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Estimating Fog Parameters from a Sequence of
Stereo Images

Yining Ding, João F. C. Mota, Andrew M. Wallace, and Sen Wang*

Abstract—We propose a method which, given a sequence of
stereo foggy images, estimates the parameters of a fog model
and updates them dynamically. In contrast with previous ap-
proaches, which estimate the parameters sequentially and thus
are prone to error propagation, our algorithm estimates all
the parameters simultaneously by solving a novel optimisation
problem. By assuming that fog is only locally homogeneous, our
method effectively handles real-world fog, which is often globally
inhomogeneous. The proposed algorithm can be easily used as an
add-on module in existing visual Simultaneous Localisation and
Mapping (SLAM) or odometry systems in the presence of fog. In
order to assess our method, we also created a new dataset, the
Stereo Driving In Real Fog (SDIRF), consisting of high-quality,
consecutive stereo frames of real, foggy road scenes under a
variety of visibility conditions, totalling over 40 minutes and
34k frames. As a first-of-its-kind, SDIRF contains the camera’s
photometric parameters calibrated in a lab environment, which
is a prerequisite for correctly applying the atmospheric scattering
model to foggy images. The dataset also includes the counterpart
clear data of the same routes recorded in overcast weather,
which is useful for companion work in image defogging and
depth reconstruction. We conducted extensive experiments using
both synthetic foggy data and real foggy sequences from SDIRF
to demonstrate the superiority of the proposed algorithm over
prior methods. Our method not only produces the most accurate
estimates on synthetic data, but also adapts better to real fog. We
make our code and SDIRF publicly available1 to the community
with the aim of advancing the research on visual perception in
fog.

Index Terms—Fog parameter estimation, atmospheric scat-
tering model, foggy dataset, photometric calibration, vehicular
perception, image defogging, depth reconstruction.

I. INTRODUCTION

FOG is formed when small water droplets are suspended

in the air. They interact with light, for example via scat-

tering, causing severe visual degradation, which in turn poses

significant challenges to visual perception. Foggy scenarios,

despite their low probability of occurrence, are thus important

edge cases that cannot be ignored for extremely safety-oriented

systems such as autonomous vehicles. The amount of visual
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Fig. 1. The atmospheric scattering model. (a) Airlight: The atmospheric
particles act as a light source by reflecting environmental illumination towards
the camera, causing the radiance of the airlight La (x) to increase with
distance. (b) Direct transmission: The atmospheric particles also scatter away
the incident light that traverses from a scene point to the camera, causing the
radiance of direct transmission Ldt (x) to attenuate with distance.

degradation depends on the depth of the corresponding scene

point, as explained by the atmospheric scattering model.

Atmospheric scattering model. Fig. 1 illustrates the at-

mospheric scattering model [1], which decomposes the total

radiance originating on a scene point and reaching the camera

under foggy conditions into direct transmission and airlight.

The quantity of light transmitted via direct transmission (resp.

airlight) decreases (resp. increases) with the distance from the

scene point to the camera. Formally, let x ∈ Z
2
+ denote the

pixel coordinates (in the image plane of the camera) associated

with the scene point. Then, the total radiance L (x) ∈ R+

reaching that point can be decomposed as

L (x) = Ldt (x) + La (x) = Lc (x) t (x) + L∞

(

1− t (x)
)

,

(1)

where Ldt (x) ∈ R+ is the direct transmission, La (x) ∈ R+

is the airlight, Lc (x) ∈ R+ is the fog-free radiance of the

scene point, L∞ ∈ R+ is the radiance of the atmospheric

light, i.e., the airlight at infinite distance, and t (x) ∈ (0, 1) is

the transmission coefficient, which controls the combination

between Lc (x) and L∞ as a function of the distance d (x) ∈
R++ between the scene point and the camera:

t (x) = exp
(

−βd (x)
)

. (2)

The parameter β ∈ R++ is the scattering coefficient and

measures the density of fog, being related to visibility VMOR ∈
R++ (also known as the meteorological optical range [2]) as

VMOR = − ln (0.05) /β, (3)

where we assume that VMOR is measured in meters.

For simplicity, in the rest of this paper we will omit x from

any variables, e.g., in (1) and (2), whenever their dependence

on the pixel coordinates is clear from context.
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Note that we limit the scope of this work to daytime fog,

mist or haze. In other inclement weather conditions, such as

rain and snow, where the particles present in the atmosphere

typically demonstrate significant spatial and temporal inhomo-

geneity, the above atmospheric model no longer applies [1].

Fog parameters. The fog parameters are L∞ and β, and

their knowledge is key both to defog the input images and

to construct an accurate depth map of the scene. Estimating

the fog parameters accurately is thus crucial for improving the

safety of autonomous vehicles and mobile robots operating in

challenging weather. Specifically, estimating L∞ is an impor-

tant step in most non-deep learning-based image defogging

methods such as [3], [4]. β is also an essential parameter

because, as (2) suggests, it determines the relation between the

transmission coefficient t and the distance d (from which the

scene depth can be calculated given the pixel coordinates x and

the camera’s intrinsic parameters). Consequently, an accurate

estimate of β is a prerequisite for simultaneous defogging and

stereo reconstruction methods [5]–[7].

Prior work on single image defogging [1], [3], [4], [8],

[9] typically assumes that β is constant (i.e., a homogeneous

medium) over horizontal paths. In our work, leveraging a

sequence of images, we adapt this assumption to local ho-

mogeneity. That is, we assume that the fog is homogeneous

only within a local space, corresponding to the local map

constructed in the first step of our method (Section III-A).

Experimental results show that our method effectively handles

real-world fog, even when the fog is inhomogeneous over

larger areas, thus validating our assumption.

Intensity vs radiance in fog parameter estimation. Al-

though (1) was derived to study the scattering phenomenon

in the field of photometry/radiometry, almost all existing

literature on fog parameter estimation or defogging applies

it directly to pixel intensity values. Hence, (1) is rewritten as

I = Jt+A (1− t) , (4)

where I ∈ [0, 255] is the observed intensity of the scene

point, J ∈ [0, 255] is the fog-free intensity of the scene point,

and A ∈ [0, 255] is the intensity of the atmospheric light.

These quantities are counterparts of L, Lc and L∞ in (1). (1)

and (4) can be applied to either a grayscale image or each

colour channel in an RGB image independently [8]. However,

using (4) rather than (1) implicitly neglects any non-linearities

incurred in the mapping from scene radiance to pixel intensity

saved in a compressed image format such as JPEG or PNG.

There can exist many sources of non-linearities in an image

sensing pipeline, the most prominent one being the gamma

correction [10]. Nevertheless, to the best of our knowledge,

no existing fog parameter estimation method takes gamma

correction into account, and no existing foggy dataset for

autonomous driving provides the photometric parameters of

the camera. We will demonstrate that estimating β based on

(4) rather than (1) results in a different optimisation problem

(Section III-C1) and introduces a bias (Section V-F2).

Problem statement. Given a sequence of stereo images

taken by a vehicle driving in fog, our goal is to estimate the

parameters β, L∞ and relevant Lcs of the atmospheric scat-

tering model in (1) and (2), and to update them dynamically.

Our approach and contributions. We seek to find a

set of distance-radiance curves, defined by (1) and (2) and

characterised by the above parameters, that most closely

fits the observed data, which is generated from a local 3D

feature map built by a visual Simultaneous Localisation and

Mapping (SLAM) or odometry system (e.g., [11]). As the ego-

vehicle moves in an environment, the local map [Fig. 2(a)] is

updated, and so are the observations [Fig. 2(b)], our regression

problem [Fig. 2(c)], and our parameter estimation results. As

no existing real foggy dataset meets our needs, we collected

our own dataset and are releasing it to the public.

We summarise our contributions as follows.

