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The Rate-Distortion-Perception-Classification

Tradeoff: Joint Source Coding and Modulation via

Inverse-Domain GANs
Junli Fang⋆, João F. C. Mota⋆, Baoshan Lu, Weicheng Zhang, Xuemin Hong

Abstract—The joint source-channel coding (JSCC) framework
leverages deep learning to learn from data the best codes for
source and channel coding. When the output signal, rather than
being binary, is directly mapped onto the IQ domain (complex-
valued), we call the resulting framework joint source coding and
modulation (JSCM). We consider a JSCM scenario and show
the existence of a strict tradeoff between channel rate, distortion,
perception, and classification accuracy, a tradeoff that we name
RDPC. We then propose two image compression methods to
navigate that tradeoff: the RDPCO algorithm which, under
simple assumptions, directly solves the optimization problem
characterizing the tradeoff, and an algorithm based on an
inverse-domain generative adversarial network (ID-GAN), which
is more general and achieves extreme compression. Simulation
results corroborate the theoretical findings, showing that both
algorithms exhibit the RDPC tradeoff. They also demonstrate
that the proposed ID-GAN algorithm effectively balances image
distortion, perception, and classification accuracy, and signif-
icantly outperforms traditional separation-based methods and
recent deep JSCM architectures in terms of one or more of these
metrics.

Index Terms—Image compression, joint source-channel cod-
ing, joint source coding and modulation, generative adversarial
networks, rate-distortion-perception-classification tradeoff.

I. INTRODUCTION

Traditional communication systems follow the celebrated

source-channel coding theorem by Shannon [1], which states

that source coding and channel coding can be designed sep-

arately without loss of optimality. Source coding removes

redundant information from a signal, for example, by repre-

senting it in a different domain and zeroing out small coeffi-

cients. Channel coding, on the other hand, adds to the result-

ing compressed signal additional information, error-correcting

codes, to make its transmission via a noisy channel more

robust. Such a modular design, while optimal for memoryless

ergodic channels with codes of infinite block length, becomes

unsuitable for extreme scenarios, e.g., when bandwidth is
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highly limited or the channel varies rapidly. An example is

underwater acoustic communication, in which multipath inter-

ference and noise are so large that the performance of separate

source-channel coding schemes sharply drops below a certain

signal-to-noise ratio (SNR), a phenomenon known as the cliff

effect [2]. Traditional techniques like fast adaptive modulation

and channel coding rarely work in such an environment,

especially for long source bit sequences like images.

Joint source coding and modulation. The above problem

can be addressed by jointly designing the source coding,

channel coding, and modulation schemes, a framework we call

joint source coding and modulation (JSCM). JSCM directly

maps signals to the IQ domain and generalizes joint source

and channel coding (JSCC) [3], in which the output signal is

binary rather than complex-valued.

In the context of large signals (like images), and under

extreme compression requirements (as in underwater commu-

nication), the selection of the features to be compressed strikes

tradeoffs between different metrics: for example, optimizing

for image reconstruction may reduce the perceptual quality

of the reconstructed image or decrease the accuracy of a

subsequent image classification algorithm. The study of such

type of tradeoffs started with the seminal work in [4], which

modified the rate-distortion framework [1] to study the tradeoff

between perception and distortion metrics of image restoration

algorithms. In this paper, we extend the study of such tradeoffs

to a JSCM scenario. This requires considering not only vector

signals, and thus the possibility to reduce their dimension, but

also various metrics, including rate, distortion, perception, and

classification performance.

