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Abstract—In support of art investigation, we propose a new
source separation method that unmixes a single X-ray scan
acquired from double-sided paintings. In this problem, the X-ray
signals to be separated have similar morphological characteris-
tics, which brings previous source separation methods to their
limits. Our solution is to use photographs taken from the front-
and back-side of the panel to drive the separation process. The
crux of our approach relies on the coupling of the two imaging
modalities (photographs and X-rays) using a novel coupled
dictionary learning framework able to capture both common
and disparate features across the modalities using parsimonious
representations; the common component captures features shared
by the multi-modal images, whereas the innovation component
captures modality-specific information. As such, our model
enables the formulation of appropriately regularized convex
optimization procedures that lead to the accurate separation of
the X-rays. Our dictionary learning framework can be tailored
both to a single- and a multi-scale framework, with the latter
leading to a significant performance improvement. Moreover, to
improve further on the visual quality of the separated images,
we propose to train coupled dictionaries that ignore certain parts
of the painting corresponding to craquelure. Experimentation on
synthetic and real data—taken from digital acquisition of the
Ghent Altarpiece (1432)—confirms the superiority of our method
against the state-of-the-art morphological component analysis
technique that uses either fixed or trained dictionaries to perform
image separation.

Index Terms—Source separation, coupled dictionary learning,
multi-scale image decomposition, multi-modal data analysis.

I. INTRODUCTION

B IG DATA sets—produced by scientific experiments or
projects—often contain heterogeneous data obtained by

capturing a physical process or object using diverse sensing
modalities [2]. The result is a rich set of signals, heterogeneous
in nature, but strongly correlated due to a common underlying
phenomenon. Multi-modal signal processing and analysis is
thus gaining momentum in various research disciplines ranging
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Figure 1. Panels from the Ghent Altarpiece: (left) panels of Adam and
Eve, (centre) the respective paintings on the back, (right) corresponding X-
ray images containing a mixture of components. c©KIK-IRPA

from medical diagnosis [3] to remote sensing and computer
vision [4]. In particular, the analysis of high-resolution multi-
modal digital acquisitions of paintings in support of art schol-
arship has proved a challenging field of research. Examples
include the numerical characterization of brushstrokes [5],
[6] for the authentication or dating of paintings, canvas
thread counting [7]–[9] with applications in art forensics,
and the (semi-) automatic detection and digital inpainting of
cracks [10]–[12].

The Lasting Support project has focused on the investigation
of the Ghent Altarpiece (1432), also known as The Adoration
of the Mystic Lamb, a polyptych on wood panel painted by
Jan and Hubert van Eyck. As one of the most admired and
influential masterpieces in the history of art, it has given
rise to many puzzling questions for art historians. Currently,
the Ghent Altarpiece is undergoing a major conservation and
restoration campaign that is planned to end in 2017. The panels
of the masterpiece were documented with various imaging
modalities, amongst which visual macrophotography, infrared
macrophotography, infrared reflectography and X-radiography
[12]. A massive visual data set (comprising over 2TB of data)
has been compiled by capturing small areas of the polyptych
separately and stitching the resulting image blocks into one
image per panel [13].

X-ray images are common tools in painting investigation,
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since they reveal information about the composition of the
materials, the variations in paint thickness, the support as well
as the cracks and losses in the ground and paint layers. The
problem we address in this paper relates to the outer side
panels, namely, the panels showing near life-sized depictions
of Adam and Eve, shown in Fig. 1. Due to X-ray penetration,
the scans of these panels are a mixture of the paintings from
each side of the panel as well as the wood panel itself. The
presence of all these components makes the reading of the
X-ray image difficult for art experts, who would welcome an
effective approach to separate the components.

The task of separating a mixture of signals into its con-
stituent components is a popular field of research. Most work
addresses the blind source separation (BSS) problem, where
the goal is to retrieve the different sources from a set of mixed
signals, without information about the source signals or the
mixing process. Several methods attempt to solve the BSS
problem by imposing constraints on the sources’ structure.
Independent component analysis (ICA) [14], [15] commonly
assumes that the components are independent non-Gaussian
signals. Nonnegative matrix factorization is another approach
to solve the problem, where it is assumed that the sources
are nonnegative (or they are transformed to a nonnegative
representation) [16]. In an alternative path, the problem has
been cast into a Bayesian framework, where either the sources
are viewed as latent variables [17], or the problem is solved
by maximizing the joint posterior density of the sources [18].
Under the Bayesian methodology, spatial smoothing priors
(via, for example, Markov random fields) have been used
to regularize blind image separation problems [19]. These
assumptions do not fit our particular problem as both com-
ponents have similar statistical or structural properties.

Sparsity is another source prior heavily exploited in BSS
[20], [21], as well as in various other inverse problems, such
as, compressed sensing [22], [23], image inpainting [24],
[25], denoising [26], and deconvolution [27]. Morphological
component analysis (MCA), in particular, is a state-of-the-art
sparsity-based regularization method, initially designed for the
single-mixture problem [20], [28] and then extended to the
multi-mixture case [29]. The crux of the method is the basic
assumption that each component has its own characteristic
morphology; namely, each has a highly sparse representation
over a set of bases (or, dictionaries), while being highly non-
sparse for the dictionaries of the other components. Prior
work in digital painting analysis has employed MCA to
remove cradling artifacts within X-ray images of paintings
on a panel [30]. The cradling and painting components have
very different morphologies, captured by different predefined
dictionaries. Namely, complex wavelets [31] provide a sparse
representation for the smooth X-ray image and shearlets [32]
were used to represent the texture of the wood grain. Alterna-
tively, dictionaries can be learned from a set of training signals;
several algorithms have been proposed to construct dictionaries
including the method of optimal directions (MOD) [33] and
the K-SVD algorithm [34]. Both follow a similar sparse
decomposition approach; however, they differ in the way the
dictionary elements are learned. Recently, multi-mixture MCA
has been combined with K-SVD, resulting in a method where

dictionaries are learned adaptively while separating [35].

However, in our particular separation problem we have a
simple mixture of two X-ray components that are morpho-
logically very similar [see Fig. 1]. Hence, as we will show
in the experimental section, simply using fixed or learned
dictionaries is insufficient to discriminate one component from
the other. Unlike prior work, in our setup we have access to
high-quality photographic material from each side of the panel
that can be used to assist the X-ray image separation process.

