JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Estimating Fog Parameters from a Sequence of
Stereo Images

Yining Ding, Jodo F. C. Mota, Andrew M. Wallace, and Sen Wang"

Abstract—We propose a method which, given a sequence of
stereo foggy images, estimates the parameters of a fog model
and updates them dynamically. In contrast with previous ap-
proaches, which estimate the parameters sequentially and thus
are prone to error propagation, our algorithm estimates all
the parameters simultaneously by solving a novel optimisation
problem. By assuming that fog is only locally homogeneous, our
method effectively handles real-world fog, which is often globally
inhomogeneous. The proposed algorithm can be easily used as an
add-on module in existing visual Simultaneous Localisation and
Mapping (SLAM) or odometry systems in the presence of fog. In
order to assess our method, we also created a new dataset, the
Stereo Driving In Real Fog (SDIRF), consisting of high-quality,
consecutive stereo frames of real, foggy road scenes under a
variety of visibility conditions, totalling over 40 minutes and
34k frames. As a first-of-its-kind, SDIRF contains the camera’s
photometric parameters calibrated in a lab environment, which
is a prerequisite for correctly applying the atmospheric scattering
model to foggy images. The dataset also includes the counterpart
clear data of the same routes recorded in overcast weather,
which is useful for companion work in image defogging and
depth reconstruction. We conducted extensive experiments using
both synthetic foggy data and real foggy sequences from SDIRF
to demonstrate the superiority of the proposed algorithm over
prior methods. Our method not only produces the most accurate
estimates on synthetic data, but also adapts better to real fog. We
make our code and SDIRF publicly availableﬂ to the community
with the aim of advancing the research on visual perception in
fog.

Index Terms—Fog parameter estimation, atmospheric scat-
tering model, foggy dataset, photometric calibration, vehicular
perception, image defogging, depth reconstruction.

I. INTRODUCTION

OG is formed when small water droplets are suspended

in the air. They interact with light, for example via scat-
tering, causing severe visual degradation, which in turn poses
significant challenges to visual perception. Foggy scenarios,
despite their low probability of occurrence, are thus important
edge cases that cannot be ignored for extremely safety-oriented
systems such as autonomous vehicles. The amount of visual
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Environmental illumination

Atmospheric particles

Fig. 1. The atmospheric scattering model. (a) Airlight: The atmospheric
particles act as a light source by reflecting environmental illumination towards
the camera, causing the radiance of the airlight L, (x) to increase with
distance. (b) Direct transmission: The atmospheric particles also scatter away
the incident light that traverses from a scene point to the camera, causing the
radiance of direct transmission Lg; (X) to attenuate with distance.

degradation depends on the depth of the corresponding scene
point, as explained by the atmospheric scattering model.

Atmospheric scattering model. Fig. |1 illustrates the at-
mospheric scattering model [[1]], which decomposes the total
radiance originating on a scene point and reaching the camera
under foggy conditions into direct transmission and airlight.
The quantity of light transmitted via direct transmission (resp.
airlight) decreases (resp. increases) with the distance from the
scene point to the camera. Formally, let x € Zi denote the
pixel coordinates (in the image plane of the camera) associated
with the scene point. Then, the total radiance L (x) € Ry
reaching that point can be decomposed as

L(x) = La (x) 4 Ly (x) = Le (x) £ (x) + Loo (1 — £ (x)) ,

1
where Lg (x) € Ry is the direct transmission, L, (x) € Ry
is the airlight, L. (x) € R is the fog-free radiance of the
scene point, Lo, € R, is the radiance of the atmospheric
light, i.e., the airlight at infinite distance, and ¢ (x) € (0,1) is
the transmission coefficient, which controls the combination
between L. (x) and L, as a function of the distance d (x) €
R, ; between the scene point and the camera:

t(x) = exp (—Bd (x)). )

The parameter 5 € R, is the scattering coefficient and
measures the density of fog, being related to visibility Vyor €
R, 4 (also known as the meteorological optical range [2]) as

Wmor = —1n (0.05) /3, 3)

where we assume that Vjor is measured in meters.

For simplicity, in the rest of this paper we will omit x from
any variables, e.g., in and , whenever their dependence
on the pixel coordinates is clear from context.
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Note that we limit the scope of this work to daytime fog,
mist or haze. In other inclement weather conditions, such as
rain and snow, where the particles present in the atmosphere
typically demonstrate significant spatial and temporal inhomo-
geneity, the above atmospheric model no longer applies [1].

Fog parameters. The fog parameters are L, and 3, and
their knowledge is key both to defog the input images and
to construct an accurate depth map of the scene. Estimating
the fog parameters accurately is thus crucial for improving the
safety of autonomous vehicles and mobile robots operating in
challenging weather. Specifically, estimating L., is an impor-
tant step in most non-deep learning-based image defogging
methods such as [3]], [4]. S is also an essential parameter
because, as @) suggests, it determines the relation between the
transmission coefficient ¢ and the distance d (from which the
scene depth can be calculated given the pixel coordinates x and
the camera’s intrinsic parameters). Consequently, an accurate
estimate of (3 is a prerequisite for simultaneous defogging and
stereo reconstruction methods [S]—[7]].

Prior work on single image defogging [[1], [3], (4], [8],
[9] typically assumes that 3 is constant (i.e., a homogeneous
medium) over horizontal paths. In our work, leveraging a
sequence of images, we adapt this assumption to local ho-
mogeneity. That is, we assume that the fog is homogeneous
only within a local space, corresponding to the local map
constructed in the first step of our method (Section [I-A).
Experimental results show that our method effectively handles
real-world fog, even when the fog is inhomogeneous over
larger areas, thus validating our assumption.

Intensity vs radiance in fog parameter estimation. Al-
though (T) was derived to study the scattering phenomenon
in the field of photometry/radiometry, almost all existing
literature on fog parameter estimation or defogging applies
it directly to pixel intensity values. Hence, (I)) is rewritten as

I=Jt+A(1—t), (4)

where I € [0,255] is the observed intensity of the scene
point, J € [0, 255] is the fog-free intensity of the scene point,
and A € [0,255] is the intensity of the atmospheric light.
These quantities are counterparts of L, L. and L, in (I). (I)
and (@) can be applied to either a grayscale image or each
colour channel in an RGB image independently [8]]. However,
using (4) rather than (1)) implicitly neglects any non-linearities
incurred in the mapping from scene radiance to pixel intensity
saved in a compressed image format such as JPEG or PNG.
There can exist many sources of non-linearities in an image
sensing pipeline, the most prominent one being the gamma
correction [10]. Nevertheless, to the best of our knowledge,
no existing fog parameter estimation method takes gamma
correction into account, and no existing foggy dataset for
autonomous driving provides the photometric parameters of
the camera. We will demonstrate that estimating 3 based on
rather than results in a different optimisation problem
(Section and introduces a bias (Section [V-F2).
Problem statement. Given a sequence of stereo images
taken by a vehicle driving in fog, our goal is to estimate the
parameters (3, L., and relevant L.s of the atmospheric scat-
tering model in (I) and (2), and to update them dynamically.

Our approach and contributions. We seek to find a
set of distance-radiance curves, defined by and and
characterised by the above parameters, that most closely
fits the observed data, which is generated from a local 3D
feature map built by a visual Simultaneous Localisation and
Mapping (SLAM) or odometry system (e.g., [11]]). As the ego-
vehicle moves in an environment, the local map [Fig. 2[a)] is
updated, and so are the observations [Fig. 2[b)], our regression
problem [Fig. Z[c)], and our parameter estimation results. As
no existing real foggy dataset meets our needs, we collected
our own dataset and are releasing it to the public.