• We propose an optimisation-based method which esti-

mates all the fog parameters simultaneously. Compared

to prior approaches, all of which adopt a sequential esti-

mation strategy, our method is less sensitive to error prop-

agation. The proposed method is purely model-based,

with its estimated fog parameters constrained via physical

principles. Our only assumption is local homogeneity of

the fog, a constraint which real fog in general satisfies.

• We demonstrate through comprehensive experimental re-

sults that our method a) outperforms competitive methods

both quantitatively and qualitatively on simulated data; b)

achieves the best performance (qualitatively) on real data.

Specifically, it distinguishes thin from thick fog better

than prior methods and is able to respond adaptively to

spatially variant fog. Also, its estimate of atmospheric

light is closer to the colour of the horizon.

• We publish the Stereo Driving In Real Fog (SDIRF)

dataset, the first foggy dataset comprising consecutive

stereo images of real road scenes under various visibility

conditions. Our dataset also includes the counterpart clear

images of the same routes recorded in overcast weather.

Additionally, we calibrate the camera’s photometric pa-

rameters to make SDIRF photometrically ready for the

deployment of the atmospheric scattering model.

This paper is an extension of our previous work [12], in

which only synthetic data was used to evaluate the proposed

fog parameter estimation method. Here, we refine our method

by making its initialisation fully automatic, release the new,

real SDIRF dataset, and add extensive evaluations on it.

Organisation. In the next section, we review literature on

fog parameter estimation and discuss existing datasets that

are publicly available in the field of autonomous driving. In

Section III, we explain in detail the proposed fog parameter

estimation methodology. In Section IV, we introduce our

self-collected SDIRF dataset and describe how we carried

out the camera’s photometric calibration. In Section V, we

conduct extensive experiments to evaluate our fog parameter

estimation method and compare it with its competitors using

both synthetic and real data. We conclude in Section VI.

II. RELATED WORK

A. Fog Parameter Estimation

Almost all existing methods operate at pixel intensity level,

i.e., (4), without knowledge of the photometric parameters,

that is, they estimate A rather than L∞ or β. Early approaches
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estimate A from multiple images of the same scene acquired

under different conditions, such as visibility [13] or manually

changed polarisation [14]. Such methods are thus inapplicable

in autonomous vehicle or mobile robot scenarios. In addition,

some methods rely on very strong assumptions, such as the

presence of a sky region in the image. In the rest of this

section, we focus on existing work that processes a single

image, a stereo pair of images or a sequence of images

acquired by an onboard camera.

Estimation of A. This is a critical step in non-deep

learning-based single image defogging methods. To this end,

[9] obtains A from the pixels that have the highest intensity in

the input image, whereas [3] relies on the dark channel prior

to locate the most haze-opaque region in the image and then

computes A from these pixel intensities. In turn, [15] estimates

A as the brightest pixel value among all local minima, and

[4] locates A in RGB space by leveraging the observation that

fog transforms the distribution of pixel intensities from tight

clusters to stretched lines (dubbed “haze-lines”). Given the

limited amount of information embedded in a single image,

some of these approaches have demonstrated their general

effectiveness in estimating A and therefore are adopted by

later conventional methods such as [16], and some pioneering

deep learning-based methods such as [17]. Even some video

defogging methods such as [6] directly follow [3]’s approach

in estimating A, due to its robustness and simplicity. Similarly,

[18] applies firstly [15]’s method to compute an A value from

the current frame. To impose temporal consistency, they then

refine their estimate of A by calculating a weighted average

of this A value and the A estimate from the previous frame.

Estimation of β. Whenever the value of t can be inferred

directly from I [cf. (4)], most defogging methods (e.g., [3],

[4]) bypass the estimation of the parameter β in (2). This topic

can be categorised into perceptual estimation and quantitative

estimation. Methods including [19]–[21] achieve referenceless

prediction of perceptual fog density from a single image.

Although their predicted perceptual fog density indices may

correlate well with human judgements, the authors make no

attempt to show how these perceptual indices can be mapped

to a numerical value of β. To the best of our knowledge,

the quantitative estimation of β is hardly addressed in the

existing literature. As (2) implies, β is the key linkage between

the problem of defogging and the problem of scene depth

estimation, and consequently an accurate estimate of its value

plays a crucial part in various existing simultaneous defogging

and stereo reconstruction methods [5]–[7]. In general, estimat-

ing β entails observing the same object (more precisely, the

same J) at a range of known distances, which makes this task

extremely challenging at best and not always possible when

only a single image or even only a stereo pair of images

is available. As a special case, [22] estimates β from just

a single image but requires the image to contain both the

sky and the road, the latter assumed homogeneous and flat

(so that a known depth can be associated with each image

row from the road after calibration). These are indeed very

strong and application-specific constraints, making the method

inapplicable to general scenes. In contrast, [6] uses a sequence

of images and performs structure-from-motion to facilitate

observations of the same object at a range of known distances.

After A is estimated following [3], they use each pair of

observations, whose inverse depth difference is large enough,

to estimate β by inverting the atmospheric scattering model.

Then all the estimates are gathered, from which they build a

histogram of β and choose the value from the highest bin.

To summarise, estimating the fog parameters from a se-

quence of images [6], [18] is more robust compared to using

a single image or a stereo pair of images [3], [4], [9], [15],

[22], because more information is available and there are fewer

assumptions or constraints to be made. Nevertheless, existing

methods still have a few shortcomings. [18] estimates A only

and introduces a weighted average scheme to enforce its tem-

poral consistency. However, as a key factor in controlling such

consistency, the weight itself becomes a learnable parameter

and requires fine-tuning for overall optimal performance in

different scenarios. As will be shown in Section V, the strategy

for estimating A and β proposed in [6] has severe drawbacks.

Firstly, A is still estimated from a single image (i.e., the current

frame), and thus possibly temporally inconsistent. Secondly,

estimating β requires a previous estimate of A; any error in

the latter estimate thus propagates to β. See our supplementary

material for a theoretical qualitative analysis of the error

propagation.

Distinct from the existing methods that estimate the fog

parameters sequentially, we propose an optimisation-based

method that simultaneously estimates them. It assumes only

local homogeneity of the fog, which is very realistic.

B. Foggy Datasets for Autonomous Driving

Publicly available datasets have vastly aided the research

and development of perception algorithms for autonomous

vehicles. The overwhelming majority of them [23]–[29], how-

ever, do not contain any foggy scene, the presence of which

can pose significant challenges to a driver-assistance system.

Real fog. Real fog happens rarely. Only a few existing

datasets include real foggy scenes and they are listed below.

DrivingStereo [30] contains four stereo sequences that are

labelled “foggy”. Nevertheless, in all of them the visibility is

still relatively good. BDD100K [31] uses a monocular camera,

from which the depth of the scene can be recovered only up

to a scale using the pinhole camera model. SeeingThroughFog

[32] features a number of stereo foggy sequences. However,

the consecutive frames of only its left camera are published.

RADIATE [33] pays particular attention to radar imaging in

adverse weather. It has four stereo foggy sequences, only

one of which was recorded while the ego-vehicle was on the

move. Unfortunately, in that sequence there is consistently a

considerable amount of water residual on the camera casing,

which significantly blocks the view.

Synthesised fog. Synthesised fog has been widely used with

the aim of enriching foggy data, typically in the following

three ways. a) Real scenes with artificial fog: [34], [35]

deploy a fog machine to generate artificial fog in a controlled

environment. Although images are recorded in a wide range of

visibility conditions, they only include very few preset scenes.