In this work, we elaborate on a novel method to perform
separation of X-ray images from a single mixture by using
images of another modality as side information. Our contribu-
tions are as follows:

• We present a new model based on parsimonious repre-
sentations, which captures both the inherent similarities
and the discrepancies among heterogeneous correlated
data. The model decomposes the data into a sparse
component that is common to the different modalities
and a sparse component that uniquely describes each data
type. Our model enables the formulation of appropriately
regularized convex optimization procedures that address
the separation problem at hand.

• We propose a novel dictionary learning approach that
trains dictionaries coupling the images from the different
modalities. Our approach introduces a new modified
OMP algorithm that is tailored to our data model.

• We devise a novel method that ignores craquelure
pixels—namely, pixels that visualize cracks in the sur-
face of paintings—when learning coupled dictionaries.
Paying no heed to these pixels avoids contaminating the
dictionaries with high frequency noise, thereby leading
to higher separation performance. Our approach bears
similarities with inpainting approaches, e.g., [25]; it is,
however, different in the way the dictionary learning
problem is posed and solved.

• We devise a novel multi-scale image separation strategy
that is based on a recursive decomposition of the mixed
X-ray and visual images into low- and high-pass bands.
As such, the method enables the accurate separation of
high-resolution images even when a local sparsity prior is
assumed. Our approach differs from existing multi-scale
dictionary learning methods [25], [36], [37] not only by
considering imaging data gleaned from diverse modalities
but also in the way the multi-scale decomposition is
constructed.

• We conduct experiments using synthetic and real data
proving that the use of side information is crucial in the
separation of X-ray images from double-sided paintings.

In the remainder of the paper: Section II reviews related
work and Section III poses our source separation with side in-
formation problem. Section IV describes the proposed coupled
dictionary learning algorithm. Section V presents our method
that ignores cracks when learning dictionaries, and Section VI
elaborates on our single- and multi-scale approaches to X-ray
image separation. Section VII presents the evaluation of our
algorithms, while Section VIII draws our conclusions.
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II. RELATED WORK

A. Source Separation

Adhering to a formal definition, MCA [20], [28] de-
composes a source or image mixture x =

∑κ
i=1 xi, with

x, xi ∈ Rn×1, into its constituents, with the assumption
that each xi admits a sparse decomposition in a different
overcomplete dictionary Φi ∈ Rn×di , (n � di). Namely, each
component can be expressed as xi = Φizi, where zi ∈ Rdi×1

is a sparse vector comprising a few non-zero coefficients:
‖zi‖0 = #{ξ : ziξ

6= 0, ξ = 1, . . . , di} = si � di, with
‖ ∙ ‖0 denoting the `0 pseudo-norm. The BSS problem is thus
addressed as [20], [28]

(ẑ1, . . . , ẑκ) = arg min
z1,...,zκ

κ∑

i=1

‖zi‖0 s.t. x =
κ∑

i=1

Φizi. (1)

Unlike the BSS problem, informed source separation (ISS)
methods utilise some form of prior information to aid the
task at hand. ISS methods are tailored to the application they
address (to the best of our knowledge they are applied only for
audio mixtures [38], [39]). For instance, an encoding/decoding
framework is proposed in [38], where the sources are mixed
at the encoder and the mixtures are sent to the decoder
together with side information that is embedded by means
of quantization index modulation (QIM) [40]. Unlike these
methods, we propose a generic source separation framework
that incorporates side information gleaned from a correlated
heterogeneous source by means of a new dictionary learning
method that couples the heterogenous sources.

B. Dictionary Learning

Dictionary learning factorizes a matrix composed of training
signals X = [x1, . . . , xk] ∈ Rn×k into the product ΦZ as
(
Φ, Z

)
= arg min

Φ′,Z′
‖X−Φ′Z ′‖2

F s.t. ‖zi‖0 ≤ s, i = 1, . . . , k,

(2)
where Z = [z1, . . . , zk] ∈ Rd×k contains the sparse vectors
corresponding to the signals X = [x1, . . . , xk] and ‖ ∙ ‖F

is the Frobenius norm of a matrix. The columns of the
dictionary Φ are typically constrained to have unit norm so
as to improve the identifiability of the dictionary. To solve
Problem (2), which is non-convex, Olshausen and Field [41]
proposed to iterate through a step that learns the sparse codes
and a step that updates the dictionary elements. The same
strategy is followed in subsequent studies [33], [34], [42]–[44].
Alternatively, polynomial-time algorithms that are guaranteed
to reach a globally optimal solution appear in [45], [46].

In order to capture multi-scale traits in natural signals, a
method to construct multi-scale dictionaries was presented in
[25]. The multi-scale representation was obtained by using
a quadtree decomposition of the learned dictionary. Alterna-
tively, the work in [36], [37] applied dictionary learning in
the domain of a fixed multi-scale operator (wavelets). In our
approach we follow a different multi-scale strategy, based on a
pyramid decomposition, similar to the Laplacian pyramid [47].

There exist dictionary learning approaches designed to
couple multi-modal data. Monaci et al. [48] proposed an

approach to learn basis functions representing audio-visual
structures. Alternatively, Yang et al. [49], [50] considered the
problem of learning two dictionaries, Dx and Dy , for two
families of signals, x and y, coupled by a mapping function
F [with y = F(x)]. The constraint was that the sparse
representation of x in Dx is the same as that of y in Dy .
The application targeted was image super-resolution, where x
(resp. y) is the low (resp. high) resolution image. The study
in [4] followed a similar approach with the difference that
the mapping function was applied to the sparse codes, i.e.,
zy = F(zx), rather than the signals. Jia et al. [51] proposed
dictionary learning via the concept of group sparsity so as
to couple the different views in human pose estimation. Our
coupled dictionary learning method is designed to address the
challenges of the targeted source separation application and as
such, the model we consider to represent the correlated sources
is fundamentally different from previous work. Moreover, we
extend coupled dictionary learning to the multi-scale case and
provide a way to ignore certain noisy parts of the training
signals (corresponding to cracks in our case).