We summarise our contributions as follows.

e We propose an optimisation-based method which esti-
mates all the fog parameters simultaneously. Compared
to prior approaches, all of which adopt a sequential esti-
mation strategy, our method is less sensitive to error prop-
agation. The proposed method is purely model-based,
with its estimated fog parameters constrained via physical
principles. Our only assumption is local homogeneity of
the fog, a constraint which real fog in general satisfies.

« We demonstrate through comprehensive experimental re-
sults that our method a) outperforms competitive methods
both quantitatively and qualitatively on simulated data; b)
achieves the best performance (qualitatively) on real data.
Specifically, it distinguishes thin from thick fog better
than prior methods and is able to respond adaptively to
spatially variant fog. Also, its estimate of atmospheric
light is closer to the colour of the horizon.

e We publish the Stereo Driving In Real Fog (SDIRF)
dataset, the first foggy dataset comprising consecutive
stereo images of real road scenes under various visibility
conditions. Our dataset also includes the counterpart clear
images of the same routes recorded in overcast weather.
Additionally, we calibrate the camera’s photometric pa-
rameters to make SDIRF photometrically ready for the
deployment of the atmospheric scattering model.

This paper is an extension of our previous work [12], in
which only synthetic data was used to evaluate the proposed
fog parameter estimation method. Here, we refine our method
by making its initialisation fully automatic, release the new,
real SDIRF dataset, and add extensive evaluations on it.

Organisation. In the next section, we review literature on
fog parameter estimation and discuss existing datasets that
are publicly available in the field of autonomous driving. In
Section we explain in detail the proposed fog parameter
estimation methodology. In Section we introduce our
self-collected SDIRF dataset and describe how we carried
out the camera’s photometric calibration. In Section [V] we
conduct extensive experiments to evaluate our fog parameter
estimation method and compare it with its competitors using
both synthetic and real data. We conclude in Section

II. RELATED WORK
A. Fog Parameter Estimation

Almost all existing methods operate at pixel intensity level,
i.e., (), without knowledge of the photometric parameters,
that is, they estimate A rather than L, or 3. Early approaches
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estimate A from multiple images of the same scene acquired
under different conditions, such as visibility [[13] or manually
changed polarisation [[14]. Such methods are thus inapplicable
in autonomous vehicle or mobile robot scenarios. In addition,
some methods rely on very strong assumptions, such as the
presence of a sky region in the image. In the rest of this
section, we focus on existing work that processes a single
image, a stereo pair of images or a sequence of images
acquired by an onboard camera.

Estimation of A. This is a critical step in non-deep
learning-based single image defogging methods. To this end,
[9] obtains A from the pixels that have the highest intensity in
the input image, whereas [3|] relies on the dark channel prior
to locate the most haze-opaque region in the image and then
computes A from these pixel intensities. In turn, [15] estimates
A as the brightest pixel value among all local minima, and
[4] locates A in RGB space by leveraging the observation that
fog transforms the distribution of pixel intensities from tight
clusters to stretched lines (dubbed “haze-lines”). Given the
limited amount of information embedded in a single image,
some of these approaches have demonstrated their general
effectiveness in estimating A and therefore are adopted by
later conventional methods such as [[16], and some pioneering
deep learning-based methods such as [17]. Even some video
defogging methods such as [|6] directly follow [3]’s approach
in estimating A, due to its robustness and simplicity. Similarly,
[18]] applies firstly [15]]’s method to compute an A value from
the current frame. To impose temporal consistency, they then
refine their estimate of A by calculating a weighted average
of this A value and the A estimate from the previous frame.

Estimation of 3. Whenever the value of ¢ can be inferred
directly from I [cf. @)], most defogging methods (e.g., [3l,
[4]) bypass the estimation of the parameter S in (2)). This topic
can be categorised into perceptual estimation and quantitative
estimation. Methods including [[19]-[21]] achieve referenceless
prediction of perceptual fog density from a single image.
Although their predicted perceptual fog density indices may
correlate well with human judgements, the authors make no
attempt to show how these perceptual indices can be mapped
to a numerical value of 5. To the best of our knowledge,
the quantitative estimation of 3 is hardly addressed in the
existing literature. As (2) implies, 3 is the key linkage between
the problem of defogging and the problem of scene depth
estimation, and consequently an accurate estimate of its value
plays a crucial part in various existing simultaneous defogging
and stereo reconstruction methods [S]-[7]. In general, estimat-
ing [ entails observing the same object (more precisely, the
same J) at a range of known distances, which makes this task
extremely challenging at best and not always possible when
only a single image or even only a stereo pair of images
is available. As a special case, [22] estimates § from just
a single image but requires the image to contain both the
sky and the road, the latter assumed homogeneous and flat
(so that a known depth can be associated with each image
row from the road after calibration). These are indeed very
strong and application-specific constraints, making the method
inapplicable to general scenes. In contrast, [6]] uses a sequence
of images and performs structure-from-motion to facilitate

observations of the same object at a range of known distances.
After A is estimated following [3]], they use each pair of
observations, whose inverse depth difference is large enough,
to estimate (8 by inverting the atmospheric scattering model.
Then all the estimates are gathered, from which they build a
histogram of 8 and choose the value from the highest bin.

To summarise, estimating the fog parameters from a se-
quence of images [6], [18] is more robust compared to using
a single image or a stereo pair of images [3], [4], [9], [15],
[22]], because more information is available and there are fewer
assumptions or constraints to be made. Nevertheless, existing
methods still have a few shortcomings. [18]] estimates A only
and introduces a weighted average scheme to enforce its tem-
poral consistency. However, as a key factor in controlling such
consistency, the weight itself becomes a learnable parameter
and requires fine-tuning for overall optimal performance in
different scenarios. As will be shown in Section[V] the strategy
for estimating A and 3 proposed in [6] has severe drawbacks.
Firstly, A is still estimated from a single image (i.e., the current
frame), and thus possibly temporally inconsistent. Secondly,
estimating [ requires a previous estimate of A; any error in
the latter estimate thus propagates to 3. See our supplementary
material for a theoretical qualitative analysis of the error
propagation.

Distinct from the existing methods that estimate the fog
parameters sequentially, we propose an optimisation-based
method that simultaneously estimates them. It assumes only
local homogeneity of the fog, which is very realistic.

B. Foggy Datasets for Autonomous Driving

Publicly available datasets have vastly aided the research
and development of perception algorithms for autonomous
vehicles. The overwhelming majority of them [23]]-[29], how-
ever, do not contain any foggy scene, the presence of which
can pose significant challenges to a driver-assistance system.

Real fog. Real fog happens rarely. Only a few existing
datasets include real foggy scenes and they are listed below.
DrivingStereo [30]] contains four stereo sequences that are
labelled “foggy”. Nevertheless, in all of them the visibility is
still relatively good. BDD100K [31]] uses a monocular camera,
from which the depth of the scene can be recovered only up
to a scale using the pinhole camera model. SeeingThroughFog
[32] features a number of stereo foggy sequences. However,
the consecutive frames of only its left camera are published.
RADIATE [33]] pays particular attention to radar imaging in
adverse weather. It has four stereo foggy sequences, only
one of which was recorded while the ego-vehicle was on the
move. Unfortunately, in that sequence there is consistently a
considerable amount of water residual on the camera casing,
which significantly blocks the view.

Synthesised fog. Synthesised fog has been widely used with
the aim of enriching foggy data, typically in the following
three ways. a) Real scenes with artificial fog: [34], [35]
deploy a fog machine to generate artificial fog in a controlled
environment. Although images are recorded in a wide range of
visibility conditions, they only include very few preset scenes.
More importantly, the scenes remain static, which dramatically
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Fig. 2.

Overview of our three-step method. (a) An example of a local map represented as a bipartite graph consisting of four frames, five landmarks

and 17 edges which describe their observation relations (Section [[II-A). (b) The corresponding distance-radiance pairs (Section [[II-B) and their scatter plot.