A. The RDPC function and problem statement

We introduce the rate-distortion-perception-classification

(RDPC) function in a JSCM scenario. To define it, we consider

an n-dimensional source signal X ∈ R
n that can be drawn

from one of L classes:

X|Hl ∼ pX|Hl
, l = 1, . . . , L , (1)

where Hl represents the hypothesis that X is drawn from

class l, which occurs with probability pl := P(Hl). The

communication process is modeled as a Markov chain

Hl X Y Ŷ X̂ ,
pX|Hl

pY |X
p
Ŷ |Y

p
X̂|Ŷ

(2)

where X , X̂ ∈ R
n represent the source and reconstructed

signals, and Y , Ŷ ∈ R
m, with m < n, represent the
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transmitted and received signals. The distribution pY |X (resp.

p
Ŷ |Y and p

X̂|Ŷ ) characterizes the encoder (resp. channel and

decoder). We assume the channel adds zero-mean Gaussian

noise to Y , i.e., p
Ŷ |Y (ŷ|y) = N

(
y ,Σ

)
, where Σ is an

m × m diagonal matrix whose ith diagonal entry Σii > 0
represents the noise power of channel i. Motivated by recent

work on task-aware image compression [5]–[7], the purpose

of the communication channel in (2) is to transmit images that

can be used across different tasks, each of which may have

different requirements in terms of image fidelity, perception,

or classification. Considering classification as a task justifies

the assumption in (1) that X always belongs to a given class.

Our goal is to design the encoder-decoder pair

(pY |X , p
X̂|Ŷ ) and the noise power Σ so that the channel

rate is minimized while satisfying three constraints:

R(D,P,C) = min
pY |X , p

X̂|Ŷ
,Σ

∑m

i=1 log
(
1 + 1

Σii

)

s.t. E
[
∆(X, X̂)

]
≤ D

d(pX , p
X̂
) ≤ P

E
[
ǫc0(X, X̂)

]
≤ C .

(3)

The first constraint bounds below D ≥ 0 the expected distor-

tion between X and X̂ , as measured by ∆ : Rn×R
n → R+.1

The second constraint enforces a minimal perception quality

on X̂ by bounding below P ≥ 0 the distance between the

probability distributions pX of X and p
X̂

of X̂ , as measured

by d : PX × PX → R+.2 And the third constraint bounds

below C ≥ 0 the expected classification error achieved by an

arbitrary classifier c0, as measured by ǫc0 : Rn × R
n → R+.

We implicitly assume Σii > 0 and Σij = 0 for i 6= j. The

objective of (3) defines the channel rate assuming, without

loss of generality, that the encoder normalizes its output to

have unit power. The reason is to avoid spurious degrees of

freedom when defining the rate. In a more practical scenario,

one may equivalently have an estimate of the channel noise

power and, instead, adjust the power of the output of the

encoder. Henceforth, whenever we mention rate, we mean

channel rate (not to be confused with source rate). We will

call (3) the RDPC function.

Problem statement. Our goal is to characterize and solve

the problem in (3). Specifically, we aim to understand how

the different values of D, P , and C affect the achievable rate

R(D,P,C). We also aim to design an encoder pY |X , decoder

p
X̂|Ŷ , and noise matrix Σ that solve (3).

B. Our approach and contributions

As existing characterizations of tradeoffs between, for ex-

ample, distortion and perception [4], rate, distortion, and

perception [8], or classification error, distortion, and per-

ception [9], we show the existence of a tradeoff between

rate, distortion, perception, and classification error. Our setup

[cf. (2)] is more general than the ones in [4], [8], [9], as

we consider vector signals (not necessarily scalar) and their

1We assume ∆(x, y) = 0 if and only if x = y.
2PX is the set of probability measures on the measurable space where

X is defined, e.g., Rn and the d-Cartesian product of Borel σ-algebras. We
assume d(p, q) = 0 if and only if p = q.

compression in terms of dimensionality. We also establish a

strict tradeoff between all the above quantities, i.e., that the

function R(D,P,C) is strictly convex in D, P , and C.

It is difficult to solve (3) in full generality. So, under

the assumption that the source signals are drawn from a

Gaussian mixture model (GMM) with two classes (L = 2)

and that the encoder and decoder are linear maps, we design

an algorithm, RDPCO, that directly attempts to solve (3).