III. IMAGE SEPARATION WITH SIDE INFORMATION

We denote by xray
1 and xray

2 two vectorized X-ray image
patches that we wish to separate from each other given a
mixture patch m, where m = xray

1 + xray
2 . Let y1 and y2 be

the co-located (visual) image patches of the front and back
side paintings. These patches play the role of side information
that aids the separation. The use of side information has
proven beneficial in various inverse problems [52]–[58]. In this
work, we consider the signals xray

1 , xray
2 , y1, y2 ∈ Rn to obey

(superpositions of) sparse representations in some dictionaries:

y1 = Ψcz1c

y2 = Ψcz2c, (3)

and

xray
1 = Φcz1c + Φv1

xray
2 = Φcz2c + Φv2, (4)

where zic ∈ Rγ×1, with ‖zic‖0 = sz � γ and i = 1, 2,
denotes the sparse component that is common to the images in
the visible and the X-ray domain with respect to dictionaries
Ψc, Φc ∈ Rn×γ , respectively. The parameter sz denotes the
sparsity of the vector zic. Moreover, vi ∈ Rd×1, with ‖vi‖0 =
sv � d denotes the sparse innovation component of the X-ray
image, obtained with respect to the dictionary Φ ∈ Rn×d. The
common components express global features and structural
characteristics that underlie both modalities. The innovation
components capture parts of the signal specific to the X-ray
modality, that is, traces of the wooden panel or even footprints
of the vertical and horizontal wooden slats attached to the back
of the paintings.

As the paintings are mounted on the same wooden panel, the
sparse components that decompose the X-ray images via the
dictionary Φ are expected to be the same, that is, we assume
v1 = v2 = v. To motivate further this assumption, suppose
that the dictionaries Ψc, Φc, and Φ have been learned (from
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training data), and we want to separate xray
1 and xray

2 from their
sum m. This can be achieved by solving

minimize
z1c,z2c,v1,v2

‖z1c‖1 + ‖z2c‖1 + ‖v1‖1 + ‖v2‖1,

s.t. m = Φcz1c + Φcz2c + Φv1 + Φv2,
y1 = Ψcz1c,
y2 = Ψcz2c,

(5)

where we relaxed the (nonconvex) `0-pseudo-norm to the
(convex) `1-norm, denoted by ‖∙‖1. The components v1 and v2

are non-identifiable, because they are expressed in the same
dictionary Φ. Specifically, if (z?

1c, z
?
2c, v

?
1 , v?

2) solves (5), so
does (z?

1c, z
?
2c, ξ

?
1 , ξ?

2) with ξ?
1 + ξ?

2 = v?
1 + v?

2 . This means
v1 and v2 are determined up to their sum. To resolve this
ambiguity, we simply enforce v1 = v2 = v, yielding

minimize
z1c,z2c,v

‖z1c‖1 + ‖z2c‖1 + 2‖v‖1,

s.t. m = Φcz1c + Φcz2c + 2Φv,
y1 = Ψcz1c,
y2 = Ψcz2c.

(6)

Problem (6) boils down to basis pursuit, for which many
solvers are available, e.g., [59]. For the purpose of simplicity,
we assume that the `1-norm terms in (5) have equal weights,
an approach which—as shown in Section VII—leads to high
performance. Adding weights would provide more flexibility
and may lead to better performance; however, the selection of
weights requires careful hand-tuning.

We acknowledge the relation of our model with the sparse
common component and innovations model that captures intra-
and inter-signal correlation of physical signals in wireless
sensor networks [55], [60]. Our approach is, however, more
generic, since we decompose the signals in learned dictionaries
rather than fixed canonical bases, as in [60].

IV. COUPLED DICTIONARY LEARNING ALGORITHM

In the training step of our method, we learn coupled
dictionaries, Ψc, Φc, Φ, by using image patches sampled
from visual and X-ray images of single-sided panels, which
do not suffer from superposition phenomena. The images
were registered using the algorithm described in [61]. Let
Y = [y1, . . . , yt], X = [x1, . . . , xt] ∈ Rn×t represent a set
of t co-located vectorized visual and X-ray patches, each
containing

√
n ×

√
n pixels. The DC value is extracted from

each patch xi, yi, i = 1, . . . , t, and it is treated as explained
in Section VI. Hence, as per our model in (3) and (4), the
columns of X and Y , which contain the texture of each X-ray
and visual patch, are decomposed as

Y = ΨcZ, (7a)

X = ΦcZ + ΦV , (7b)

where we collect their common components into the columns
of the matrix Z = [z1, . . . , zt] ∈ Rγ×t and their innovation
components into the columns of V = [v1, . . . , vt] ∈ Rd×t. We
formulate the coupled dictionary learning problem as

minimize
Ψc,Z
Φc,Φ,V

1
2‖Y − ΨcZ‖2

F + 1
2‖X − ΦcZ − ΦV ‖2

F ,

s.t. ‖zτ‖0 ≤ sz,

‖vτ‖0 ≤ sv, ∀τ = 1, 2, . . . , t.

(8)

Problem (8) is bi-convex and—similar to related work [25],
[34], [37]—we solve it by alternating between a sparse-coding
step and a dictionary update step. Particularly, given initial
estimates for dictionaries Ψc, Φ, and Φc—in line with prior
work [34] we use the overcomplete discrete cosine transform
(DCT) for initialization—we iterate on k between a sparse-
coding step:

(Zk+1, V k+1) = arg min
Z,V

1
2

∥
∥
∥
∥
∥

[
Y
X

]

−

[
Ψck 0
Φck Φk

] [
Z
V

] ∥∥
∥
∥
∥

2

F

,

s.t. ‖zτ‖0 ≤ sz,

‖vτ‖0 ≤ sv, ∀τ = 1, 2, . . . , t,
(9)

which is performed to learn the sparse codes Z, V having the
dictionaries fixed, and a dictionary update step

(Ψck+1, Φck+1,Φk+1) =

arg min
Ψc,Φc,Φ

1
2

∥
∥
∥
∥
∥

[
Y
X

]

−

[
Ψc 0
Φc Φ

] [
Zk+1

V k+1

] ∥∥
∥
∥
∥

2

F

.