The distance-radiance pairs of the same landmark share the same colour. Th

e dashed curves are generated by (I2) using ground truth values. There is no

distance-radiance pair associated with Ky or K5 because they appear in a very small number of frames (< 4). (¢) The corresponding optimisation problem

(Section [III-C)) depicted by a hypergraph. Note these figures are illustrative.

In reality, the local map typically contains many more landmarks, with each

landmark being observed in many more frames. The graph is thus much larger in practice.

limits their use. b) Real scenes with simulated fog: To this end,
dense ground truth depth must be obtained first before adding
fog to clear images according to (@). Most work adopting this
approach considers indoor scenes rather than outdoor ones
because dense depth measurements are less difficult to acquire
[36], [37]]. Indoor scenes, however, usually have a very limited
depth range and therefore are, in general, not representative
of outdoor ones. In contrast, [38], [39] add simulated fog to
outdoor scenes. The authors rely on either monocular depth
estimation [40] or stereoscopic inpainting [41] to generate
dense pseudo-ground truth depth maps. However, such a
process can introduce undesirable artefacts in the synthesised
foggy images due to erroneous depth data. ¢) Simulated scenes
with simulated fog: In order to prepare training data (or at
least part of it to be used for pre-training) for data-hungry deep
neural networks, some researchers [42], [43] add simulated fog
to simulated scenes for which dense ground truth depth data is
available. However, in no way can such completely simulated
data replace real recordings for real-world, extremely safety-
oriented applications.

To summarise, no existing dataset focuses specifically on
real road scenes recorded by a vehicle driving in fog com-
prising high-resolution, consecutive left and right images. To
address the above concerns, we present SDIRF. Our dataset
has the following two additional features.

o We calibrated the camera’s photometric parameters to
make SDIRF photometrically ready for the deployment
of the atmospheric scattering model.

¢ We also collected the counterpart clear images in overcast
weather of the same routes. Such data can be useful for
quantitative evaluation of downstream depth estimation

and image defogging tasks.

III. METHODOLOGY

In a nutshell, given a sequence of stereo foggy images, our
method simultaneously estimates the parameters (3, L., and
relevant Lcs of the atmospheric scattering model in (T) and
(2), and dynamically updates them as new images become
available. Fig. [2] depicts from left to right the three steps of
our method: the representation of a local map (Section [lII-A)),
the generation of distance-radiance pairs (Section [[II-B), and
the parameter estimation via optimisation (Section [[lI-C).

A. Representation of a Local Map

We first use the sequence of stereo images to build a local
3D feature map of the scene using a visual SLAM/odometry
system such as [[11]]. We build a local map, rather than a global
one, for two reasons: a) a local map entails a locally homoge-
neous fog model, as opposed to a globally homogeneous one;
b) the dimensions of the resulting optimisation problem are
smaller and thus can be solved more efficiently.

A local map is a collection of observations describing which
local frames observe which local landmarks. It is represented
as a bipartite graph G [Fig. 2fa) shows an example]:

G = (F,K,E), (5)

where F denotes a set of left image frames, K denotes a set of
3D landmarks, and E denotes a set of edges each connecting
a frame in F to a landmark in K. More specifically, an edge
(m,n) € E exists between the mth frame F,,, € F and the nth
landmark K,, € K only if F,,, observes K,,.
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Let E,, C E denote the set of edges incident to K,,. |E,| is
therefore the number of frames that observe K,,, and E can be
partitioned as

K|

E=JEn. (6)
n=1

B. Generation of Distance-Radiance Pairs

Using the local map built in the previous step, we now
generate observations that will serve as data in the subsequent
optimisation step. More specifically, these observations are
distance-radiance pairs [Fig. b)]. We use DL,, to denote the
set of distance-radiance pairs associated with landmark K,,:

DL, = {(d}, L") -

n

(m,n) € E,}, @)

where d' denotes the Euclidean distance between K, and
F,., and L7 denotes the radiance of K,, observed in F,,,. The
distance d;' can be calculated from the output of a sparse
feature-based visual SLAM/odometry system, which typically
consists of camera poses and landmark positions. I;*, which
denotes the pixel intensity of landmark K,,’s corresponding 2D
feature point in frame F,,, is also typically available. Next, we
will explain how we derive L from I".

Gamma expansion/compression. We use g : [0,255] — R
to denote the mapping from pixel intensity [ to radiance L. g
is essentially a gamma expansion [[10], the inverse operation
of a digital camera’s image signal processor (ISP):

g(I):—al”+¢, (8)

where o > 0, v > 1 (hence the name “gamma expansion”)
and ¢ € R are the photometric parameters that characterise
g. Inversely, we use g~ : R — [0,255] to map radiance to

intensity:
Lo¢\?
g (L) :—< C) : ©)

[e%

Calibrating the camera entails discovering the photometric
parameters «, v and (. See Section for the details of
our calibration procedure.

We use DL to denote the overall set of distance-radiance
pairs, which can be expressed as the union of some (disjoint)

sets in ((7):
L= [

n: ‘En‘ng

DL,,, (10)

where &g € Z, 1 is a threshold that ensures that a landmark
is considered only if it is observed in at least &g frames. As a
result, the number of disjoint DL,,s that form DL is typically
smaller than |K]|.

Finally, in order to make the estimation of the fog param-
eters reliable, we require DL to consist of at least {k € Z +
disjoint DL,,s:

{n : |Eal = &r} = &k

This condition is a prerequisite for the next step, estimating
the fog parameters via optimisation.

(1)

C. Parameter Estimation via Optimisation

This step estimates the fog parameters 3 and L., together
with the clear radiance L. of the relevant landmarks, by
minimising a cost function that uses the observations DL
generated in the previous step. The problem of interest can
be represented as a hypergraph, in which vertices represent
variables to optimise, and edges represent observation errors
[44]. An edge connects two vertices that contribute to the
underlying observation error. In such a hypergraph [Fig. [c)
shows an example], there are two types of vertices.

e Vg . encodes the fog parameters § and L.,. When
the fog is locally homogeneous, 5 and L., are invariant
within a local space and, in that case, there is only one
such vertex.

e V. encodes the clear radiance L., of the nth landmark
K.,,. The number of occurrences of such vertex is the same
as the number of disjoint subsets in DL (I0).

According to the atmospheric scattering model in (I) and
(@), we can compute the predicted radiance value of the nth
landmark K,, observed in the mth frame F,,, from the distance
d between K, and F,,, the scattering coefficient g, the
atmospheric light radiance L., and K,,’s clear radiance L.,,:

prealyy’ = Lep, exp (=Bd)}') + Loo (1 — exp (=Bd}}"))
= (L¢y, — Loo) exp (—5d)?) + Loo.
We define an error term €;' € R to be the difference between
the observed radiance L] and the corresponding estimated
radiance preq L)'
= L = el

=L - [(LCn — Loo)exp (—pd) + Loo} .

We can see that each €)' depends on 3, Lo, and L, and is

therefore associated with an edge between Vg and V.
in the hypergraph. We define

En=A{e) : (m,n) €E,}

as the set of radiance errors associated with K,,. Also, £
will represent the overall set of radiance errors, which can
be expressed as the union of some (disjoint) sets in (14):

= | &

n: ISnIZgF

12)

13)

(14)

15)

We define each residual term to be a loss function, e.g., Huber
loss or square loss, £ : R — R, of €]”". The total cost function
is a weighted sum of all residual terms. Our goal is to solve:

Bny};%iI:l};ics} Zn E,CE Zm remely wz’bg (dzn) (16)
subject to lg <B < ug
lp, < Loo <ur,,
lLCn S LC'n, S uLcn 9
where {Lc,, : &, C &} are the radiances of the relevant

landmarks, w]* € Ry is the weight associated with €*, and
Is and us are the lower and upper bounds of the parameters,
respectively. In the following, we first analyse (I6) and then
describe our initialisation scheme. We also explain how we
set each [ and u, our two-stage strategy for solving (16}, and
finally how we set each weight w)".
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1) Analysis of (16): We show that a) (I6) is non-convex;
b) when the gamma correction in is non-linear, i.e., v # 1,
solving using €)' computed in the radiance domain or in
the intensity domain yields problems that are not equivalent.