In addition, leveraging the capacity of generative adversarial

networks (GANs) to model probability distributions [10], we

also propose to use inverse-domain GAN (ID-GAN) [11] to

design an image compression algorithm that achieves both

extremely high compression rates and good quality in terms

of reconstruction, perception, and classification. Compared to

the original GAN [10], ID-GAN [11] learns how to map

not only a latent code to an image, but also an image to a

latent code. Despite several differences, experimental results

show that algorithms RDPCO and ID-GAN exhibit a similar

behavior. We summarize our contributions as follows:

• We show the existence of a strict tradeoff between rate,

distortion, perception, and classification error in joint

source coding and modulation (JSCM).

• We propose two algorithms to solve the JSCM trade-

off problem: a simple algorithm (RDPCO) that directly

solves the tradeoff problem but applies only under re-

strictive assumptions, and another based on inverse-

domain GAN (ID-GAN) [11] which can transmit images

under extreme compression rates, handling low-capacity

channels and preserving semantic information, perception

quality, and reconstruction fidelity. In particular, we port

techniques from [11], originally applied to image editing,

to a JSCM scenario.

• We upper bound the optimal value in (3) when the

input signal is a GMM and the encoder and decoder are

linear. To achieve this, we derive a new bound on the

Wasserstein-1 distance between GMMs in terms of their

parameters. See Lemma 3.

• Simulation results show that RDPCO and ID-GAN ex-

hibit the same behavior and reveal further insights about

the RDPC problem. In addition, the proposed ID-GAN al-

gorithm achieves a better RDPC tradeoff than a traditional

method with source coding and modulation designed sep-

arately (JPEG+LDPC+BPSK) and than AE+GAN [12], a

recent deep algorithm (modified to a JSCM scenario).

It also achieves much better perception and classification

accuracy than D-JSCC [2], at the cost of a slight increase

in distortion.

C. Organization

We overview related work in Section II and characterize

the tradeoff problem (3) in Section III. Section IV analyzes

the RDPC tradeoff under GMM source signals and linear

encoders/decoders, and proposes an algorithm to achieve the

optimal tradeoff. Section V develops the ID-GAN algorithm.

The performance of both methods is then assessed in Sec-

tion VI, and Section VII concludes the paper.
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II. RELATED WORK

We now review prior work on JSCM and then describe

existing analyses of tradeoffs in image-based compression.

A. Joint source coding and modulation (JSCM)

JSCM schemes outperform classical source-channel sepa-

ration methods. Prior work on JSCM methods, also called

JSCC even when they output complex-valued signals, can

be divided into two categories according to the type of

channel: basic channel transmission, in which the channel is

simple like a Gaussian or Rayleigh channel, and advanced

channel transmission, in which more realistic models for the

channels are adopted, and the emphasis is on optimizing the

transmission aspect of the system.

JSCM for basic channels. Methods in this category typ-

ically focus on designing neural networks that optimize the

compression performance of the JSCC/JSCM system, while

neglecting aspects of transmission optimization, such as radio

resource allocation. For example, [2] proposed a deep joint

source-channel coding (D-JSCC) algorithm based on an au-

toencoder and showed that besides outputting images with

quality superior to separation-based schemes, the algorithm

exhibits graceful performance degradation in low SNR. Tech-

niques vary according to the domain of the data, e.g., text,

image, video, or multimodal data. For example, the JSCM

system designed in [13] used a recurrent neural network for

transmitting text. Also focusing on text transmission, [14]

proposed a semantic communication system (DeepSC) based

on a transformer and, to evaluate performance, also a novel

metric to measure sentence similarity. DeepSC was extended

in [15] for speech transmission. JSCM has also been applied

to the transmission of multimodal data. For instance, [16]

proposed a cooperative scheme to transmit audio, video, and

sensor data from multiple end devices to a central server. And

concentrating on text and images, [17] designed a coarse-to-

fine multitask semantic model using an attention mechanism.

The theory and algorithms we derive in this paper fall under

this category, as we consider Gaussian channels.

JSCM for advanced channels. Methods in this category

adopt more realistic channel, like the erasure channel [18],

feedback channel with channel state information (CSI) [19],

[20], and the waveform (OFDM, etc.) or multi-user channels.