(10)

which updates the dictionaries given the calculated sparse
codes. The algorithm iterates between these steps until no
additional iteration reduces the value of the cost function
below a chosen threshold, or until a predetermined number
of iterations is reached. In what follows, we provide details
regarding the solution of the problem at each stage.

Sparse-coding step. Problem (9) decomposes into t prob-
lems, each of which can be solved in parallel:

(zk+1
τ , vk+1

τ ) = arg min
zτ ,vτ

1
2

∥
∥
∥
∥
∥

[
yτ

xτ

]

−

[
Ψck 0
Φck Φk

] [
zτ

vτ

] ∥∥
∥
∥
∥

2

F

,

s.t. ‖zτ‖0 ≤ sz,

‖vτ‖0 ≤ sv.
(11)

To address each of the t problems in (11), we propose a greedy
algorithm that constitutes a modification of the orthogonal
matching pursuit (OMP) method [see Algorithm 1]. Our
method adapts OMP [62] to solve:

minimize
w

‖b − Θw‖2
2

s.t. ‖w(I)‖0 ≤ sz,
‖w(J )‖0 ≤ sv,

(12)

where w(I) [resp., w(J )] denotes the components of vector
w ∈ R(γ+d)×1 indexed by the index set I (resp., J ), with
I ∪ J = {1, 2, . . . , γ + d}, I ∩ J = {∅}. Each sub-problem

in (11) translates to (12) by replacing: b =

[
yτ

xτ

]

, Θ =
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Algorithm 1 Modified Orthogonal Matching Pursuit (mOMP)

Input: The vector b ∈ R(2n)×1, the matrix Θ =
[
θ1 . . . θγ+d

]
,

where θi ∈ R(2n)×1, the set of indices I, J , and the sparsity
levels sz , sv ∈ N of vectors z, v.

Initialization: Initialize the residual r0 = b; set sw = sz + sv; set
counters `z = 0, `v = 0, Ω0 = ∅, and T0 = [ ] (empty matrix).

Algorithm
1: for i = 1, 2, . . . , sw do
2: Compute the vector of ordered indices qi such that
|〈ri−1, θqi(1)〉| ≥ |〈ri−1, θqi(2)〉| ≥ . . . ≥ |〈ri−1, θqi(γ+d)〉|.

3: Set G = ∅ and iter = 0.
4: while G = ∅ do
5: iter← iter+ 1.
6: κ = qi(iter).
7: if κ ∈ I and `z < sz then
8: Set G = κ and `z ← `z + 1.
9: else

10: if κ ∈ J and `v < sv then
11: Set G = κ and `v ← `v + 1.
12: end if
13: end if
14: end while
15: Update: Ωi = Ωi−1 ∪ {κ} and Ti =

[
Ti−1 θκ

]
.

16: Solve: wi = arg minw ‖b− Ti w‖2.
17: Update residual: ri = b− Ti wi.
18: end for

Output: w ∈ Rn, with w(Ωi) = wi and w(Ωc
i ) = 0.

[
Ψck 0
Φck Φk

]

, w =

[
zτ

vτ

]

, I = {1, . . . , γ} and J = {1, . . . , d}.

The main difference with respect to OMP [62] is that our
method partitions the indices of the columns of Θ in the sets
I , J . As such, the vector qi in Step 1 contains the indices
of the columns of Θ, in decreasing order of correlation with
the residual vector. The while loop in Step 4 differs from
the corresponding step in OMP in that we select the column to
be added taking into account the sparsity levels of the vectors
z and v.

It is worth mentioning that we follow an OMP-based
approach in the dictionary learning stage so as to benefit from
a fast algorithm, while we adhere to the `1-norm minimization
strategy for the source separation problem [see Problem (6)]
with the goal to achieve high X-ray reconstruction quality1.

Dictionary update step. Problem (10) can be written as

minimize
Ψc,Φ

1
2

∥
∥
∥Y − ΨcZk+1

∥
∥
∥

2

F
+ 1

2

∥
∥
∥X − Φ V

k+1
∥
∥
∥

2

F
,

(13)

where Φ =
[
Φc Φ

]
and V

k+1
=

[
Zk+1

V k+1

]

. Problem (13)

decouples into two (independent) problems, that is,

minimize
Ψc

1
2

∥
∥
∥Y − ΨcZk+1

∥
∥
∥

2

F
(14)

and

minimize
Φ

1
2

∥
∥
∥X − Φ V

k+1
∥
∥
∥

2

F
. (15)

1It is known [63]–[65] that a basis pursuit strategy offers higher perfor-
mance than OMP, while the latter admits simple, fast implementations [66].

Provided that Zk+1 and V
k+1

are full row-rank, each of these
problems has a closed-form solution, namely,

Ψck+1 = Y Zk+1T
(
Zk+1Zk+1T

)−1

and

Φ
k+1

= XV
k+1T(

V
k+1

V
k+1T)−1

.

When Zk+1 and V
k+1

are rank-deficient, (14) and (15)
have multiple solutions, from which we select the one with
minimal Frobenius norm. This is done by taking a thin (also
called reduced) singular value decomposition [67] of Zk+1 =
Gzk+1Σzk+1UT

zk+1 and V
k+1

= Gvk+1Σvk+1UT
vk+1 , and cal-

culating
Ψck+1 = Y Uzk+1Σ−1

zk+1G
T
zk+1

and
Φ

k+1
= XUvk+1Σ−1

vk+1G
T
vk+1 .