Non-convexity. Consider an arbitrary error term €' and,
without loss of generality, the square loss. Then, each un-
weighted term in the objective of can be written as

7 (8. Lo L) = (L = [(Len — Loc) exp (~B7) + L] )

17
A function is convex if and only if it is convex when restricted
to any line intersecting its domain [45] §3.1.1]. Consider then
(I7) restricted to the line 8 = Lo, = v, L¢,, = 0, for v > 0:

o) :=f(vv0) = (b—l—yexp(—ay) —V)2,

where a,b > 0 are constants. The 2nd-order derivative of ¢
with respect to v is

¢" (v) =2 [exp(—av) (1 —av) — 1}2 +2[b
+ vexp (—av) — v]aexp (—av) (v —2) .

Setting, for example, a = b = 1, one obtains ¢ (0.2) =
—2.6 < 0, where the function is concave, and ¢” (1) =
1.73 > 0, where the function is convex. Thus, f is neither
concave nor convex. In other words, it is non-convex. See our
supplementary material for a visual example of non-convexity.

Impact of gamma correction. As above, consider an
arbitrary error term €' and a square loss. When we use
radiance, the corresponding unweighted term in (T6) is given
by (I7). Suppose now that we apply no gamma correction. In
this case, we directly use intensity and apply (@), making the
corresponding term in (T6))

2
fiiBins A J) = (I = [(J = A)exp (~Bndi?) + A])

(18)
where Jj, denotes the scattering coefficient when we use
intensity. Substituting 1™ with g=! (L™) defined in (@),
becomes

KL? - C)i [ — A) exp (—find™) + A] ]2' (19)

«

When v =1 (i.e., g is affine), (I9) can be written as
a2 [Lﬁ — [ ((aJn +()— (aA+ ()) exp (—Bimd))")

+ (aA+c)H2. (20)

Comparing and (20), we observe that the two minimi-
sation problems are related by a positive scaling and the
following one-to-one mappings for the variables: 5 < iy,
Le, <+ aJ, + ¢ and Lo, < oA+ (. Thus, when v = 1,
and (T8) yield equivalent problems [45] §4.1.3].

In the typical case where v # 1, the gamma correction alters
the structure of the model such that the above equivalence no
longer holds. To see this, let h(v) := [(L™ — ¢)/a]'/" and

¢:= (L™ — {)/a. A Taylor expansion of h () around v = 1
yields

RO+ (1) (= 1)+ 54 (1) (= 12

:C_(IHC)C(’V—1)—|—%(1nc)(2—|—lnc)c(fy—1)2_|_...'
2D

We can see that if any of the lst-order and the subsequent
higher-order terms in (ZI)) is non-zero, then and (I8) no
longer yield equivalent problems. In Section we will
show this experimentally and investigate how the estimate of
[ is affected by this non-linearity.

2) Initialisation: We will solve with an iterative algo-
rithm, e.g., Levenberg—Marquardt. However, since is non-
convex, it is critical to initialise 3, Lo, and {Lc,, : &, C £}
properly. Our initialisation strategy is as follows. Assuming the
fog to be locally homogeneous, if we have access to previous
estimates B, ﬁoo and {I:Cn : &, C &}, obtained from the
last run of our fog estimation process, we use these values
as initialisation. Otherwise (i.e., if the fog estimation process
has never run before, or if L., has never been estimated
before), we set 5 = 0.014, which is the geometric mean
of its lower and upper bounds (Section [II-C3). For L,
we use the radiance of all landmarks observed from the
maximal distance. And for L,,, we use the radiance of the
corresponding landmark observed from the minimal distance.

3) Parameter Bounds: We set lg = 0.001 and ug = 0.2,
which, according to (3)), corresponds to a visibility range of
[15,3000] meters, values that are conservative.

Next, we set the bounds for each L.,,, and build a candidate
set for [ __ at the same time, as explained below. For each
L,,, we first determine if it is lower or higher than L., by
computing the slope k., of the line going through the intensities
observed at the maximal and the minimal distances:

b = (gl (L) =97 (Ld)> / (s — i) (22)

which will then be compared to a threshold n € Ry . If k&, >
n (i.e., strongly positive), we set Iz, = ¢(0) and ur,, =
chll"“", and we add ch;“ax to the candidate set for l;__. If
kn, < —n (ie., strongly negative), we set Iy = ch;“i“ and
ur,, = g(255). If neither, we set I, = ¢(0) and u,, =
g (255). See our supplementary material for more details.

Finally, we let [;,__ be the median value of its candidate set,
and ur_ = g (255). We noticed if we set uy__ in a similar
way to [y (i.e., let uy_ be the median value of its candidate
which consists of Lci"‘“ when k,, < —n), its value is often
underestimated. We think this is caused by the fact that objects
that are brighter than L., are rare in a foggy scene.

4) Two-stage Optimisation: We adopt a two-stage optimi-
sation strategy following [[11]]. In the first stage, we let £ be the
Huber loss (with parameter §) in order to mitigate the effect of
outlier observations. In the second stage, we let ¢ be the square
loss and perform optimisation using inlier observations only.
After the first stage, our system keeps track of the number of
times each relevant observation, i.e., each relevant edge in the
bipartite graph of Fig. 2fa), is classified as an inlier, which is
done by evaluating each residual term and comparing it with
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0. That number, ¢]' € Z, for landmark K,, observed in frame
F,,, will be used to set the weight w;" in (16), as explained
below.

5) Residual Weights: The partial derivatives of are

Oe
n — m Lc _ LOO _ m s 2
aezn _ my _
oL exp (—Bd") — 1, (23b)
eyt "
oL.. exp (—Bd). (23¢)

We argue that the larger the radiance difference between a
landmark’s L. and L., the more suitable that landmark is for
estimating . As can be seen from (23a), the partial derivative
of € with respect to 3 is proportional to (Lc,, — Lo ). This
suggests that when L, is close to L, this term diminishes,
causing difficulties in finding the optimal /. Intuitively, when
L., is close to L, the range of the predicted radiance preq L7’
flattens out according to (TI2) and therefore €' contains very
little information on the inference of 3.

In light of this, we heuristically set the weight in our first
optimisation stage to be the product of the following two
terms: the absolute difference between the previous estimates
ﬁm and Lo, and the current inlier count of the corresponding
observation plus one:

W = |Ley — Lioo| - (¢ +1). (24)

It can be seen that the first term is landmark-dependent, while
the second term is observation-dependent.

Our weighting scheme in the first stage is apparently related
to iteratively reweighted minimisation strategies proposed in
the sparse regression literature, for example [46], [47]], which
comes with theoretical guarantees for convergence even for
some non-convex problems. Such a strategy, however, involves
solving a sequence of optimisation problems, making it com-
putationally expensive. We therefore opt to solve just one
instance of (I6) at a given frame. Specifically, each weight
w,, which is computed from estimates from a previous frame,
remains constant while solving for the current frame.

In our second optimisation stage where only inlier observa-
tions are used, we use uniform weighting.

Results of our ablation study (Section show that
our weighting scheme performs better than naively uniformly
weighting all residual terms in both optimisation stages.

IV. SDIRF DATASET

In this section, we introduce the data collection and the
photometric calibration of SDIRF. More details can be found
in our supplementary material.

A. On-road Data Collection

We collected the on-road data during September 2023 in
Rosyth, Queensferry and Penicuik near Edinburgh, Scotland.
Foggy data was collected first, and the counterpart clear data in
overcast weather was collected two weeks later by traversing
the same routes.