They focus on optimizing transmission. For example, [21]

designed retrieval-oriented image compression schemes, [19]

used channel feedback to improve the quality of transmission,

and [18] considered an adaptive bandwidth to transmit infor-

mation progressively under an erasure channel. Furthermore,

[20] designed an end-to-end approach for D-JSCC [2] with

channel state information (CSI) feedback. The main idea was

to apply a non-linear transform network to compress both

the data and the CSI. Finally, [22] designed a scheme for

orthogonal frequency division multiplexing (OFDM) transmis-

sion that directly maps the source images onto complex-valued

baseband samples.

B. GAN-based compression

Most algorithms for image transmission are based on au-

toencoders [23], e.g., [2], [18], [19], [21], [24]. Autoencoders,

however, compress signals only up to moderate compression

ratios. Although they achieve high-quality reconstruction, this

is at the cost of communication efficiency. Extreme compres-

sion has been achieved instead by using GANs [10], which

are generative models that learn, without supervision, both a

low-dimensional representation of the data and its distribu-

tion [25]. This gives them the potential to achieve extreme

compression without undermining image perception quality.

For example, [12] proposed an autoencoder-GAN (AE+GAN)

image compression system in which the encoder and decoder

are trained simultaneously. The resulting method can achieve

extremely low bitrates. One of the algorithms we propose,

ID-GAN, requires less training (as encoder and decoder are

trained separately), but attains a performance similar to or

better than AE+GAN [12].

Also related to our work, [26] proposed two algorithms,

inverse-JSCC and generative-JSCC, to reconstruct images

passed through a fixed channel with a high compression ratio.

The inverse-JSCC algorithm views image reconstruction as an

inverse problem and uses a powerful GAN model, StyleGAN-

2 [27], as a regularizer together with a distortion loss that

aligns with human perception, LPIPS [28]. It is thus an

unsupervised method. Generative-JSCC transforms inverse-

JSCC into a supervised method by learning the parameters

of an encoder/decoder pair while keeping the parameters of

StyleGAN-2 fixed. This work differs from ours in several

ways. First, we consider not only distortion and perception

metrics, but also classification accuracy and channel rate. In

particular, the experiments in [26] do not consider any classifi-

cation task. We also characterize the tradeoff between all these

metrics. Second, our metric for perception, the Wasserstein-1

distance between the input and output distributions, differs

from the LPIPS metric. Third, we train both the encoder and

the decoder adversarially, while [26] uses a pre-trained GAN

for the decoder. Finally, while training StyleGAN-2 in [26]

(on a database of faces) requires tremendous computational re-

sources, training our ID-GAN can be done with less resources.

C. Tradeoff analyses

The study of tradeoffs in lossy compression can be traced

back to rate-distortion theory [1], which characterizes the rate-

distortion function

R(D) = min
p
X̂|X

I(X, X̂)

s.t. E
[
∆(X, X̂)

]
≤ D ,

(4)

where I(X, X̂) is the mutual information between X and its

reconstruction X̂ . The R(D) function has a closed-form ex-

pression under some simple source distributions and distortion

metrics. Recent work has gone beyond using reconstruction

metrics, e.g., the mean squared error (MSE), to assess image

quality, considering also perception and semantic metrics.

The PD tradeoff. For example, [4] studied the perception-

distortion (PD) tradeoff by replacing the objective in (4) with a
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divergence metric d(pX , p
X̂
) [cf. (3)]. Assuming that the input

signal follows a Rademacher distribution, they proved the

existence of a tradeoff between the best achievable divergence

and the allowable distortion D.

The RDP tradeoff. Building on [4], [8] studied the rate-

distortion-perception (RDP) tradeoff. The problem they an-

alyzed was a variation of (3), without the last constraint (on

classification error) and with I(X, X̂) in the objective, instead

of the rate. Assuming a Bernoulli input, they showed that in

lossy image compression, the higher the perception quality

of the output images, the lower the achievable rate. Although

insightful, the analysis in [8] is not applicable to our scenario,

as it considers only scalar signals, thus ignoring the possibility

of compressing them, and also skips the quantization step.