More importantly, the scenes remain static, which dramatically
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Fig. 2. Overview of our three-step method. (a) An example of a local map represented as a bipartite graph consisting of four frames, five landmarks
and 17 edges which describe their observation relations (Section III-A). (b) The corresponding distance-radiance pairs (Section III-B) and their scatter plot.
The distance-radiance pairs of the same landmark share the same colour. The dashed curves are generated by (12) using ground truth values. There is no
distance-radiance pair associated with K1 or K5 because they appear in a very small number of frames (< 4). (c) The corresponding optimisation problem
(Section III-C) depicted by a hypergraph. Note these figures are illustrative. In reality, the local map typically contains many more landmarks, with each
landmark being observed in many more frames. The graph is thus much larger in practice.

limits their use. b) Real scenes with simulated fog: To this end,

dense ground truth depth must be obtained first before adding

fog to clear images according to (4). Most work adopting this

approach considers indoor scenes rather than outdoor ones

because dense depth measurements are less difficult to acquire

[36], [37]. Indoor scenes, however, usually have a very limited

depth range and therefore are, in general, not representative

of outdoor ones. In contrast, [38], [39] add simulated fog to

outdoor scenes. The authors rely on either monocular depth

estimation [40] or stereoscopic inpainting [41] to generate

dense pseudo-ground truth depth maps. However, such a

process can introduce undesirable artefacts in the synthesised

foggy images due to erroneous depth data. c) Simulated scenes

with simulated fog: In order to prepare training data (or at

least part of it to be used for pre-training) for data-hungry deep

neural networks, some researchers [42], [43] add simulated fog

to simulated scenes for which dense ground truth depth data is

available. However, in no way can such completely simulated

data replace real recordings for real-world, extremely safety-

oriented applications.
To summarise, no existing dataset focuses specifically on

real road scenes recorded by a vehicle driving in fog com-

prising high-resolution, consecutive left and right images. To

address the above concerns, we present SDIRF. Our dataset

has the following two additional features.

• We calibrated the camera’s photometric parameters to

make SDIRF photometrically ready for the deployment

of the atmospheric scattering model.

• We also collected the counterpart clear images in overcast

weather of the same routes. Such data can be useful for

quantitative evaluation of downstream depth estimation

and image defogging tasks.

III. METHODOLOGY

In a nutshell, given a sequence of stereo foggy images, our

method simultaneously estimates the parameters β, L∞ and

relevant Lcs of the atmospheric scattering model in (1) and

(2), and dynamically updates them as new images become

available. Fig. 2 depicts from left to right the three steps of

our method: the representation of a local map (Section III-A),

the generation of distance-radiance pairs (Section III-B), and

the parameter estimation via optimisation (Section III-C).

A. Representation of a Local Map

We first use the sequence of stereo images to build a local

3D feature map of the scene using a visual SLAM/odometry

system such as [11]. We build a local map, rather than a global

one, for two reasons: a) a local map entails a locally homoge-

neous fog model, as opposed to a globally homogeneous one;

b) the dimensions of the resulting optimisation problem are

smaller and thus can be solved more efficiently.

A local map is a collection of observations describing which

local frames observe which local landmarks. It is represented

as a bipartite graph G [Fig. 2(a) shows an example]:

G = (F,K,E) , (5)

where F denotes a set of left image frames, K denotes a set of

3D landmarks, and E denotes a set of edges each connecting

a frame in F to a landmark in K. More specifically, an edge

(m,n) ∈ E exists between the mth frame Fm ∈ F and the nth

landmark Kn ∈ K only if Fm observes Kn.
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Let En ⊆ E denote the set of edges incident to Kn. |En| is

therefore the number of frames that observe Kn, and E can be

partitioned as

E =

|K|
⋃

n=1

En. (6)

B. Generation of Distance-Radiance Pairs

Using the local map built in the previous step, we now

generate observations that will serve as data in the subsequent

optimisation step. More specifically, these observations are

distance-radiance pairs [Fig. 2(b)]. We use DLn to denote the

set of distance-radiance pairs associated with landmark Kn:

DLn = {(dmn , Lm
n ) : (m,n) ∈ En}, (7)

where dmn denotes the Euclidean distance between Kn and

Fm, and Lm
n denotes the radiance of Kn observed in Fm. The

distance dmn can be calculated from the output of a sparse

feature-based visual SLAM/odometry system, which typically

consists of camera poses and landmark positions. Imn , which

denotes the pixel intensity of landmark Kn’s corresponding 2D

feature point in frame Fm, is also typically available. Next, we

will explain how we derive Lm
n from Imn .

Gamma expansion/compression. We use g : [0, 255]→ R

to denote the mapping from pixel intensity I to radiance L. g
is essentially a gamma expansion [10], the inverse operation

of a digital camera’s image signal processor (ISP):

g (I) :− αIγ + ζ, (8)

where α > 0, γ > 1 (hence the name “gamma expansion”)

and ζ ∈ R are the photometric parameters that characterise

g. Inversely, we use g−1 : R → [0, 255] to map radiance to

intensity:

g−1 (L) :−

(

L− ζ

α

)
1

γ

. (9)

Calibrating the camera entails discovering the photometric

parameters α, γ and ζ. See Section IV-B for the details of

our calibration procedure.

We use DL to denote the overall set of distance-radiance

pairs, which can be expressed as the union of some (disjoint)

sets in (7):

DL =
⋃

n : |En|≥ξF

DLn, (10)

where ξF ∈ Z++ is a threshold that ensures that a landmark

is considered only if it is observed in at least ξF frames. As a

result, the number of disjoint DLns that form DL is typically

smaller than |K|.
Finally, in order to make the estimation of the fog param-

eters reliable, we require DL to consist of at least ξK ∈ Z++

disjoint DLns:

|{n : |En| ≥ ξF}| ≥ ξK. (11)

This condition is a prerequisite for the next step, estimating

the fog parameters via optimisation.

C. Parameter Estimation via Optimisation

This step estimates the fog parameters β and L∞, together

with the clear radiance Lc of the relevant landmarks, by

minimising a cost function that uses the observations DL

generated in the previous step. The problem of interest can

be represented as a hypergraph, in which vertices represent

variables to optimise, and edges represent observation errors

[44]. An edge connects two vertices that contribute to the

underlying observation error. In such a hypergraph [Fig. 2(c)

shows an example], there are two types of vertices.

• Vβ,L∞
encodes the fog parameters β and L∞. When

the fog is locally homogeneous, β and L∞ are invariant

within a local space and, in that case, there is only one

such vertex.

• VLcn
encodes the clear radiance Lcn of the nth landmark

Kn. The number of occurrences of such vertex is the same

as the number of disjoint subsets in DL (10).

According to the atmospheric scattering model in (1) and

(2), we can compute the predicted radiance value of the nth

landmark Kn observed in the mth frame Fm from the distance

dmn between Kn and Fm, the scattering coefficient β, the

atmospheric light radiance L∞, and Kn’s clear radiance Lcn:

predL
m
n = Lcn exp (−βd

m
n ) + L∞

(

1− exp (−βdmn )
)

= (Lcn − L∞) exp (−βdmn ) + L∞.
(12)

We define an error term ϵmn ∈ R to be the difference between

the observed radiance Lm
n and the corresponding estimated

radiance predL
m
n :

ϵmn = Lm
n − predL

m
n

= Lm
n −

[

(Lcn − L∞) exp (−βdmn ) + L∞

]

.
(13)

We can see that each ϵmn depends on β, L∞ and Lcn, and is

therefore associated with an edge between Vβ,L∞
and VLcn

in the hypergraph. We define

En = {ϵmn : (m,n) ∈ En} (14)

as the set of radiance errors associated with Kn. Also, E
will represent the overall set of radiance errors, which can

be expressed as the union of some (disjoint) sets in (14):

E =
⋃

n : |En|≥ξF

En. (15)

We define each residual term to be a loss function, e.g., Huber

loss or square loss, ℓ : R→ R+ of ϵmn . The total cost function

is a weighted sum of all residual terms. Our goal is to solve:

minimise
β,L∞,{Lcn : En⊂E}

∑

n : En⊂E

∑

m : ϵm
n
∈En

wm
n ℓ (ϵmn )

subject to lβ ≤ β ≤ uβ

lL∞
≤ L∞ ≤ uL∞

lLcn
≤ Lcn ≤ uLcn

,

(16)

where {Lcn : En ⊂ E} are the radiances of the relevant

landmarks, wm
n ∈ R+ is the weight associated with ϵmn , and

ls and us are the lower and upper bounds of the parameters,

respectively. In the following, we first analyse (16) and then

describe our initialisation scheme. We also explain how we

set each l and u, our two-stage strategy for solving (16), and

finally how we set each weight wm
n .
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1) Analysis of (16): We show that a) (16) is non-convex;

b) when the gamma correction in (8) is non-linear, i.e., γ ̸= 1,

solving (16) using ϵmn computed in the radiance domain or in

the intensity domain yields problems that are not equivalent.