We used an off-the-shelf stereo camera ZED 2i which
features an electronic synchronised rolling shutter and a built-
in inertial measurement unit (IMU). It was placed behind
the windshield of a car and connected to a laptop installed
with the ZED software development kit (SDK) and the ZED
Robot Operating System (ROS) wrapper. Considering the
way the windshield inclines and that the mounting holes are
located at the bottom of the camera but not at its top, it was
mounted upside down for convenience and safety reasons (see
our supplementary material for a picture of the setup). We
accordingly set the “camera_flip” parameter to “true” to allow
the SDK to account for this upside-down setup to generate the
correct stereo images. The left frames of these images, whose
poses are estimated by a SLAM algorithm in our method and
to which the 3D positions of all landmarks are referenced,
were actually acquired by the right camera because of this
upside-down setup. Therefore, our photometric calibration was
later performed on the right camera (Section [[V-B).

We disabled the camera’s auto-white balance and auto-
exposure functionalities. Instead, we used a fixed white bal-
ance, and manually adjusted the exposure time, in conjunction
with the gain, according to the lighting condition of the scene.
We took note of the combination of exposure time and gain
used to collect each data sequence. Later we performed a
photometric calibration for each combination of these two
parameters (Section [[V-B).

During the collection, the data, together with the times-
tamps, was logged to ROS bags, which were later parsed to
generate the following files.

. Rectiﬁe left and right images at a frame rate of 15 Hz
saved as PNG files, each at a resolution of 1920 x 58

o IMU data at a rate of 400 Hz saved as CSV files.

o Magnetometer data at a rate of 50 Hz saved as CSV files.

In total, 52 data episodes were collected. Apart from just one
episode that contains only a foggy sequence, the remaining 51
episodes comprise a foggy sequence and a counterpart clear
sequence of the same route. The total duration of the foggy
and the clear videos are 2578 seconds and 2443 seconds,
respectively. Further, by visually examining the images, we
subjectively classify the 52 foggy sequences into thin fog (20
sequences totalling 1101 seconds) and thick fog (32 sequences
totalling 1477 seconds). See Fig. [3] for sample images.

B. Photometric Calibration

As (T) shows, the atmospheric scattering model operates in
the radiance domain. However, the ZED 2i camera features
an onboard ISP and can only save the digitally post-processed
intensity data, but not the raw radiance data. Therefore, for
the on-road data that we recorded, we have to infer the

>The stereo rectification was performed by the camera’s SDK using its
factory calibrated stereo parameters.

3The original image size was 1920 x 1080. The images were later cropped
by 290 pixels at the top (to remove the mostly-sky region) and by 210 pixels
at the bottom (to remove the car’s bonnet and interior reflections caused by
the windshield). The final image size after cropping has an aspect ratio of
1920/580 = 3.31, which is very close to the aspect ratio (1241/376 ~ 3.30)
of the images in the KITTI odometry benchmark [23]. See our supplementary
material for an example image that illustrates the effect of our cropping.
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(@) (b)

Thick fog

(©) (d)

Fig. 3. Sample images of SDIRF. We show eight foggy-clear image pairs, which are grouped into four columns. Each column contains a thin fog situation
(first row) and a thick fog situation (third row). The second and fourth rows show the corresponding clear images taken in overcast weather.
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Fig. 4. Our photometric calibration setup.

radiance values from the intensity values. This process requires
the photometric parameters of the camera to be known, and
we achieve this by performing a photometric calibration in
a controlled laboratory where the radiance values can be
measured by an optical power meter. Our calibration process
focuses on recovering the parameters of gamma correction,
which introduces the largest amount of non-linearity in the
mapping between radiance and intensity [10]. We will explain
our calibration setup, the experiments we conducted, and how
we infer the photometric parameters from the experimental
data.

1) Setup: Our calibration setup is shown in Fig. ] The
only light source was an LED light bar with 20 different,
adjustable levels of brightness. It emitted diffused light against
a big white sheet (in matte finish), which was used as the
target. The light bar was affixed to a height-adjustable platform
mounted onto the base bench using screws. The camera was
mounted the right way up onto a platform which, in turn,
was attached to the base bench via three kinematic mounts.
Using kinematic mounts ensured that the camera’s position
relevant to the base bench remained the same every time it
was removed then reattached. When attached, its image plane
was roughly aligned to the sheet and the principal axis of the
right camera intersected the centre of the sheet. To measure
the optical power perceived by the camera, we used an optical
power meter paired with an optical power detector. A lens
mount (with no lens mounted) was affixed to the base bench
and placed just in front of the right camera’s position for
attaching the detector head.

2) Experiments: We calibrated the photometric parameters
for each combination of exposure time and gain that had
been used when collecting the on-road data. The rest of the
camera settings were configured identically to the ones used in
our data collection. To avoid image saturation, the target was
placed further away from the test bench when we used longer
exposure time. During calibration, we alternated between the
following two modes.

« Photo mode [Figs.[(a) and @{b)]. In this mode, the detec-
tor head is removed from the lens mount, the camera’s
platform is attached to the base bench, and we let the
camera take a stereo pair of photos of the target. In
particular, the right camera images the target through the
hole of the lens mount.

« Power measurement mode [Fig. F_fkc)]. In this mode, the
camera’s platform is removed from the base bench, the
detector head is attached to the lens mount, and we record
the measured optical power reading from the power meter
screen.

Fixing the exposure time and gain to a given combination,
Fig. 5] shows the images of the right frame taken at the 20
different levels of brightness.

3) Photometric Parameter Characterisation: For each
colour channel of each image, we need to associate an intensity
value with each optical power measured. We compute the
intensity by averaging the pixel values of a circular area with
a radius of 500 pixels (see the magenta outline in the very last
image of Fig. [5) within the target region in an image. Given the
intensity values and the corresponding optical power readings,
we use least squares fitting to estimate «, + and ¢ in (§).

Fig. [] plots the data points obtained from the image series
in Fig. 5] and the fitted curves. We can see that all curves bend
upwards (i.e., v > 1), which is in line with the expectation of
a gamma expansion.

V. EXPERIMENTS

We now describe our experiments. After introducing the
data used for evaluation and competitive methods, we describe
our implementation details. Then, we present thorough results
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Fig. 5. The right images taken at the 20 different levels of brightness, overlaid with the corresponding

measured optical power (in ©W).

(a)
Fig. 7. Sample synthetic foggy images for evaluation. (a) VKITTI2 (Vjjor = 40 m). (b) KITTI-CARLA (Vjior = 60 m). (¢c) DRIVING (V\ior = 80 m).

on both synthetic and real data. Finally, we report two addi-
tional experiments that further showcase the superiority of our
method over others.

A. Data for Evaluation

We use both synthetic and real data for evaluation.

To generate synthetic foggy images we use the following
three datasets: the Virtual KITTI 2 dataset (VKITTI2),
the KITTI-CARLA dataset and the Driving dataset
(DRIVING) [50]. They all contain sequences of left and right
clear intensity images as well as the corresponding left and
right ground truth depth maps. For each clear image, we
first compute a distance map from its ground truth depth
map, and then synthesise a corresponding foggy image by
applying (@) rather than (1) (because the camera’s photo-
metric parameters are not available) to each channel. For
all three colour channels, we fix A at 255 x 0.7 = 178.5,
255 x 0.8 = 204.0 and 255 x 0.9 = 229.5 for VKITTI2,
KITTI-CARLA and DRIVING, respectively. These values of
A fall within the typical range [0.7,1] which previous work,
for example [51], [52], extensively adopted to synthesise
foggy images. For each dataset, six different visibility levels
at Vmor = {30,40,50,60,70,80} meters are tested. The
corresponding ground truth /3 values are calculated according
to (3). See Fig.[7] for sample synthetic foggy images at various
visibility levels, and see our supplementary material for a
summary of the synthetic datasets we use for evaluation.