The work in [29] further improved on [8] and showed that,

for a fixed bit rate, imposing a perfect perception constraint

doubles the lowest achievable MSE. It further proposed a

training framework to achieve the lowest MSE distortion under

a perfect perception constraint at a given bit rate.

The CDP tradeoff. The work in [9] analyzed instead

the classification-distortion-perception (CDP) tradeoff, i.e., a

modification of problem (3) in which E[ǫc0(X, X̂)] is mini-

mized subject to the first two constraints (the rate is ignored).

Assuming an input signal that is drawn from a Gaussian

mixture model with two classes, they showed the existence

of a tradeoff. Our setup is more general, as we do not require

the input to be Gaussian nor to be drawn from just two classes.

Our approach. In all the above work, the signals are

assumed scalar, which is not suitable to study compression

in terms of dimensionality reduction. By contrast, in (3), we

consider vector signals and minimize the channel rate subject

to constraints on distortion, perception, and classification error.

Furthermore, we show the existence of a strict tradeoff, rather

than just a simple tradeoff (as in [4], [8], [9]) between rate

and all the constraints of (3).

III. THE RDPC TRADEOFF

We now establish the existence of an inherent tradeoff in

solving problem (3). Recall our multiclass signal model in (1)

and the channel model in (2). Recall also that we assume a

Gaussian channel p
Ŷ |Y (ŷ|y) = N

(
y ,Σ

)
, where Σii > 0 is

the noise power of channel i, and Σij = 0 for i 6= j.

We assume a deterministic classifier c0 : Rn → {1, . . . , L}
which, for l = 1, . . . , L, decides c0(X̂) = l whenever X̂

belongs to a fixed region Rl ⊂ R
n. Assuming ǫc0 is the 0-1

loss, the expected classification error is then

E

[
ǫc0(X, X̂)

]
= P

(
class(X) 6= c0

(
X̂

))

=
∑

i<j

P

(
c0
(
X̂

)
= i

∣∣Hj

)
· pj

=
∑

i<j

pj ·
∫

Ri

d p
X̂|Hj

, (5)

where pj := P(Hl) is the probability of X being drawn from

class j. Our main result is as follows.

Theorem 1. Let X be a multiclass model as in (1). Consider

the communication scheme in (2) and the associated RDPC

problem in (3). Assume the classifier c0 is deterministic and

that the perception function d(·, ·) is convex in its second

argument. Then, the function R(D,P,C) is strictly convex,

and it is non-increasing in each argument.

Proof. See Appendix A.

Theorem 1 is generic and applies to any distortion metric

∆, perception metric d, and classifier c0. The main assumption

is that the perception metric d(·, ·) is convex in the second

argument, which holds for a variety of divergences, e.g., f -

divergence (including total variation, Kullback-Leibler, and

Hellinger distance) and Rényi divergence [30], [31]. The same

assumption was used in [4], [8], [9]. The theorem says that

if we optimize the channel for the smallest possible rate, the

encoding-decoding system cannot achieve arbitrarily small dis-

tortion, perception error, and classification error. These metrics

are in conflict and we need to strike a tradeoff between them.

This behavior will be observed in practice when we design

algorithms to (approximately) solve the RDPC problem. Note

that while prior work [4], [8], [9] shows the existence of

a tradeoff by proving that a certain function is convex in

each argument, we establish a strict tradeoff by proving that

R(D,P,C) is strictly convex in each argument.

As solving the RDPC problem in (3) in full generality i.e.,

non-parametrically, is difficult, in the next two sections we

propose two algorithms that approximately solve that problem

under different assumptions. As we will see in the experiments

in Section VI, both algorithms exhibit the tradeoff behavior

stipulated by Theorem 1.