V. WEIGHTED COUPLED DICTIONARY LEARNING

Visual and X-ray images of paintings contain a high num-
ber of pixels that depict cracks. These are fine patterns of
dense cracking formed within the materials. When taking
into account these pixels, the learned dictionaries comprise
atoms that correspond to high frequency components. As a
consequence, the reconstructed images are contaminated by
high frequency noise. In order to improve the separation
performance, our objective is to obtain dictionaries that ignore
pixels representing cracks. To identify such pixels, we generate
binary masks identifying the location of cracks by applying
our method in [10]. Each sampled image patch may contain
a variable number of crack pixels, meaning that each column
of the data matrix contains a different number of meaningful
entries. To address this issue, we introduce a weighting scheme
that adds a weight of 0 or 1 to the pixels that do or do
not correspond to cracks, respectively. These crack-induced
weights are included using a Hadamard product, namely, our
model in (7) is modified to

Y � Λ = (ΨcZ) � Λ (16a)

X � Λ = (ΦcZ + ΦV ) � Λ. (16b)

where the matrix Λ has the same dimensions as X and Y and
its entries are 0 or 1 depending on whether a pixel is part of
a crack or not, respectively. We now formulate the weighted
coupled dictionary learning problem as

minimize
Ψc,Z
Φc,Φ,V

1
2‖(Y − ΨcZ) � Λ‖2

F

+ 1
2‖(X − ΦcZ − ΦV ) � Λ‖2

F ,
s.t. ‖zτ‖0 ≤ sz,

‖vτ‖0 ≤ sv, ∀τ = 1, 2, . . . t.
(17)

Similar to (8), the solution for (17) is obtained by alternating
between a sparse-coding and a dictionary update step.

Sparse-coding step. Similar to (11), the sparse-coding
problem decomposes into t problems that can be solved in
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parallel:

(zk+1
τ , vk+1

τ ) =arg min
zτ ,vτ

1
2

∥
∥
∥
∥
∥

[
yτ

xτ

]

�

[
λτ

λτ

]

−
([Ψck 0

Φck Φk

]

�
([

λτ

λτ

]

1T
)) [

zτ

vτ

] ∥∥
∥
∥
∥

2

2

s.t. ‖zτ‖0 ≤ sz,

‖vτ‖0 ≤ sv, ∀τ = 1, 2, . . . t, (18)

where we used λτ to represent column τ of Λ and 1T to
denote a row-vector of ones with dimension equal to γ+d. To
address each of the t sub-problems in (18), we use the mOMP
algorithm described in Algorithm 1, as each sub-problem in

(18) reduces to (12) by replacing: b =

[
yτ

xτ

]

�

[
λτ

λτ

]

, Θ =
[
Ψck 0
Φck Φk

]

�
([

λτ

λτ

]

1T
)

, and w =

[
zτ

vτ

]

.

Dictionary update step. The dictionary update problem is
now written as

minimize
Ψc,Φ

1
2

∥
∥
∥Y � Λ − (ΨcZk+1) � Λ

∥
∥
∥

2

F

+ 1
2

∥
∥
∥X � Λ − (Φ V

k+1
) � Λ

∥
∥
∥

2

F
,

(19)

and it decouples into:

minimize
Ψc

1
2

∥
∥
∥Y � Λ − (ΨcZk+1) � Λ

∥
∥
∥

2

F
(20a)

minimize
Φ

1
2

∥
∥
∥X � Λ − (Φ V

k+1
) � Λ

∥
∥
∥

2

F
. (20b)

We present only the solution of the first problem since the
solution of the other follows the same logic. Specifically, we
express the Frobenius norm in (20a) as the sum of t `2-norm
terms, each corresponding to a vectorized training patch

t∑

τ=1

‖yτ � λτ − (Ψczτ ) � λτ‖
2
2. (21)

By replacing the Hadamard product with multiplication by a
diagonal matrix Δτ = diag(λτ ), (21) can be written as

t∑

τ=1

‖Δτyτ − ΔτΨczτ‖
2
2. (22)

To minimize the expression in (22), we take the derivative
with respect to the dictionary Ψc and set it to zero:

∂

∂Ψc

t∑

τ=1

‖Δτyτ − ΔτΨczτ‖
2
2 = 0

=⇒
t∑

τ=1

∂

∂Ψc

[
(Δτyτ − ΔτΨczτ )T (Δτyτ − ΔτΨczτ )

]
= 0

=⇒2
t∑

τ=1

∂

∂Ψc
yT

τ ΔT
τ ΔτΨczτ =

t∑

τ=1

∂

∂Ψc
zT

τ ΨcT ΔT
τ ΔτΨczτ

=⇒
t∑

τ=1

(
ΔT

τ Δτyτ1
T
)
� (1zT

τ )

=
t∑

τ=1

(
ΨczτzT

τ

)
� ((λτ � λτ )1T ). (23)

Figure 2. Schema of a 3-scale pyramid decomposition in the proposed multi-
scale dictionary learning and source separation approaches.

Figure 3. Example of a 4-scale pyramid decomposition of a mixed X-ray
image. The original image resolution is 1024 × 1024 pixels. At scale 1,
the image is split into non-overlapping patches of 8 × 8 pixels and the DC
value of every patch is extracted, thereby generating the high-pass component.
The aggregated DC values compose the low-pass component at scale 2, the
resolution of which is 128 × 128 pixels. Dividing this component into non-
overlapping patches of 4 × 4 pixels and extracting the DC value from every
patch yields the high-pass band in scale 2. The procedure is repeated until
finally the low-pass band at scale 4 has a resolution of 8 × 8 pixels.

Before proceeding with the method to solve (23), we recall
that the entries of λτ are either 0 or 1. To avoid dividing by
zero when solving (23), we have to update the rows of the
dictionary matrix one-by-one. Specifically, for each row i of
Ψc, we consider the matrix Ai =

∑
τ∈Si

zτzT
τ , where Si is the

support2 of the i-th row of Λ, and zτ is the τ -th column of Z.
We also create a vector ci =

∑
τ∈Si

Y (i, τ )zτ , where Y (i, τ )
is the (i, τ )-th entry of Y . Provided that Ai is invertible, the
i-th row of Ψc (which we denote by the row-vector ψc

i ) will
be given by

ψc
i = ciA

−1
i . (24)

If each zτ is drawn randomly, Ai is invertible with proba-
bility 1 whenever the cardinality of Si is at least equal to
the number of columns of Ψc. Although in practice each
zτ is not randomly drawn, we still obtain an invertible Ai

by guaranteeing that the number of training samples is large
enough.