For evaluation on real foggy data we use our self-collected
SDIRF dataset introduced in the previous section.

B. Competitive Methods

To the best of our knowledge, there is very limited existing
work on estimating both A and (. Firstly, we report the
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Fig. 6. The data points obtained from the image series
in Fig. [] and the fitted curves.

(b)

results of Berman et al which estimates A only. We
further compare our method with the fog estimation strategy
proposed by Li er al. [6] (estimating both A and /) as well
as our modified version of that strategy, which resulted in
a major improvement over the original one. We made two
main modifications: Firstly, as proposed by [53]], to estimate
A, we use the median, instead of the maximum [3]], of the
0.1% pixels with the largest dark channel values. Secondly,
when building the histogram of values of 3, we discard values
of f outside the range [0.001,0.2]. This is motivated by the
observation, typically at lower visibility, that a proportion of
[ values are negative and that there is a large cluster of 3
centred at the value of zero. In many situations, the zero bin
has the highest counts, leading to a wrong estimate of 3. Figs.
a) and b) show examples of unbounded and bounded
histograms, respectively, at 30 m visibility. As we will show
later, this modified version greatly improves the original one’s
performance and therefore we deem it to be a much stronger
baseline method. Note that the above range of (§ that we use
in the modified version of Li’s method is consistent with the
bounds of 3 that we set in our method (Section when
solving (T6). This ensures a fair comparison between them.

C. Implementation Details

We empirically set & = 4 in (10), & = 15 in (TI),
1n = 2 when determining the bounds for each relevant L.,
(Section [II-C3)), and § = 5 (in the intensity domain) when
defining the Huber loss in the first stage of our optimisation
(Section [[II-C4). We fix these parameters throughout all our
experiments.

To make a fair comparison, for all methods we use the stereo
ORB-SLAM2 to facilitate multiple observations of the



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10
(a) Unbounded 3 estimates at 30 m visibility (b) Bounded §3 estimates at 30 m visibility (c) Bounded g estimates at 80 m visibility
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Fig. 8. [ histogram examples generated by: (a) Li’s method [6]; (b) and (c) our modified version of it. Note that the vertical axes have different scales. (a)

Unbounded S estimates at 30 m visibility. The highest bin, which occurs at zero, leads to a wrong estimate of 3. (b) Bounded (within the range [0.001, 0.2])
[ estimates at 30 m visibility. The highest bin occurs at 0.097, which is much closer to the ground truth 8 value of 0.1. (c) Bounded (within the range
[0.001,0.2]) S estimates at 80 m visibility. Comparing (c) to (b), we observe that the total number of /3 estimates that are used to build the histogram is

typically much larger at a higher visibility level.

same landmark from a range of known distances. These obser-
vations are established from ORB-SLAM?2’s local key frames
and local map points after its local bundle adjustment. The fog
parameters are updated after ORB-SLAM2’s local mapping
thread only after the ego-vehicle has moved at least five meters
from the origin (for the very first estimation) or from the
position of the last update (for subsequent estimations). We use
the Ceres Solver [54] and choose the Levenberg—Marquardt
algorithm to solve (T6). See our supplementary material for
more implementation details including pseudo-code.

Due to the way we generate synthetic foggy images, we
have assumed that both g and g~! are identity mappings for all
colour channels. For real foggy data from SDIRF, in contrast, g
and ¢! are characterised by the parameters a, y and ¢ found
during our photometric calibration and therefore are channel-
specific. Unless otherwise specified, the fog parameter results
we report in the rest of this section are from the grayscale
foggy images.

D. Evaluation on Synthetic Data

We conduct extensive experiments and present both quan-
titative and qualitative results.

1) Quantitative Results: We compute the root-mean-square
error (RMSE), the mean-absolute error (MAE) and the stan-
dard deviation (SD), in both absolute and relativeE] scales, of
the 8 and AE] estimates. Table [I| shows the quantitative results
of the average 5 and A error metrics on synthetic datasetﬁ

We observe that in most cases our method performs the
best, in terms of both estimation accuracy (i.e., smallest errors)
and precision (i.e., the lowest standard deviation). The only
exception is VKITTI2’s A error metrics, but our 5 metrics are
still the best in this case. A closer look at VKITTI2’s results
shows that our bad estimates of A stem from countryside
scenes with sparse features (Scene(02), or when the ego-vehicle
is surrounded by other vehicles moving at similar speeds
(Scenel8). In either case the ORB-SLAM?2’s performance has
been significantly degraded and therefore produces unreliable

4A relative metric is calculated as the ratio of the corresponding absolute
metric to the ground truth value, and is shown as percentage in Table [I] and
Fig. [T0}

SA and Lo, are essentially the same for synthetic data since g and g~
have been defined as identity mappings.

SResult of Town04 in KITTI-CARLA at 30 m visibility is excluded as the
ORB-SLAM2 loses tracking and provides no valid observation.

1

distance and/or intensity information. We will investigate how
to address this limitation in our future work.

2) Qualitative Results: Fig. 9] illustrates how the estimates
of B and A vary with frame at various visibility levels on
scene “‘backwards” in DRIVING.

We observe that the values of 8 and A estimated by our
method are closer to the ground truth values and more stable
compared to other methods.

3) Error Metrics given Partial Ground Truth: We test the
estimation performance of 8 on KITTI-CARLA given the
ground truth value of A. The quantitative results are shown
in the middle block of rows in the middle subtable of Table [l

We observe: a) As expected, all methods perform better
when ground truth A is given; b) For Li’s and Li’s modified
methods, there is a significant improvement in 3’s error
metrics when the ground truth A is given. This is not surprising
due to their sequential estimation strategy, since an error-free
A will indeed benefit the subsequent estimation of (. This
observation adds to the evidence that, in their method, any
error in the estimate of A can propagate to the estimate of 3;
¢) For our method, such improvement is much less significant.
This may suggest that our method, when simultaneously
optimising 5 and A with minimal prior knowledge, is able
to find a 3 value that is not far from the optimal solution.

4) Ablation Study: We conduct an ablation study on KITTI-
CARLA to better understand how our optimisation setup
affects the performance of the fog parameter estimation. The
following additional settings are experimented with: a) One-
stage: Only the first stage of our optimisation is preserved; b)
Uniform weight: We set w;,* = 1 for all observations in both
optimisation stages. The quantitative results are shown in the
bottom block of rows in the middle subtable of Table [II

We observe: a) If one-stage optimisation is performed or a
uniform weight is used, the estimation results are inferior to
those produced by our full method; b) These two settings still
outperform all competitive methods, despite trailing behind
our full method.

5) Error Metrics vs Visibility: We investigate how the fog
parameter estimation performance varies with visibility. Fig.
[I0] plots the relative RMSE of 3 and A against visibility.

We observe: a) Our method consistently excels by a large
margin in both estimates of 3 and A for all visibility levels
tested; b) Both Li’s and Li’s modified demonstrate a downward
trend in the relative RMSE of [ as visibility increases. By
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TABLE I
AVERAGE 3 AND A ERROR METRICS ON SYNTHETIC DATASETS. RELATIVE METRICS ARE SHOWN AS PERCENTAGE. FOR ALL THE METRICS, THE

LOWER THE BETTER (). THE TABLE ALSO CONTAINS THE

RESULTS ON OUR ABLATION STUDY USING KITTI-CARLA.