IV. RDPC TRADEOFF UNDER GMM SIGNALS AND LINEAR

ENCODER AND DECODER

To make problem (3) more tractable, in this section we

assume that the source signal X in (1) is a Gaussian mixture

model (GMM) drawn from two classes and that the encoder

and decoder are linear. This will enable us to approximate (3)

with a problem whose optimal cost function upper bounds the

optimal cost of (3) (Section IV-A). We then develop an algo-

rithm, RDPCO, to solve the resulting problem (Section IV-B).

More formally, we make the following assumptions.

Assumption 2. In (1)-(3), we assume:

1) The source X ∈ R
n is drawn from a two-class GMM:

X|H0 ∼ N (0n, In) (6a)

X|H1 ∼ N (cn, In) , (6b)

where 0n is the all-zeros vector in R
n, In the identity

matrix, and cn ∈ R
n a fixed vector. That is, we set

L = 2 in (1) and assume X|Hl is Gaussian, l = 1, 2.

2) The encoder e : Rn → R
m and decoder d : Rm → R

n

are linear and deterministic, i.e., they are implemented

by full-rank matrices E ∈ R
m×n and D ∈ R

n×m.

3) We use the mean-squared error (MSE) as a metric

for distortion, i.e., ∆(X, X̂) = ‖X − X̂‖22, and the
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Wasserstein-1 distance3 W1(pX , p
X̂
) as a metric for

perception, where pX and p
X̂

are the distributions of

X and X̂ .

4) The classifier c0 is an optimal Bayes classifier. Specif-

ically, given an observation x̂ of X̂ , it decides H1 if

P(H1|x̂) ≥ P(H0|x̂), and H0 otherwise.

Assumptions 1) and 2) imply that the reconstructed signal

X̂ is also a GMM. To see this, first note that the output signal

is X̂ = D
(
EX+N

)
, where N ∼ N (0m,Σ). Since the sum

of two Gaussian random variables is also Gaussian, we obtain

X̂ |H0 ∼ N
(
0n , D

(
EE⊤ +Σ

)
D⊤

)
, (7a)

X̂ |H1 ∼ N
(
DEcn , D

(
EE⊤ +Σ

)
D⊤

)
. (7b)

Note that D ∈ R
n×m has more rows than columns (n > m),

making the covariance matrix Σ̂ := D(EE⊤ +Σ)D⊤ in (7)

rank-deficient, and thus both distributions in (7) degenerate.

Henceforth, Σ̂−1 will thus refer to the generalized inverse of

Σ̂. Specifically, let Σ̂ = QΛQ⊤ be an eigenvalue decompo-

sition of Σ̂, with Λ = Diag(λ1, . . . , λn) being a diagonal

matrix of eigenvalues. Define Λ
−1 as the diagonal matrix

with diagonal entries 1/λi if λi > 0, and 0 otherwise. Then,

Σ̂
−1 := QΛ

−1Q⊤. Similarly, the generalized determinant of

|Σ̂| is the product of the positive entries of Λ.

A. Problem formulation

Under Assumption 2, problem (3) becomes

R(D,P,C) = min
E,D,Σ

∑m

i=1 log
(
1 + 1

Σii

)

s.t. E
[∥∥X − X̂

∥∥2
2

]
≤ D

W1(pX , p
X̂
) ≤ P

E

[
ǫc0(X, X̂)

]
≤ C ,

(8)

where we omitted the dependence of X̂ on E and D for

simplicity. Despite the simplifications made under Assump-

tion 2, problem (8) is still challenging, and we will solve

instead an approximation by relaxing its last two constraints.

Before doing so, we analyze each constraint in detail.