Non-convexity. Consider an arbitrary error term ϵmn and,

without loss of generality, the square loss. Then, each un-

weighted term in the objective of (16) can be written as

f (β, L∞, Lcn)=
(

Lm
n −

[

(Lcn − L∞) exp (−βdmn ) + L∞

]

)2

.

(17)

A function is convex if and only if it is convex when restricted

to any line intersecting its domain [45, §3.1.1]. Consider then

(17) restricted to the line β = L∞ = ν, Lcn = 0, for ν ≥ 0:

ϕ (ν) := f (ν, ν, 0) =
(

b+ ν exp (−aν)− ν
)2

,

where a, b ≥ 0 are constants. The 2nd-order derivative of ϕ
with respect to ν is

ϕ′′ (ν) = 2
[

exp (−aν) (1− aν)− 1
]2

+ 2
[

b

+ ν exp (−aν)− ν
]

a exp (−aν) (ν − 2) .

Setting, for example, a = b = 1, one obtains ϕ′′ (0.2) ≈
−2.6 < 0, where the function is concave, and ϕ′′ (1) ≈
1.73 > 0, where the function is convex. Thus, f is neither

concave nor convex. In other words, it is non-convex. See our

supplementary material for a visual example of non-convexity.

Impact of gamma correction. As above, consider an

arbitrary error term ϵmn and a square loss. When we use

radiance, the corresponding unweighted term in (16) is given

by (17). Suppose now that we apply no gamma correction. In

this case, we directly use intensity and apply (4), making the

corresponding term in (16)

fint(βint, A, Jn) =
(

Imn −
[

(Jn −A) exp (−βintd
m
n ) +A

]

)2

,

(18)

where βint denotes the scattering coefficient when we use

intensity. Substituting Imn with g−1 (Lm
n ) defined in (9), (18)

becomes

[(

Lm
n − ζ

α

)
1

γ

−
[

(Jn −A) exp (−βintd
m
n ) +A

]

]2

. (19)

When γ = 1 (i.e., g is affine), (19) can be written as

α−2

[

Lm
n −

[

(

(αJn + ζ)− (αA+ ζ)
)

exp (−βintd
m
n )

+ (αA+ ζ)
]

]2

. (20)

Comparing (17) and (20), we observe that the two minimi-

sation problems are related by a positive scaling and the

following one-to-one mappings for the variables: β ← βint,

Lcn ← αJn + ζ and L∞ ← αA+ ζ. Thus, when γ = 1, (17)

and (18) yield equivalent problems [45, §4.1.3].

In the typical case where γ ̸= 1, the gamma correction alters

the structure of the model such that the above equivalence no

longer holds. To see this, let h (γ) := [(Lm
n − ζ)/α]1/γ and

c := (Lm
n − ζ)/α. A Taylor expansion of h (γ) around γ = 1

yields

h (1) + h′ (1) (γ − 1) +
1

2
h′′ (1) (γ − 1)

2
+ · · ·

= c− (ln c) c (γ − 1) +
1

2
(ln c) (2 + ln c) c (γ − 1)

2
+ · · · .

(21)

We can see that if any of the 1st-order and the subsequent

higher-order terms in (21) is non-zero, then (17) and (18) no

longer yield equivalent problems. In Section V-F2, we will

show this experimentally and investigate how the estimate of

β is affected by this non-linearity.
2) Initialisation: We will solve (16) with an iterative algo-

rithm, e.g., Levenberg–Marquardt. However, since (16) is non-

convex, it is critical to initialise β, L∞ and {Lcn : En ⊂ E}
properly. Our initialisation strategy is as follows. Assuming the

fog to be locally homogeneous, if we have access to previous

estimates β̂, L̂∞ and {L̂cn : En ⊂ E}, obtained from the

last run of our fog estimation process, we use these values

as initialisation. Otherwise (i.e., if the fog estimation process

has never run before, or if Lcn has never been estimated

before), we set β = 0.014, which is the geometric mean

of its lower and upper bounds (Section III-C3). For L∞,

we use the radiance of all landmarks observed from the

maximal distance. And for Lcn, we use the radiance of the

corresponding landmark observed from the minimal distance.
3) Parameter Bounds: We set lβ = 0.001 and uβ = 0.2,

which, according to (3), corresponds to a visibility range of

[15, 3000] meters, values that are conservative.

Next, we set the bounds for each Lcn, and build a candidate

set for lL∞
at the same time, as explained below. For each

Lcn, we first determine if it is lower or higher than L∞ by

computing the slope kn of the line going through the intensities

observed at the maximal and the minimal distances:

kn =

(

g−1

(

Ldmax
n

)

− g−1

(

Ldmin
n

)

)

/ (dmax − dmin) , (22)

which will then be compared to a threshold η ∈ R++. If kn >
η (i.e., strongly positive), we set lLcn

= g (0) and uLcn
=

Lc
dmin
n , and we add Lc

dmax
n to the candidate set for lL∞

. If

kn < −η (i.e., strongly negative), we set lLcn
= Lc

dmin
n and

uLcn
= g (255). If neither, we set lLcn

= g (0) and uLcn
=

g (255). See our supplementary material for more details.

Finally, we let lL∞
be the median value of its candidate set,

and uL∞
= g (255). We noticed if we set uL∞

in a similar

way to lL∞
(i.e., let uL∞

be the median value of its candidate

which consists of Lc
dmax
n when kn < −η), its value is often

underestimated. We think this is caused by the fact that objects

that are brighter than L∞ are rare in a foggy scene.
4) Two-stage Optimisation: We adopt a two-stage optimi-

sation strategy following [11]. In the first stage, we let ℓ be the

Huber loss (with parameter δ) in order to mitigate the effect of

outlier observations. In the second stage, we let ℓ be the square

loss and perform optimisation using inlier observations only.

After the first stage, our system keeps track of the number of

times each relevant observation, i.e., each relevant edge in the

bipartite graph of Fig. 2(a), is classified as an inlier, which is

done by evaluating each residual term and comparing it with
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δ. That number, cmn ∈ Z+, for landmark Kn observed in frame

Fm, will be used to set the weight wm
n in (16), as explained

below.

5) Residual Weights: The partial derivatives of (13) are

∂ϵmn
∂β

= dmn (Lcn − L∞) exp (−βdmn ), (23a)

∂ϵmn
∂L∞

= exp (−βdmn )− 1, (23b)

∂ϵmn
∂Lcn

= − exp (−βdmn ). (23c)

We argue that the larger the radiance difference between a

landmark’s Lc and L∞, the more suitable that landmark is for

estimating β. As can be seen from (23a), the partial derivative

of ϵmn with respect to β is proportional to (Lcn − L∞). This

suggests that when Lcn is close to L∞ this term diminishes,

causing difficulties in finding the optimal β. Intuitively, when

Lcn is close to L∞, the range of the predicted radiance predL
m
n

flattens out according to (12) and therefore ϵmn contains very

little information on the inference of β.

In light of this, we heuristically set the weight in our first

optimisation stage to be the product of the following two

terms: the absolute difference between the previous estimates

L̂cn and L̂∞, and the current inlier count of the corresponding

observation plus one:

wm
n = |L̂cn − L̂∞| · (c

m
n + 1) . (24)

It can be seen that the first term is landmark-dependent, while

the second term is observation-dependent.

