i ∈ IJ such that sign(x⋆
i ) + sign(x⋆

i −
wi) 6= 0, i.e., there is at least one bad component: h > 0.

When β 6= 1, there is at least one i ∈ IJ for which (121a)

is not satisfied, that is, 0 6∈ ∂f1(x
⋆). We thus conclude

that part 1) is true whenever IJ 6= ∅.

• Let IJ = ∅ or, equivalently, x⋆
i = wi for all i ∈ I . Recall

from (20) that |IJ | = h + h. Thus, IJ = ∅ implies

h = 0. In this case, if β = 1, then 0 ∈ ∂f1(x
⋆). On

the other hand, for β > 1, 0 6∈ ∂f1(x
⋆) if and only

if IcJ 6= ∅; similarly, for β < 1, 0 6∈ ∂f1(x
⋆) if and

only if IJc 6= ∅. We next show that IJ = ∅, together

with I 6= ∅ and J 6= ∅, implies that both IcJ and IJc are

nonempty, thus showing that part 1) is also true whenever

IJ = ∅. In fact, I 6= ∅ implies IJc 6= ∅, because I =
IJ ∪ IJc = IJc. Also, J 6= ∅, that is, x⋆ 6= w, implies

IcJ 6= ∅. This is because IJ = ∅ means that x⋆ and w
coincide on I , and IcJ = {i : 0 = x⋆

i 6= wi} is the set

of nonzero components of w outside I . Since x⋆ and w
coincide on I , they have to differ outside I , i.e., IcJ 6= ∅.

B. Proof of 2)

From (63), 0 ∈ ∂f
(i)
2 (x⋆

i ) is equivalent to either

i ∈ IJ and β(wi − x⋆
i ) = sign(x⋆

i ) , or

i ∈ IJc , or

i ∈ Ic and β ≤ 1/|wi| .
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