2The support Si is defined by the indices where the i-th row of Λ is equal
to 1.
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VI. SINGLE- AND MULTI-SCALE SEPARATION METHODS

A. Single-Scale Approach

Given the trained coupled dictionaries, the source separation
method described in Section III is applied locally, per overlap-
ping patch of the X-ray image. Let the corresponding patches
from the mixed X-ray and the two corresponding visual images
be denoted as mu, yu1 , and yu2 , respectively. Each patch
contains

√
n ×

√
n pixels and has top-left coordinates

u = (ε ∙ u1, ε ∙ u2), 0 ≤ u1 <

⌊
H

ε

⌋

, 1 ≤ u2 <

⌊
W

ε

⌋

,

where ε ∈ Z+, 1 ≤ ε <
√

n is the overlap step-size,
b•c is the floor function, and H,W are the image height
and width, respectively. Prior to separation, the DC values
DCmu , DCyu1

, and DCyu2
are removed from the pixels in

the patches mu, yu1 , and yu2 , respectively, and the residual
values are vectorized. The solution of Problem (6) yields
the sparse components zu1c, z

u
2c, and vu corresponding to the

patch with coordinates u. The texture of each separated patch
is then reconstructed following the model in (4), that is,
xu1 = Φczu1c + Φvu and xu2 = Φczu2c + Φvu. In certain cases,
the v component may capture parts of the actual content; for
example, vertical brush strokes can be misinterpreted as the
wood texture of the panel. In this case, we can choose to
skip the v component; namely, we can reconstruct the texture
of the X-ray patches as xu1 = Φczu1c and xu2 = Φczu2c.
The DC values of the separated X-ray patches, are weighted
according to the DC values of the co-located patches in the

visual images, namely, DCxu1
=

DCyu1

DCyu1
+DCyu2

× DCmu and

DCxu2
=

DCyu2

DCyu1
+DCyu2

× DCmu , and then added back to the

corresponding separated X-ray patches. Finally, the pixels in
each separated X-ray are recovered as the average of the co-
located pixels in each overlapping patch.

B. Multi-Scale Approach

Due to the restricted patch size in comparison to the high
resolution of the X-ray image, the DC values DCmu of all
patches carry a considerable amount of the total image energy.
In the single-scale approach, these DC values are common to
the two separated X-rays, thereby leading to poor separation.
To address this issue, we devise a multi-scale image separa-
tion approach. In contrast with the techniques in [25], [36],
[37], the proposed multi-scale approach performs a pyramid
decomposition of the mixed X-ray and visual images, that is,
the images are recursively decomposed into low-pass and high-
pass bands. The decompositions at scale l = {1, 2, . . . , L} are
constructed as follows. The images at scale l—where we use
the notation Ml, Y1,l, Y2,l, to refer to the mixed X-ray and the
two visuals, respectively—are divided into overlapping patches
mul

l , yul

1,l, andyul

2,l, each of size
√

nl ×
√

nl pixels. Each patch
has top-left coordinates

ul = (εl ∙u1,l, εl ∙u2,l), 0 ≤ u1,l <

⌊
Hl

εl

⌋

, 0 ≤ u2,l <

⌊
Wl

εl

⌋

,

where εl ∈ Z+, 1 ≤ εl <
√

nl is the overlap step-size, and
Hl,Wl are the height and width of the image decomposition

Table I
DICTIONARY IDENTIFIABILITY OF THE PROPOSED ALGORITHM BASED

ON SYNTHETIC DATA, EXPRESSED IN TERMS OF THE PERCENTAGE OF
RETRIEVED ATOMS FOR THE DICTIONARIES IN MODEL (7).

SNR [dB] ∞ 40 35 30 25 20 15
Ψc 96% 95.18% 95.38% 95.65% 95.20% 90.42% 12.53%
Φc 96.78% 95.97% 96.53% 96.50% 95.48% 74.35% 0.27%
Φ 92.95% 91.90% 91.73% 91.27% 91.50% 88.25% 3.07%

at scale l. The DC value DCm
ul
l

is extracted from each
patch, thereby constructing the high frequency band of the
image at scale l. The aggregated DC values comprise the
low-pass component of the image, the resolution of which
is
⌊

Hl

εl

⌋
×
⌊

Wl

εl

⌋
pixels. This low-pass component is then

decomposed further at the subsequent scale (l + 1). The
pyramid decomposition is schematically sketched in Fig. 2
and exemplified in Fig. 3.

The high frequency component of the mixed X-ray image
at each scale l is separated patch-by-patch by solving Problem
(6). Namely, the reconstructed high frequency component of
each patch at scale l is calculated as xul

1,l = Φc
l z
ul

1c,l+Φlv
ul

l and
xul

2,l = Φc
l z
ul

2c,l + Φlv
ul

l ; or alternatively, as xul

1,l = Φc
l z
ul

1c,l and
xul

2,l = Φc
l z
ul

2c,l. In this way, the DC information of the mixed
X-ray is progressively separated while ascending through the
scales. Note that the dictionary learning process can be applied
per scale, yielding a triple of coupled dictionaries (Ψc

l , Φ
c
l , Φl)

per scale l. In practice, due to lack of training data in the
higher scales, dictionaries are learned only from the low-scale
decompositions and then copied to the higher scales. The
separated X-ray images are finally reconstructed by following
the reverse operation: descending the pyramid, the separated
component at the coarser scale is up-sampled and added to the
separated component of the finer scales.

VII. EXPERIMENTS

A. Experiments with Synthetic Data

As in [33], [34], we first evaluate the performance of
our coupled dictionary learning algorithm—described in Sec-
tion IV—and our source separation with side information
method (see Section III) using synthetic data. Firstly, we
generate synthetic signals, x, y, according to model (3), (4),
using random dictionaries and then, given the data, we assess
whether the algorithm recovers the original dictionaries. The
random dictionaries Ψc, Φ, and Φc of size 40 × 60 contain
entries drawn from the standard normal distribution and their
columns are normalized to have unit `2-norm. Given the
dictionaries, t = 1500 sparse vectors Z and V were produced,
each with dimension γ = d = 60. The column-vectors zτ

and vτ , τ = 1, 2, . . . , t, comprised of respectively sz = 2
and sv = 3 non-zero coefficients distributed uniformly and
placed in random and independent locations. Combining the
dictionaries and the sparse vectors according to the model in
(7) yields the correlated data signals X and Y , to which white
Gaussian noise with a varying signal-to-noise ratio (SNR) has
been added.