Our weighting scheme in the first stage is apparently related

to iteratively reweighted minimisation strategies proposed in

the sparse regression literature, for example [46], [47], which

comes with theoretical guarantees for convergence even for

some non-convex problems. Such a strategy, however, involves

solving a sequence of optimisation problems, making it com-

putationally expensive. We therefore opt to solve just one

instance of (16) at a given frame. Specifically, each weight

wm
n , which is computed from estimates from a previous frame,

remains constant while solving (16) for the current frame.

In our second optimisation stage where only inlier observa-

tions are used, we use uniform weighting.

Results of our ablation study (Section V-D4) show that

our weighting scheme performs better than naively uniformly

weighting all residual terms in both optimisation stages.

IV. SDIRF DATASET

In this section, we introduce the data collection and the

photometric calibration of SDIRF. More details can be found

in our supplementary material.

A. On-road Data Collection

We collected the on-road data during September 2023 in

Rosyth, Queensferry and Penicuik near Edinburgh, Scotland.

Foggy data was collected first, and the counterpart clear data in

overcast weather was collected two weeks later by traversing

the same routes.

We used an off-the-shelf stereo camera ZED 2i which

features an electronic synchronised rolling shutter and a built-

in inertial measurement unit (IMU). It was placed behind

the windshield of a car and connected to a laptop installed

with the ZED software development kit (SDK) and the ZED

Robot Operating System (ROS) wrapper. Considering the

way the windshield inclines and that the mounting holes are

located at the bottom of the camera but not at its top, it was

mounted upside down for convenience and safety reasons (see

our supplementary material for a picture of the setup). We

accordingly set the “camera flip” parameter to “true” to allow

the SDK to account for this upside-down setup to generate the

correct stereo images. The left frames of these images, whose

poses are estimated by a SLAM algorithm in our method and

to which the 3D positions of all landmarks are referenced,

were actually acquired by the right camera because of this

upside-down setup. Therefore, our photometric calibration was

later performed on the right camera (Section IV-B).

We disabled the camera’s auto-white balance and auto-

exposure functionalities. Instead, we used a fixed white bal-

ance, and manually adjusted the exposure time, in conjunction

with the gain, according to the lighting condition of the scene.

We took note of the combination of exposure time and gain

used to collect each data sequence. Later we performed a

photometric calibration for each combination of these two

parameters (Section IV-B).

During the collection, the data, together with the times-

tamps, was logged to ROS bags, which were later parsed to

generate the following files.

• Rectified2 left and right images at a frame rate of 15 Hz

saved as PNG files, each at a resolution of 1920× 5803.

• IMU data at a rate of 400 Hz saved as CSV files.

• Magnetometer data at a rate of 50 Hz saved as CSV files.

In total, 52 data episodes were collected. Apart from just one

episode that contains only a foggy sequence, the remaining 51

episodes comprise a foggy sequence and a counterpart clear

sequence of the same route. The total duration of the foggy

and the clear videos are 2578 seconds and 2443 seconds,

respectively. Further, by visually examining the images, we

subjectively classify the 52 foggy sequences into thin fog (20

sequences totalling 1101 seconds) and thick fog (32 sequences

totalling 1477 seconds). See Fig. 3 for sample images.

B. Photometric Calibration

As (1) shows, the atmospheric scattering model operates in

the radiance domain. However, the ZED 2i camera features

an onboard ISP and can only save the digitally post-processed

intensity data, but not the raw radiance data. Therefore, for

the on-road data that we recorded, we have to infer the

2The stereo rectification was performed by the camera’s SDK using its
factory calibrated stereo parameters.

3The original image size was 1920×1080. The images were later cropped
by 290 pixels at the top (to remove the mostly-sky region) and by 210 pixels
at the bottom (to remove the car’s bonnet and interior reflections caused by
the windshield). The final image size after cropping has an aspect ratio of
1920/580 ≈ 3.31, which is very close to the aspect ratio (1241/376 ≈ 3.30)
of the images in the KITTI odometry benchmark [23]. See our supplementary
material for an example image that illustrates the effect of our cropping.
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Fig. 3. Sample images of SDIRF. We show eight foggy-clear image pairs, which are grouped into four columns. Each column contains a thin fog situation
(first row) and a thick fog situation (third row). The second and fourth rows show the corresponding clear images taken in overcast weather.

(a) (b) (c)

Fig. 4. Our photometric calibration setup.

radiance values from the intensity values. This process requires

the photometric parameters of the camera to be known, and

we achieve this by performing a photometric calibration in

a controlled laboratory where the radiance values can be

measured by an optical power meter. Our calibration process

focuses on recovering the parameters of gamma correction,

which introduces the largest amount of non-linearity in the

mapping between radiance and intensity [10]. We will explain

our calibration setup, the experiments we conducted, and how

we infer the photometric parameters from the experimental

data.

1) Setup: Our calibration setup is shown in Fig. 4. The

only light source was an LED light bar with 20 different,

adjustable levels of brightness. It emitted diffused light against

a big white sheet (in matte finish), which was used as the

target. The light bar was affixed to a height-adjustable platform

mounted onto the base bench using screws. The camera was

mounted the right way up onto a platform which, in turn,

was attached to the base bench via three kinematic mounts.

Using kinematic mounts ensured that the camera’s position

relevant to the base bench remained the same every time it

was removed then reattached. When attached, its image plane

was roughly aligned to the sheet and the principal axis of the

right camera intersected the centre of the sheet. To measure

the optical power perceived by the camera, we used an optical

power meter paired with an optical power detector. A lens

mount (with no lens mounted) was affixed to the base bench

and placed just in front of the right camera’s position for

attaching the detector head.

2) Experiments: We calibrated the photometric parameters

for each combination of exposure time and gain that had

been used when collecting the on-road data. The rest of the

camera settings were configured identically to the ones used in

our data collection. To avoid image saturation, the target was

placed further away from the test bench when we used longer

exposure time. During calibration, we alternated between the

following two modes.

• Photo mode [Figs. 4(a) and 4(b)]. In this mode, the detec-

tor head is removed from the lens mount, the camera’s

platform is attached to the base bench, and we let the

camera take a stereo pair of photos of the target. In

particular, the right camera images the target through the

hole of the lens mount.

• Power measurement mode [Fig. 4(c)]. In this mode, the

camera’s platform is removed from the base bench, the

detector head is attached to the lens mount, and we record

the measured optical power reading from the power meter

screen.

Fixing the exposure time and gain to a given combination,

Fig. 5 shows the images of the right frame taken at the 20

different levels of brightness.

3) Photometric Parameter Characterisation: For each

colour channel of each image, we need to associate an intensity

value with each optical power measured. We compute the

intensity by averaging the pixel values of a circular area with

a radius of 500 pixels (see the magenta outline in the very last

image of Fig. 5) within the target region in an image. Given the

intensity values and the corresponding optical power readings,

we use least squares fitting to estimate α, γ and ζ in (8).

Fig. 6 plots the data points obtained from the image series

in Fig. 5 and the fitted curves. We can see that all curves bend

upwards (i.e., γ > 1), which is in line with the expectation of

a gamma expansion.

V. EXPERIMENTS

We now describe our experiments. After introducing the

data used for evaluation and competitive methods, we describe

our implementation details. Then, we present thorough results
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Fig. 5. The right images taken at the 20 different levels of brightness, overlaid with the corresponding
measured optical power (in µW).

Fig. 6. The data points obtained from the image series
in Fig. 5 and the fitted curves.

(a) (b) (c)

Fig. 7. Sample synthetic foggy images for evaluation. (a) VKITTI2 (VMOR = 40 m). (b) KITTI-CARLA (VMOR = 60 m). (c) DRIVING (VMOR = 80 m).

on both synthetic and real data. Finally, we report two addi-

tional experiments that further showcase the superiority of our

method over others.