3 A
Dataset Method RMSE () MAE () SD ) RMSE () MAE (1) SO D)
Abs. | Rel Abs. | Rel Abs. | Rel Abs. | Rel Abs. [ Rel Abs. [ Rel
Berman's [4] N/A N/A N/A 37547 | 2.66 | 3.7004 | 2.07 | 20130 | 1.63
VKITTE [ s (6] 0.0430 | 6639 | 0.0347 [ 52.17 [ 0.0225 [ 37.17 | 3.8760 | 2.17 | 1.8920 | 1.06 | 33408 | 1.87
Ti's modified 0.0T13 | 16.74 [ 0.0080 | 1147 [ 0.0001 [ 14.07 | 1.5921 | 0.89 | 0.8374 [ 0.47 | 1.2550 | 0.70
Ours 0.0078 | 10.91 [ 0.0061 | 8.57 [ 0.0061 | 8.60 | 2.5495 | 1.43 | 1.9276 | 1.08 | 1.8575 | 1.04
Berman's [4] N/A N/A N/A 12.6572 [ 6.10 | 123382 | 6.05 | 2.6533 | 1.30
s (6] 0.0499 | 84.01 | 0.0452 | 75.84 | 0.0199 | 34.66 | 15.0104 | 7.80 | 15.1337 | 742 | 43683 | 2.14
Ti"s modified 0.0166 | 2841 [ 0.0143 [ 24.35 [ 0.0105 [ 18.20 | 10.3676 | 5.08 | 9.6282 [ 4.72 | 33599 | 1.65
Ours 0.0116 | 20.66 | 0.0101 | 18.11 [ 0.0058 [ 10.33 | 2.5711 | 1.26 | 1.8632 [ 0.91 | 2.1219 | 1.04
KITTI-CARLA [49] oG A) 00357 [ 5957 [ 0.0250 | 4148 [ 0.0297 [ 50.50 - - -
Ti"s modified (GT A) | 0.0109 | 19.24 [ 0.0081 | 14.47 | 0.0087 | 15.37 - - -
Ours (GT 4) 0.0099 | 17.76 [ 0.0087 [ 1557 [ 0.0055 | 9.74 - - -
Ours (One-stage) 00122 [ 21.27 [ 0.0108 | 18.85 [ 0.0063 | T0.81 | 3.4662 | 1.70 | 2.5064 [ 123 | 2.8686 | 14T
Ours (Uniform weight) | 0.0122 | 21.67 [ 0.0107 | 19.05 | 0.0061 | 10.66 | 29282 | 144 | 2.2646 | T.IT | 2.2818 [ .12
Berman's [4] N/A N/A N/A T7.6183 | 7.68 | 11.6000 | 5.05 | 155607 | 6.78
DRIVING 50 s (6] 00365 | 75.56 [ 0.0387 | 6239 | 0.0260 | 43.19 | 14.0963 | 6.14 [ T1.2103 [ 4.88 | 8.5101 | 3.71
Ti's modified 0.0163 | 26.85 | 0.01T7 [ 18.99 [ 0.0129 [ 20.56 | 12.9722 | 5.65 | 9.5988 | 4.18 | 8.7345 | 3.81
Ours 0.0051 | 8.98 [ 0.0037 | 6.44 [ 0.0033 | 6.66 | 1.9021 | 0.83 | 1.3379 [ 0.58 | 1.6629 | 0.72
(a) Vmor =30 m (b) Vmor =50 m (c) Vmor =70 m
Li's Li's modified Ours —= GT 010 B Li's Li's modified Ours ——= GT 0075 - Li's Li's modified Ours —= GT
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Fig. 9. Evaluating 8 and A estimates vs frame on scene “backwards” in DRIVING at various visibility levels. (a) 30 m. (b) 50 m. (¢) 70 m. Ground truth
values are indicated by black dotted lines. We observe that our modified version of Li’s method improves the original one’s performance slightly in the
estimation of A and significantly in the estimation of 3. Nevertheless, both of them, as well as Berman’s method, result in many large errors. The performance
of our method surpasses the rest by a large margin. We also highlight that how an error in the estimate of A propagates to the estimate of 5 in the results
of Li’s method and Li’s modified method [an underestimate of 3, for example around frame 200 in (a), occurs with an overestimate of A] is in line with the
theoretical analysis of error propagation that we provide in our supplementary material.
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Fig. 10. Evaluating the relative RMSE vs Vjjor on DRIVING. (a) 8. (b) A.

comparing the histogram in Fig. [§[c) with that in Fig. [§[b),
we infer that as visibility increases, the number of estimates
of 5 to build a histogram becomes larger, which in turn

improves the performance of the statistics-based estimation
method used by the two baseline methods; c) All methods
witness an upward trend in the relative RMSE of A as visibility
increases, which is expected because images will appear to be
less fog-obscured as visibility increases.

E. Evaluation on Real Data

For real foggy data from SDIRF, we focus on qualitative
evaluation because it is not possible to obtain the ground truth
values of the fog parameters for real foggy images taken in
an open, uncontrolled environment.

1) Scattering Coefficient Estimation: We examine both
inter-sequence consistency and intra-sequence consistency be-
tween the perceptual density of the fog and the estimated .

Firstly, in Fig. we show the normalised histograms of
[ estimated by various methods of the eight foggy sequences
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Fig. 11. Evaluating the inter-sequence consistency of 8 on SDIRF. We plot the normalised histograms of the estimated 8 of the whole thin/thick foggy

sequences whose first left frames are shown in the corresponding columns of Fig.

EI Each row shows the results of a method. Note that all horizontal axes

have the same scale. Our method is always the best at distinguishing between thin and thick fog by having the least overlap between the two distributions.
Furthermore, in legend we show the mean visibility, V' yor, calculated from the mean 3 (indicated by the dashed vertical line) according to @ We observe
that the mean visibility values from our method are much more reasonable than the rest when compared with the foggy images in Fig. EI

(a) 3 estimate vs frame as the fog suddenly thickens
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(b) B estimate vs frame as the fog gradually weakens
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Fig. 12. Evaluating the intra-sequence consistency of 5 on SDIRF. We show the estimate of 3 vs frame of two foggy sequences in which the fog demonstrates
a noticeable spatial variation in its density. (a) The vehicle traverses an area where the fog suddenly thickens. (b) The vehicle traverses an area where the
fog gradually weakens. Shown at the bottom are the foggy images of the frames which are indicated by the vertical cursors in the corresponding plot above.
Each image is bordered by the colour that matches the corresponding cursor’s. See the close-up of yellow squares to better visually compare the fog density.
We observe that our method is the only one that is able to respond adaptively to changes in fog density through updating the estimated values of . These
results also add to the evidence that our assumption of local homogeneity of fog is still valid when the fog is spatially variant.

whose first left frames are shown in Fig. [3] The key observa-
tion is that our method demonstrates the best inter-sequence
consistency between the visual appearance of the foggy images
and the estimated (. In addition, the mean visibility value
computed according to (3) using the mean 3 value estimated
by our method is perceptually more sensible than the rest. See
our supplementary material for more results.

Secondly, in Fig.[12|we plot the estimated 3 vs frame of two
foggy sequences in which the fog demonstrates a noticeable
spatial variation in its density. The key observation is that
our method, being the only one that is capable of responding
adaptively to spatial variation in fog density, demonstrates the
best intra-sequence consistency between the visual appearance
of the foggy images and the estimated [.

2) Atmospheric Light Estimation: For real foggy images,
atmospheric light is no longer monochrome. Therefore, we

apply our method to each colour channel.

Firstly, we visually compare the atmospheric light estimated
by various methods. After obtaining the estimate of L., of
each colour channel by each method, for visualisation purposes
we map it back to pixel intensity A by applying g~! so that its
colour can be illustrated. Sample results are shown in Fig. [T3]
The key observation is that the atmospheric light estimated by
our method is the closest to the colour of the horizon, i.e., the
most fog-opaque region in a foggy image. We also observe
that our method is more robust to changes in the atmospheric
light than competing ones.