To retrieve the initial dictionaries, we apply the proposed
method in Section IV with the dictionaries initialised ran-
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Table II
RECONSTRUCTION ERROR OF THE PROPOSED SOURCE SEPARATION WITH

SIDE INFORMATION METHOD BASED ON SYNTHETIC DATA.

SNR [dB] ∞ 40 35 30 25 20 15
x1 1.66 × 10−5 0.0094 0.0307 0.0734 0.1215 0.2125 0.5854
x2 1.43 × 10−5 0.0097 0.0222 0.0818 0.0857 0.2516 0.2781

(a) Visual (b) X-ray c©KIK-IRPA (c) Crack mask

(d) Visual (e) X-ray c©KIK-IRPA (f) Crack mask

Figure 4. Examples of images from single-sided panels of the Ghent
Altarpiece and the corresponding crack masks.

domly and the maximum number of iterations set to 100—
experimental evidence has shown that this value strikes a good
balance between complexity and dictionary identifiability. To
compare the retrieved dictionaries with the original ones, we
adhere to the approach in [34]: per generating dictionary, we
sweep through its columns and identify the closest column in
the retrieved dictionary. The distance between the two columns
is measured as 1 − |δT

i δ̃j |, where δi is the i-th column in the
original dictionary Ψc, Φc, or Φ, and δ̃j is the j-th column
in the corresponding recovered dictionary. Similar to [34], a
distance less than 0.01 signifies a success. The percentage
of successes per dictionary and for various SNR values is
reported in Table I. The results, which are averaged over 100
trials, show that for very noisy data (that is, SNR ≤ 15)
the dictionary identifiability performance is low. However, for
SNR values higher than 20 dB, the percentage of recovered
dictionary atoms is up to 96.78%. The obtained performance
is systematic for different dictionary and signal sizes as well
as for different sparsity levels.

In a second stage, given the learned dictionaries, we separate
signal pairs (x1, x2) from mixtures m = x1 + x2 by solving
Problem (6) using the corresponding pair (y1, y2) as side
information. The pairs are taken from the correlated data
signals X and Y , to which white Gaussian noise with a varying
SNR has been added. Table II reports the normalized mean-
squared error between the reconstructed—defined by x̃i—and
the original signals, that is, ‖xi−x̃i‖

2
2

‖xi‖2
2

, i = {1, 2}. The results

show that at low and moderate noise SNRs the reconstruction
error is very low. When the noise increases, the recovery
performance drops; this is to be expected as the noise affects
both the dictionary learning and the generation of the mixtures.

B. Experiments with Real Data

We consider eight image pairs—each consisting of an X-ray
scan and the corresponding photograph—taken from digital
acquisitions [12] of single-sided panels of the Ghent Altarpiece
(1432). Furthermore, we are given access to eight crack masks
(one per visual/X-ray image pair) that indicate the pixel
positions referring to cracks (these masks were obtained using
our method in [10]). Fig. 4 depicts two such pairs with the
crack masks, one visualizing a face and the other a piece of
fabric. An example X-ray mixture (of size 1024×1024 pixels)
together with its two registered visual images corresponding
to the two sides of the painting are depicted in Fig. 5.

Firstly, adhering to the single-scale approach, described in
Section VI-A, we train a dictionary triplet, (Ψc, Φc, Φ), using
our method in Section IV. We use t = 46400 patches, each
containing 8 × 8 pixels, the dictionaries, Ψc, Φc, Φ, have a
dimension of 64 × 256, and we set sz = 10 and sv = 8.
The separated X-rays that correspond to the mixture in Fig.
5 are depicted in the first column of Fig. 6. We observe that
our single-scale approach separates the texture of the X-rays;
this is demonstrated by the accurate separation of the cracks.
Still, however, the low-pass band content is not properly split
over the images; namely, part of the cloth and the face are
present in both separated images. Next, we apply the multi-
scale framework, where we use L = 4 scales with parameters√

nl = 8, l = {1, 2, 3, 4}, ε1 = 4, ε2 = 4, ε3 = 7, and
ε4 = 8. Dictionary triplets (Ψc

`, Φ
c
`, Φ`), each with dimension

of 64 × 256, are trained for the first three scales and the
dictionaries of the third scale are used for the forth. We use
t1 = 46400, t2 = 46400 and t3 = 35500 patches for scale
1, 2 and 3, respectively. The visualizations in the second
column of Fig. 6 show that, compared to the single scale
approach, the multi-scale method properly discriminates the
low-pass frequency content of the two images (most part of
the cloth is allocated to “Separated Side 1” while the face is
only visible in “Separated Side 2”), thereby leading to a higher
separation performance. Finally, we also construct dictionary
triplets according to our weighted dictionary learning method
in Section V. The remaining dictionary learning parameters
are as before. It is worth mentioning that, in order to obtain a
solution in (24), the number of training samples t needs to be
higher that the total dimension of the dictionary. Namely, to
update the columns of dictionary Ψc we need at least 16384
samples. Correspondingly, to update the rows of dictionary
Φ we need more than 32768 samples. The visual results in
the third column of Fig. 6 corroborate that the quality of
the separation is improved when the dictionaries are learned
from only non-crack pixels. Indeed, with this configuration, the
separated images are not only smoother but also the separation
is more prominent.

It is worth mentioning that the results of our method,
depicted in Fig. 6, are obtained without including the v compo-
nent during the reconstruction; namely, we reconstructed each
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(a) (b) (c) c©KIK-IRPA

(d) (e) (f) c©KIK-IRPA

Figure 5. Image set cropped from a double-sided panel of the altarpiece, on which we assess the proposed method; (a) and (d) photograph of side 1, (b)
and (e) photograph of side 2; (c) and (f) corresponding X-ray image. The resolution is 1024 × 1024 pixels.

X-ray patch as x1 = Φcz1c and x2 = Φcz2c. The visual results
of our method when including the v component during the
reconstruction are depicted in Fig. 7. These results are obtained
with the same dictionaries that yield the result in the third
column of Fig. 6. By comparing the two reconstructions, we
can make the following observations. First, the v component
successfully expresses the X-ray specific features, such as the
wood grain, visualized by the periodic vertical stripes in the
X-ray scan. The reconstruction of these stripes is much more
evident in Fig. 7. Secondly, in this case, the v component also
captures parts of the actual content that we wish to separate.
For example, we can discern a faint outline of the eye in
Fig. 7(a) as well as a fold of fabric appearing in Fig. 7(b).