A. Data for Evaluation

We use both synthetic and real data for evaluation.
To generate synthetic foggy images we use the following

three datasets: the Virtual KITTI 2 dataset [48] (VKITTI2),

the KITTI-CARLA dataset [49] and the Driving dataset

(DRIVING) [50]. They all contain sequences of left and right

clear intensity images as well as the corresponding left and

right ground truth depth maps. For each clear image, we

first compute a distance map from its ground truth depth

map, and then synthesise a corresponding foggy image by

applying (4) rather than (1) (because the camera’s photo-

metric parameters are not available) to each channel. For

all three colour channels, we fix A at 255 × 0.7 = 178.5,

255 × 0.8 = 204.0 and 255 × 0.9 = 229.5 for VKITTI2,

KITTI-CARLA and DRIVING, respectively. These values of

A fall within the typical range [0.7, 1] which previous work,

for example [51], [52], extensively adopted to synthesise

foggy images. For each dataset, six different visibility levels

at VMOR = {30, 40, 50, 60, 70, 80} meters are tested. The

corresponding ground truth β values are calculated according

to (3). See Fig. 7 for sample synthetic foggy images at various

visibility levels, and see our supplementary material for a

summary of the synthetic datasets we use for evaluation.
For evaluation on real foggy data we use our self-collected

SDIRF dataset introduced in the previous section.

B. Competitive Methods

To the best of our knowledge, there is very limited existing

work on estimating both A and β. Firstly, we report the

results of Berman et al. [4] which estimates A only. We

further compare our method with the fog estimation strategy

proposed by Li et al. [6] (estimating both A and β) as well

as our modified version of that strategy, which resulted in

a major improvement over the original one. We made two

main modifications: Firstly, as proposed by [53], to estimate

A, we use the median, instead of the maximum [3], of the

0.1% pixels with the largest dark channel values. Secondly,

when building the histogram of values of β, we discard values

of β outside the range [0.001, 0.2]. This is motivated by the

observation, typically at lower visibility, that a proportion of

β values are negative and that there is a large cluster of β
centred at the value of zero. In many situations, the zero bin

has the highest counts, leading to a wrong estimate of β. Figs.

8(a) and 8(b) show examples of unbounded and bounded β
histograms, respectively, at 30 m visibility. As we will show

later, this modified version greatly improves the original one’s

performance and therefore we deem it to be a much stronger

baseline method. Note that the above range of β that we use

in the modified version of Li’s method is consistent with the

bounds of β that we set in our method (Section III-C3) when

solving (16). This ensures a fair comparison between them.

C. Implementation Details

We empirically set ξF = 4 in (10), ξK = 15 in (11),

η = 2 when determining the bounds for each relevant Lcn

(Section III-C3), and δ = 5 (in the intensity domain) when

defining the Huber loss in the first stage of our optimisation

(Section III-C4). We fix these parameters throughout all our

experiments.

To make a fair comparison, for all methods we use the stereo

ORB-SLAM2 [11] to facilitate multiple observations of the
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Fig. 8. β histogram examples generated by: (a) Li’s method [6]; (b) and (c) our modified version of it. Note that the vertical axes have different scales. (a)
Unbounded β estimates at 30 m visibility. The highest bin, which occurs at zero, leads to a wrong estimate of β. (b) Bounded (within the range [0.001, 0.2])
β estimates at 30 m visibility. The highest bin occurs at 0.097, which is much closer to the ground truth β value of 0.1. (c) Bounded (within the range
[0.001, 0.2]) β estimates at 80 m visibility. Comparing (c) to (b), we observe that the total number of β estimates that are used to build the histogram is
typically much larger at a higher visibility level.

same landmark from a range of known distances. These obser-

vations are established from ORB-SLAM2’s local key frames

and local map points after its local bundle adjustment. The fog

parameters are updated after ORB-SLAM2’s local mapping

thread only after the ego-vehicle has moved at least five meters

from the origin (for the very first estimation) or from the

position of the last update (for subsequent estimations). We use

the Ceres Solver [54] and choose the Levenberg–Marquardt

algorithm to solve (16). See our supplementary material for

more implementation details including pseudo-code.

Due to the way we generate synthetic foggy images, we

have assumed that both g and g−1 are identity mappings for all

colour channels. For real foggy data from SDIRF, in contrast, g
and g−1 are characterised by the parameters α, γ and ζ found

during our photometric calibration and therefore are channel-

specific. Unless otherwise specified, the fog parameter results

we report in the rest of this section are from the grayscale

foggy images.

D. Evaluation on Synthetic Data

We conduct extensive experiments and present both quan-

titative and qualitative results.
1) Quantitative Results: We compute the root-mean-square

error (RMSE), the mean-absolute error (MAE) and the stan-

dard deviation (SD), in both absolute and relative4 scales, of

the β and A5 estimates. Table I shows the quantitative results

of the average β and A error metrics on synthetic datasets6.

We observe that in most cases our method performs the

best, in terms of both estimation accuracy (i.e., smallest errors)

and precision (i.e., the lowest standard deviation). The only

exception is VKITTI2’s A error metrics, but our β metrics are

still the best in this case. A closer look at VKITTI2’s results

shows that our bad estimates of A stem from countryside

scenes with sparse features (Scene02), or when the ego-vehicle

is surrounded by other vehicles moving at similar speeds

(Scene18). In either case the ORB-SLAM2’s performance has

been significantly degraded and therefore produces unreliable

4A relative metric is calculated as the ratio of the corresponding absolute
metric to the ground truth value, and is shown as percentage in Table I and
Fig. 10.

5A and L∞ are essentially the same for synthetic data since g and g−1

have been defined as identity mappings.
6Result of Town04 in KITTI-CARLA at 30 m visibility is excluded as the

ORB-SLAM2 loses tracking and provides no valid observation.

distance and/or intensity information. We will investigate how

to address this limitation in our future work.
2) Qualitative Results: Fig. 9 illustrates how the estimates

of β and A vary with frame at various visibility levels on

scene “backwards” in DRIVING.
We observe that the values of β and A estimated by our

method are closer to the ground truth values and more stable

compared to other methods.
3) Error Metrics given Partial Ground Truth: We test the

estimation performance of β on KITTI-CARLA given the

ground truth value of A. The quantitative results are shown

in the middle block of rows in the middle subtable of Table I.
We observe: a) As expected, all methods perform better

when ground truth A is given; b) For Li’s and Li’s modified

methods, there is a significant improvement in β’s error

metrics when the ground truth A is given. This is not surprising

due to their sequential estimation strategy, since an error-free

A will indeed benefit the subsequent estimation of β. This

observation adds to the evidence that, in their method, any

error in the estimate of A can propagate to the estimate of β;

c) For our method, such improvement is much less significant.

This may suggest that our method, when simultaneously

optimising β and A with minimal prior knowledge, is able

to find a β value that is not far from the optimal solution.
4) Ablation Study: We conduct an ablation study on KITTI-

CARLA to better understand how our optimisation setup

affects the performance of the fog parameter estimation. The

following additional settings are experimented with: a) One-

stage: Only the first stage of our optimisation is preserved; b)

Uniform weight: We set wm
n = 1 for all observations in both

optimisation stages. The quantitative results are shown in the

bottom block of rows in the middle subtable of Table I.
We observe: a) If one-stage optimisation is performed or a

uniform weight is used, the estimation results are inferior to

those produced by our full method; b) These two settings still

outperform all competitive methods, despite trailing behind

our full method.
5) Error Metrics vs Visibility: We investigate how the fog

parameter estimation performance varies with visibility. Fig.