Next, we take a step further by visually comparing the
defogging results using L., estimated by various methods. To
facilitate a fair comparison between all methods such that the
only difference is L., we follow [3] to estimate ¢ and perform
defogging. Again, for visualisation purposes, we apply g~ ! to
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Fig. 13. Evaluating the accuracy of the estimated A on SDIRF. The small rectangles at the bottom are palnted the colours of A estimated by various methods.
We also show A’s pseudo-ground truth colour, which is extracted by visually examining each foggy image then manually selecting a pixel just above the
horizon in the central area (see the little yellow square in each foggy image). Each rectangle is overlaid with the Euclidean distance from the corresponding
estimate to the pseudo-ground truth. Note that the real foggy images are typically very different from the simulated ones shown in Fig. [7]in a way that the
sky region is not of a uniform colour, which is particularly the case of a foggy image taken at dawn. We infer that this phenomenon causes competitive

methods to fail as they all estimate the atmospheric light from a single image. The results demonstrate that only our method is able to accurately unveil the
atmospheric light. In addition, our method is more robust to changes in the atmospheric light.

[
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Fig. 14. Evaluating the atmospherlc light estimated by various methods (top four rows) on SDIRF by using it to perform defogging following [J3]]. The input
foggy images are shown in the corresponding columns of Fig. E The corresponding clear images recorded in overcast weather are shown in the last row
to serve as pseudo-ground truth. We observe: a) The defogged images which use the atmospheric light estimated by our method appear to be more accurate
in colour compared to others with minimal visual artefacts; b) Using the atmospheric light estimated by our method, fog on distant objects seems to be
better removed (see the close-up of yellow squares). In addition, we investigate how two state-of-the-art, end-to-end deep learning-based defogging methods,
DehazeFormer and C2PNet [56], perform on the same foggy images (in the intensity domain, as their networks were trained on intensity images). The
results are shown in the middle two rows between the dashed lines. The key observation is that for both methods their defogging effect is barely visible.

the defogging results, and the final defogged images are shown
in the top four rows in Fig. [T4] The clear images recorded
in overcast weather are shown in the last row as pseudo-
ground truth. The key observation is that using the atmospheric

comparisons of the estimated atmospheric light and the de-
fogged images obtained in the radiance and intensity domains.

F. Additional Experiments

light estimated by our method yields defogged images that are
perceptually superior to those produced by other methods.

In addition, we evaluate two state-of-the-art, end-to-end
deep learning-based defogging methods, DehazeFormer
and C2PNet [56]], on the same foggy images (in the intensity
domain, as their networks were trained on intensity images).
The results are shown in the middle two rows between the
dashed lines in Fig. [T4] Compared with the foggy images in
Fig. [13] their defogging effect is barely visible.

See our supplementary material for more results, including

We report two additional experiments to demonstrate a)
our results on [3’s wavelength dependence align with what
was reported from previous physics experiments; b) the non-
linearity introduced by gamma correction cannot be ignored
when estimating .

1) Scattering Coefficient’s Wavelength Dependence: In this
experiment, we apply our method to each colour channel
(RGB) as well as to the grayscale image independently, and
investigate how [ varies with wavelength.

To this end, we examine all § estimates from a total of
34457 frames evaluated on all foggy sequences of SDIRF.
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Fig. 15. Investigating 3’s wavelength dependence on all foggy sequences in
SDIRF. The results of Li’s modified method are shown in (a) and (b), and the
results of our method are shown in (c) and (d). From (c) and (d) we observe
that the case Br > Bg > P tends to happen at a larger 5 value, whereas
the case Sr < Bg < P tends to happen at a smaller 3 value. The remaining
cases tend to happen at intermediate 3 values. The above observations are in
line with [57, Figure 6.12]. However, they cannot be made from (a) or (b).

We categorise the § values obtained from each frame into
the following three cases: a) fr > Bg > fp (i.e., B strictly
increases with wavelength); b) fr < Bg < g (i.e., [ strictly
decreases with wavelength); ¢) Otherwise. We investigate how
these three cases are distributed as the grayscale scattering co-
efficient Byrayscale» Which measures the mean visibility, changes
for both Li’s modified method and our method. The results are
are illustrated in Fig. @ as normalised histograms [(a) and (c)],
and as cumulative distribution curves [(b) and (d)].

The key observation is that the results of our method align
with [57, Figure 6.12], which shows that at lower visibility
(i.e., a larger () the relative attenuation of different colour
channels tends to increase with wavelength (i.e., Sr > Bg >
0Og), whereas at higher visibility (i.e., a smaller () it tends to
decrease with wavelength (i.e., Sr < Bg < [g). In contrast,
the results of Li’s modified method do not show such trends.

2) Gamma Correction: We investigate the effect of the non-
linearity caused by gamma correction on the estimate of (.

Firstly, we conduct the following experiment using simu-
lated data. We generate clean data consisting of the radiances
of a number of landmarks observed from a range of distances
according to (1) [i.e., drawing samples from the dotted lines
shown in Fig. (b)] with ground truth Sgr = 0.025, which
is then corrupted with random Gaussian noise. We then
apply ¢! (with v > 1 in accordance with our photometric
calibration results) to convert the radiance data to intensity
data. Next, we use our proposed method to estimate two [
values, one from the radiance data and one from the intensity
data. The experiment is repeated 1000 times. Due to random
noise, each instance leads to slightly different values for .
We plot their histogram in Fig. [[6[a). We observe that using
intensities we tend to overestimate 3, whereas using radiances
the estimates seem to be unbiased. In fact, estimating /3 using
intensity always yields estimates larger than using radiance.
Our experiment also reveals that a) the direction of the bias
depends on whether v > 1 or v < 1; b) the amount of the
bias increases as 7y deviates from 1. See our supplementary
material for more details of the experiment and the results.

Finally, in Figs. [I6(b) and[T6{c) we show the counterparts of
Figs.[I3]c) and [I5(d) but using intensities instead of radiances.

(a) Histograms of 3 estimates from simulated data (b) Normalised histograms - Ours (using intensities)
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Fig. 16. (a) Investigating how the gamma correction affects the estimate of 3
using simulated data. We observe that using intensities rather than radiances
overestimates (3. Comparing (b) and (c) with their counterparts [Figs. c)
and Ed)], we can see that using intensities rather than radiances makes both
the histograms and the cumulative distribution curves significantly overlap.

We observe that this time the histograms and the cumulative
distribution curves significantly overlap, which adds to the
evidence that the atmospheric scattering model should be
applied to radiances rather than to intensities.

VI. CONCLUSION

We presented an optimisation-based method for estimating
the parameters of fog. While prior methods adopt a sequential
estimation strategy that is prone to error propagation, our
method simultaneously estimates the parameters by solving
a minimisation problem. Extensive experiments show that our
method outperforms prior ones on synthetic data both quali-
tatively and quantitatively, and on real data qualitatively from
various aspects. Our method has the potential to be plugged
into an existing feature-based visual SLAM/odometry system
as an add-on module for its deployment in fog. In addition, we
have introduced SDIRF, a dataset consisting of high-quality,
consecutive stereo foggy images of real road scenes under a
variety of visibility conditions. SDIRF also provides calibrated
photometric parameters, which makes it photometrically ready
to apply the atmospheric scattering model, as well as counter-
part clear images taken in overcast weather of the same routes,
which will be useful for companion work in image defogging
and depth reconstruction. All of the above features together
make SDIRF a first-of-its-kind dataset for the study of visual
perception for autonomous driving in fog.

In the future, we will investigate how to improve the
resilience of our method when the underlying visual SLAM
system struggles to generate accurate distance and/or intensity
(hence radiance) information, which is a limitation of our
current method. Our experimental results in Section [V-DI|
suggest that these situations arise in countryside scenes with
very sparse features or when the ego-vehicle is surrounded
by other vehicles moving at similar speed. To this end, we
will consider the following two approaches: a) to more tightly
couple our method with a visual SLAM system by jointly
optimising the fog parameters, the camera’s poses, and the
landmark’s 3D positions; b) to integrate our method into a
visual-inertial SLAM system (e.g., ORB-SLAM3 [58]]) that is
inherently more robust in the presence of fog.
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