We compare our best performing multi-scale approach
(namely, the one that omits cracks when learning dictionaries)
with the state-of-the-art MCA method [20], [28]. Two configu-
rations of the latter are considered. Based on prior work [30],
in one configuration we use fixed dictionaries, namely, the
discrete wavelet and curvelet transforms are applied on blocks
of 512 × 512 pixels. Inherently, the low-frequency content
cannot be split by MCA and it is equally divided between
both retrieved components. In the other configuration, we learn
dictionaries with K-SVD using the same training X-ray images

as in the previous experiment. One dictionary is trained on the
X-ray images depicting fabric and the other on the images of
faces. The K-SVD parameters are the same as the ones used
in our method. Furthermore, the same multi-scale strategy is
applied to the configuration of MCA with K-SVD learned
dictionaries. The results are depicted in Fig. 8 and Fig. 9.
Note that the third column in Fig. 8 and Fig. 9 are without
and with taking the v component into account, respectively. It
is clear that MCA with fixed dictionaries can only separate
based on morphological properties; for example, the wood
grain of the panel is captured entirely by curvelets and not
by the wavelets. It is, however, unsuitable to separate painted
content—it is evident that part of the cloth and face appear
in both separated components. Furthermore, MCA with K-
SVD dictionaries is also unable to separate the X-ray content.
Nevertheless, we do observe that most cracks are captured by
the face dictionary, as more cracks are present in that type of
content. Unlike both state-of-the-art configurations of MCA,
the proposed method separates the X-ray content accurately
(the cloth is always depicted on “Separated Side 1” while the
face is only visible in “Separated Side 2”), leading to better
visual performance. These results corroborate the benefit of
using side information by means of photographs to separate
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Figure 6. Visual evaluation of the different configurations of the proposed method in the separation of the X-ray image in Fig. 5(c); (first row) separated side
1, (second row) separated side 2. The configurations are: (first column) single-scale method (Section VI-A) with the coupled dictionary learning algorithm
described in Section IV, (second column) multi-scale method (Section VI-B) with the coupled dictionary learning method from Section IV, (third column)
multi-scale method (Section VI-B) with the weighted coupled dictionary learning method from Section V. The v component is not included in any of the
configurations of the proposed method.

mixtures of X-ray images.

C. Experiments on Simulated Mixtures

Due to the lack of proper ground truth data, we generate
simulated X-ray image mixtures in an attempt to assess our
method in an objective manner. To this end, we utilised the X-
ray images from single-sided panels, depicting content similar
to the mixture in Fig. 5(c) and (f). We generated mixtures
by summing these independent X-ray images3 and then we
assessed the separation performance of the proposed method
vis-à-vis MCA either with fixed or K-SVD trained dictionaries.
For this set of experiments, patches of size 256 × 256 pixels
were considered and the parameters of the different methods
were kept the same as in the previous section. Table III reports
the quality of the reconstructed X-ray components by means
of the peak-signal-to-noise-ratio (PSNR) and structural simi-
larity index metric (SSIM) [68]. It is clear that the proposed
method outperforms the alternative state-of-the-art methods
both in terms of PSNR and SSIM performance. Compared
to MCA with fixed dictionaries, the proposed method brings

3We divided the sum by two to bring the mixture to the same range as the
independent components.

an improvement in the quality of the separation by up to
1.26dB in PSNR and 0.0741 in SSIM for “Mixture 3”. The
maximum gains against MCA with K-SVD trained dictionaries
are 1.41dB and 0.0953 for “Mixture 3” again. While we
realize that PSNR and SSIM are not necessarily the right
image quality metrics in this scenario, they do demonstrate
objectively the improvements that our method brings over the
state of the art.

VIII. CONCLUSION

We have proposed a novel sparsity-based regularization
method for source separation guided by side information. Our
method learns dictionaries, coupling registered acquisitions
from diverse modalities, and comes both in a single- and
multi-scale framework. The proposed method is applied in the
separation of X-ray images of paintings on wooden panels
that are painted on both sides, using the photographs of each
side as side information. Experiments on real data, consisting
of digital acquisitions of the Ghent Altarpiece (1432), verify
that the use of side information can be highly beneficial in
this application. Furthermore, due to the high resolution of
the data relative to the restricted patch size, the multi-scale
version of the proposed algorithm improves the quality of
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Table III
OBJECTIVE QUALITY ASSESSMENT OF THE X-RAY SEPARATION PERFORMANCE OF DIFFERENT METHODS ON SIMULATED MIXTURES.

Mixture 1 Mixture 2 Mixture 3 Mixture 4 Mixture 5
Image PSNR [dB] SSIM PSNR [dB] SSIM PSNR [dB] SSIM PSNR [dB] SSIM PSNR [dB] SSIM

MCA fixed
X-ray 1 25.69 0.7941 30.87 0.9003 27.28 0.7915 27.99 0.7972 26.96 0.8473
X-ray 2 25.50 0.8134 30.73 0.8818 27.15 0.8198 27.86 0.8628 26.78 0.8068

MCA trained
X-ray 1 26.04 0.8245 31.07 0.8381 28.13 0.7703 27.56 0.7783 27.24 0.8258
X-ray 2 25.83 0.8485 31.15 0.8189 27.23 0.6966 27.41 0.8464 27.05 0.7927

Proposed
X-ray 1 26.21 0.8583 31.91 0.9072 28.54 0.8656 28.31 0.8266 27.34 0.8592
X-ray 2 26.00 0.8759 31.75 0.8892 28.36 0.8859 28.16 0.8921 27.14 0.8329

(a)

(b)

Figure 7. Visual evaluation of the proposed multi-scale method in the
separation of the X-ray image in Fig. 5(c); (a) separated side 1, (b) separated
side 2. The reconstructions include the X-ray specific v component.

the results significantly. We also observed experimentally that
omitting the high frequency crack pixels in the dictionary
learning process results in smoother and visually more pleasant
separation results. Finally, the superiority of our method,
compared to the state-of-the-art MCA technique [20], [21],
[35], was validated visually using real data and objectively
using simulated X-ray image mixtures.
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