10 plots the relative RMSE of β and A against visibility.
We observe: a) Our method consistently excels by a large

margin in both estimates of β and A for all visibility levels

tested; b) Both Li’s and Li’s modified demonstrate a downward

trend in the relative RMSE of β as visibility increases. By
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TABLE I
AVERAGE β AND A ERROR METRICS ON SYNTHETIC DATASETS. RELATIVE METRICS ARE SHOWN AS PERCENTAGE. FOR ALL THE METRICS, THE

LOWER THE BETTER (↓). THE TABLE ALSO CONTAINS THE RESULTS ON OUR ABLATION STUDY USING KITTI-CARLA.

Dataset Method
β A

RMSE (↓) MAE (↓) SD (↓) RMSE (↓) MAE (↓) SD (↓)
Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.

VKITTI2 [48]

Berman’s [4] N/A N/A N/A 4.7547 2.66 3.7004 2.07 2.9130 1.63
Li’s [6] 0.0430 66.39 0.0347 52.17 0.0225 37.17 3.8760 2.17 1.8920 1.06 3.3408 1.87
Li’s modified 0.0113 16.74 0.0080 11.47 0.0091 14.07 1.5921 0.89 0.8374 0.47 1.2550 0.70

Ours 0.0078 10.91 0.0061 8.57 0.0061 8.60 2.5495 1.43 1.9276 1.08 1.8575 1.04

KITTI-CARLA [49]

Berman’s [4] N/A N/A N/A 12.6372 6.19 12.3382 6.05 2.6533 1.30
Li’s [6] 0.0499 84.01 0.0452 75.84 0.0199 34.66 15.9104 7.80 15.1337 7.42 4.3683 2.14
Li’s modified 0.0166 28.41 0.0143 24.35 0.0105 18.29 10.3676 5.08 9.6282 4.72 3.3599 1.65
Ours 0.0116 20.66 0.0101 18.11 0.0058 10.33 2.5711 1.26 1.8632 0.91 2.1219 1.04

Li’s [6] (GT A) 0.0357 59.57 0.0250 41.48 0.0297 50.50 - - -
Li’s modified (GT A) 0.0109 19.24 0.0081 14.47 0.0087 15.37 - - -
Ours (GT A) 0.0099 17.76 0.0087 15.57 0.0055 9.74 - - -

Ours (One-stage) 0.0122 21.27 0.0108 18.85 0.0063 10.81 3.4662 1.70 2.5064 1.23 2.8686 1.41
Ours (Uniform weight) 0.0122 21.67 0.0107 19.05 0.0061 10.66 2.9282 1.44 2.2646 1.11 2.2818 1.12

DRIVING [50]

Berman’s [4] N/A N/A N/A 17.6183 7.68 11.6009 5.05 15.5607 6.78
Li’s [6] 0.0465 75.56 0.0387 62.39 0.0260 43.19 14.0963 6.14 11.2103 4.88 8.5101 3.71
Li’s modified 0.0168 26.85 0.0117 18.99 0.0129 20.56 12.9722 5.65 9.5988 4.18 8.7345 3.81
Ours 0.0051 8.98 0.0037 6.44 0.0033 6.66 1.9021 0.83 1.3379 0.58 1.6629 0.72

Fig. 9. Evaluating β and A estimates vs frame on scene “backwards” in DRIVING at various visibility levels. (a) 30 m. (b) 50 m. (c) 70 m. Ground truth
values are indicated by black dotted lines. We observe that our modified version of Li’s method improves the original one’s performance slightly in the
estimation of A and significantly in the estimation of β. Nevertheless, both of them, as well as Berman’s method, result in many large errors. The performance
of our method surpasses the rest by a large margin. We also highlight that how an error in the estimate of A propagates to the estimate of β in the results
of Li’s method and Li’s modified method [an underestimate of β, for example around frame 200 in (a), occurs with an overestimate of A] is in line with the
theoretical analysis of error propagation that we provide in our supplementary material.

Fig. 10. Evaluating the relative RMSE vs VMOR on DRIVING. (a) β. (b) A.

comparing the histogram in Fig. 8(c) with that in Fig. 8(b),

we infer that as visibility increases, the number of estimates

of β to build a histogram becomes larger, which in turn

improves the performance of the statistics-based estimation

method used by the two baseline methods; c) All methods

witness an upward trend in the relative RMSE of A as visibility

increases, which is expected because images will appear to be

less fog-obscured as visibility increases.

E. Evaluation on Real Data

For real foggy data from SDIRF, we focus on qualitative

evaluation because it is not possible to obtain the ground truth

values of the fog parameters for real foggy images taken in

an open, uncontrolled environment.
1) Scattering Coefficient Estimation: We examine both

inter-sequence consistency and intra-sequence consistency be-

tween the perceptual density of the fog and the estimated β.
Firstly, in Fig. 11 we show the normalised histograms of

β estimated by various methods of the eight foggy sequences
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Fig. 11. Evaluating the inter-sequence consistency of β on SDIRF. We plot the normalised histograms of the estimated β of the whole thin/thick foggy
sequences whose first left frames are shown in the corresponding columns of Fig. 3. Each row shows the results of a method. Note that all horizontal axes
have the same scale. Our method is always the best at distinguishing between thin and thick fog by having the least overlap between the two distributions.
Furthermore, in legend we show the mean visibility, V̄ MOR, calculated from the mean β (indicated by the dashed vertical line) according to (3). We observe
that the mean visibility values from our method are much more reasonable than the rest when compared with the foggy images in Fig. 3.

Fig. 12. Evaluating the intra-sequence consistency of β on SDIRF. We show the estimate of β vs frame of two foggy sequences in which the fog demonstrates
a noticeable spatial variation in its density. (a) The vehicle traverses an area where the fog suddenly thickens. (b) The vehicle traverses an area where the
fog gradually weakens. Shown at the bottom are the foggy images of the frames which are indicated by the vertical cursors in the corresponding plot above.
Each image is bordered by the colour that matches the corresponding cursor’s. See the close-up of yellow squares to better visually compare the fog density.
We observe that our method is the only one that is able to respond adaptively to changes in fog density through updating the estimated values of β. These
results also add to the evidence that our assumption of local homogeneity of fog is still valid when the fog is spatially variant.

whose first left frames are shown in Fig. 3. The key observa-

tion is that our method demonstrates the best inter-sequence

consistency between the visual appearance of the foggy images

and the estimated β. In addition, the mean visibility value

computed according to (3) using the mean β value estimated

by our method is perceptually more sensible than the rest. See

our supplementary material for more results.
Secondly, in Fig. 12 we plot the estimated β vs frame of two

foggy sequences in which the fog demonstrates a noticeable

spatial variation in its density. The key observation is that

our method, being the only one that is capable of responding

adaptively to spatial variation in fog density, demonstrates the

best intra-sequence consistency between the visual appearance

of the foggy images and the estimated β.
2) Atmospheric Light Estimation: For real foggy images,

atmospheric light is no longer monochrome. Therefore, we

apply our method to each colour channel.
Firstly, we visually compare the atmospheric light estimated

by various methods. After obtaining the estimate of L∞ of

each colour channel by each method, for visualisation purposes

we map it back to pixel intensity A by applying g−1 so that its

colour can be illustrated. Sample results are shown in Fig. 13.

The key observation is that the atmospheric light estimated by

our method is the closest to the colour of the horizon, i.e., the

most fog-opaque region in a foggy image. We also observe

that our method is more robust to changes in the atmospheric

light than competing ones.
Next, we take a step further by visually comparing the

defogging results using L∞ estimated by various methods. To

facilitate a fair comparison between all methods such that the

only difference is L∞, we follow [3] to estimate t and perform

defogging. Again, for visualisation purposes, we apply g−1 to
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(a)

146.36 139.03 138.17 8.11

Li’s [6] Li’s mod Berman’s [4] Ours GT

(b)

144.10 136.04 148.83 14.01

Li’s [6] Li’s mod Berman’s [4] Ours GT

(c)

171.93 164.31 155.19 20.55

Li’s [6] Li’s mod Berman’s [4] Ours GT

(d)

147.22 139.20 131.04 7.84

Li’s [6] Li’s mod Berman’s [4] Ours GT

Fig. 13. Evaluating the accuracy of the estimated A on SDIRF. The small rectangles at the bottom are painted the colours of A estimated by various methods.
We also show A’s pseudo-ground truth colour, which is extracted by visually examining each foggy image then manually selecting a pixel just above the
horizon in the central area (see the little yellow square in each foggy image). Each rectangle is overlaid with the Euclidean distance from the corresponding
estimate to the pseudo-ground truth. Note that the real foggy images are typically very different from the simulated ones shown in Fig. 7 in a way that the
sky region is not of a uniform colour, which is particularly the case of a foggy image taken at dawn. We infer that this phenomenon causes competitive
methods to fail as they all estimate the atmospheric light from a single image. The results demonstrate that only our method is able to accurately unveil the
atmospheric light. In addition, our method is more robust to changes in the atmospheric light.
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Fig. 14. Evaluating the atmospheric light estimated by various methods (top four rows) on SDIRF by using it to perform defogging following [3]. The input
foggy images are shown in the corresponding columns of Fig. 13. The corresponding clear images recorded in overcast weather are shown in the last row
to serve as pseudo-ground truth. We observe: a) The defogged images which use the atmospheric light estimated by our method appear to be more accurate
in colour compared to others with minimal visual artefacts; b) Using the atmospheric light estimated by our method, fog on distant objects seems to be
better removed (see the close-up of yellow squares). In addition, we investigate how two state-of-the-art, end-to-end deep learning-based defogging methods,
DehazeFormer [55] and C2PNet [56], perform on the same foggy images (in the intensity domain, as their networks were trained on intensity images). The
results are shown in the middle two rows between the dashed lines. The key observation is that for both methods their defogging effect is barely visible.

the defogging results, and the final defogged images are shown

in the top four rows in Fig. 14. The clear images recorded

in overcast weather are shown in the last row as pseudo-

ground truth. The key observation is that using the atmospheric

light estimated by our method yields defogged images that are

perceptually superior to those produced by other methods.

In addition, we evaluate two state-of-the-art, end-to-end

deep learning-based defogging methods, DehazeFormer [55]

and C2PNet [56], on the same foggy images (in the intensity

domain, as their networks were trained on intensity images).

The results are shown in the middle two rows between the

dashed lines in Fig. 14. Compared with the foggy images in

Fig. 13, their defogging effect is barely visible.

See our supplementary material for more results, including

comparisons of the estimated atmospheric light and the de-

fogged images obtained in the radiance and intensity domains.

F. Additional Experiments

We report two additional experiments to demonstrate a)

our results on β’s wavelength dependence align with what

was reported from previous physics experiments; b) the non-

linearity introduced by gamma correction cannot be ignored

when estimating β.
1) Scattering Coefficient’s Wavelength Dependence: In this

experiment, we apply our method to each colour channel

(RGB) as well as to the grayscale image independently, and

investigate how β varies with wavelength.
To this end, we examine all β estimates from a total of

34457 frames evaluated on all foggy sequences of SDIRF.
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Fig. 15. Investigating β’s wavelength dependence on all foggy sequences in
SDIRF. The results of Li’s modified method are shown in (a) and (b), and the
results of our method are shown in (c) and (d). From (c) and (d) we observe
that the case βR > βG > βB tends to happen at a larger β value, whereas
the case βR < βG < βB tends to happen at a smaller β value. The remaining
cases tend to happen at intermediate β values. The above observations are in
line with [57, Figure 6.12]. However, they cannot be made from (a) or (b).

We categorise the β values obtained from each frame into

the following three cases: a) βR > βG > βB (i.e., β strictly

increases with wavelength); b) βR < βG < βB (i.e., β strictly

decreases with wavelength); c) Otherwise. We investigate how

these three cases are distributed as the grayscale scattering co-

efficient βgrayscale, which measures the mean visibility, changes

for both Li’s modified method and our method. The results are

are illustrated in Fig. 15 as normalised histograms [(a) and (c)],

and as cumulative distribution curves [(b) and (d)].

The key observation is that the results of our method align

with [57, Figure 6.12], which shows that at lower visibility

(i.e., a larger β) the relative attenuation of different colour

channels tends to increase with wavelength (i.e., βR > βG >
βB), whereas at higher visibility (i.e., a smaller β) it tends to

decrease with wavelength (i.e., βR < βG < βB). In contrast,

the results of Li’s modified method do not show such trends.

2) Gamma Correction: We investigate the effect of the non-

linearity caused by gamma correction on the estimate of β.

Firstly, we conduct the following experiment using simu-

lated data. We generate clean data consisting of the radiances

of a number of landmarks observed from a range of distances

according to (1) [i.e., drawing samples from the dotted lines

shown in Fig. 2(b)] with ground truth βGT = 0.025, which

is then corrupted with random Gaussian noise. We then

apply g−1 (with γ > 1 in accordance with our photometric

calibration results) to convert the radiance data to intensity

data. Next, we use our proposed method to estimate two β
values, one from the radiance data and one from the intensity

data. The experiment is repeated 1000 times. Due to random

noise, each instance leads to slightly different values for β.

We plot their histogram in Fig. 16(a). We observe that using

intensities we tend to overestimate β, whereas using radiances

the estimates seem to be unbiased. In fact, estimating β using

intensity always yields estimates larger than using radiance.

Our experiment also reveals that a) the direction of the bias

depends on whether γ > 1 or γ < 1; b) the amount of the

bias increases as γ deviates from 1. See our supplementary

material for more details of the experiment and the results.

Finally, in Figs. 16(b) and 16(c) we show the counterparts of

Figs. 15(c) and 15(d) but using intensities instead of radiances.

Fig. 16. (a) Investigating how the gamma correction affects the estimate of β
using simulated data. We observe that using intensities rather than radiances
overestimates β. Comparing (b) and (c) with their counterparts [Figs. 15(c)
and 15(d)], we can see that using intensities rather than radiances makes both
the histograms and the cumulative distribution curves significantly overlap.

We observe that this time the histograms and the cumulative

distribution curves significantly overlap, which adds to the

evidence that the atmospheric scattering model should be

applied to radiances rather than to intensities.

VI. CONCLUSION

We presented an optimisation-based method for estimating

the parameters of fog. While prior methods adopt a sequential

estimation strategy that is prone to error propagation, our

method simultaneously estimates the parameters by solving

a minimisation problem. Extensive experiments show that our

method outperforms prior ones on synthetic data both quali-

tatively and quantitatively, and on real data qualitatively from

various aspects. Our method has the potential to be plugged

into an existing feature-based visual SLAM/odometry system

as an add-on module for its deployment in fog. In addition, we

have introduced SDIRF, a dataset consisting of high-quality,

consecutive stereo foggy images of real road scenes under a

variety of visibility conditions. SDIRF also provides calibrated

photometric parameters, which makes it photometrically ready

to apply the atmospheric scattering model, as well as counter-

part clear images taken in overcast weather of the same routes,

which will be useful for companion work in image defogging

and depth reconstruction. All of the above features together

make SDIRF a first-of-its-kind dataset for the study of visual

perception for autonomous driving in fog.

In the future, we will investigate how to improve the

resilience of our method when the underlying visual SLAM

system struggles to generate accurate distance and/or intensity

(hence radiance) information, which is a limitation of our

current method. Our experimental results in Section V-D1

suggest that these situations arise in countryside scenes with

very sparse features or when the ego-vehicle is surrounded

by other vehicles moving at similar speed. To this end, we

will consider the following two approaches: a) to more tightly

couple our method with a visual SLAM system by jointly

optimising the fog parameters, the camera’s poses, and the

landmark’s 3D positions; b) to integrate our method into a

visual-inertial SLAM system (e.g., ORB-SLAM3 [58]) that is

inherently more robust in the presence of fog.
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