Distortion constraint. To derive an expression for the first

constraint in (8), we first condition the expected values:

E

[∥∥X̂ −X
∥∥2
2

]
= E

[∥∥X̂ −X
∥∥2
2

∣∣H0

]
· p0

+ E

[∥∥X̂ −X
∥∥2
2

∣∣H1

]
· p1 , (9)

where pl = P(Hl), l = 0, 1. Notice that for l = 0, 1,

E

[∥∥X̂ −X
∥∥2
2

∣∣Hl

]
= E

[∥∥X̂
∥∥2
2

∣∣Hl

]

− 2E
[
X̂⊤X

∣∣Hl

]
+ E

[∥∥X
∥∥2
2

∣∣Hl

]
. (10)

3The Wasserstein-p distance between two probability measures pX , pY in

R
n is Wp(pX , pY ) =

(

inf
γ∈Π(pX ,pY )

E(X,Y )∼γ

[

‖X − Y ‖p2
])1/p

, where

Π
(

pX , pY
)

is the set of all joint distributions with marginals pX and pY ,
and 1 ≤ p ≤ +∞.

Under hypothesis H0, the last term is simply a constant:

E

[∥∥X
∥∥2
2

∣∣H0

]
= E

[
tr
(
XX⊤) ∣∣H0

]
= tr

(
E
[
XX⊤ |H0

])

= tr(In) = n ,

where we used the linearity of the trace tr(·) in the second

equality, and (6a) in the third equality. Similarly, under H1,

E

[∥∥X
∥∥2
2

∣∣H1

]
= tr

(
E
[
XX⊤ |H1

])
= tr(In + cnc

⊤
n )

= n+
∥∥cn

∥∥2
2
,

due to (6b). Similar reasoning applies to the first term of (10):

E

[∥∥X̂
∥∥2
2

∣∣H0

]
= tr

(
Σ̂
)

E

[∥∥X̂
∥∥2
2

∣∣H1

]
= tr

(
Σ̂
)
+ c⊤nE

⊤D⊤DEcn ,

where Σ̂ := D
(
EE⊤ +Σ

)
D⊤. Finally, the second term of

the right-hand side of (10) can be rewritten for l = 0, 1 as

E

[
X̂⊤X

∣∣Hl

]
= E

[
X⊤D

(
EX +N

) ∣∣Hl

]

= E
[
tr
(
EXX⊤D

) ∣∣Hl

]
+ E

[
X⊤DN

∣∣Hl

]

= tr
(
E E

[
XX⊤ |Hl

]
D
)
, (11)

where we used tr(AB) = tr(BA) (since the dimensions

allow) in the first equality and the independence between X

and N in the last equality. Plugging (10)-(11) into (9),

E

[∥∥X̂ −X
∥∥2
2

]
=

[
tr
(
Σ̂
)
− 2 tr

(
ED

)
+ n

]
p0 +

[
tr
(
Σ̂
)

+c⊤nE
⊤D⊤DEcn−2tr

(
E(In+cnc

⊤
n )D

)
+n+‖cn‖22

]
p1 .

(12)

Perception constraint. We now consider the perception

constraint in (8), which upper bounds the Wasserstein-1 dis-

tance W1(pX , p
X̂
) by P . Both pX and p

X̂
are Gaussian mix-

ture models for which, to the best of our knowledge, there is no

closed-form expression for their Wasserstein-p distance. There

is, however, a closed-form expression for the Wasserstein-

2 distance between Gaussian distributions. Specifically, let

X ∼ pX = N (µX , ΣX) and Y ∼ pY = N (µY , ΣY ) be

two Gaussian random vectors with means µX , µY ∈ R
n and

positive semidefinite covariance matrices ΣX , ΣY � 0n×n. It

can be shown that the squared Wasserstein-2 distance between

them is [32], [33]

‖µX − µY ‖22 + tr

(
ΣX +ΣY − 2

(
Σ

1
2

Y ΣXΣ
1
2

Y

) 1
2

)
.

In the case where ΣX and ΣY commute, i.e., ΣXΣY =
ΣY ΣX , the expression simplifies to

W 2
2 (pX , pY ) =

∥∥µX − µY

∥∥2
2
+
∥∥Σ

1
2

X −Σ
1
2

Y

∥∥2
F
, (13)

where ‖ · ‖F is the Frobenius norm.

Our objective is thus to upper bound W1(pX , p
X̂
) as a

function of W2(pX , p
X̂

|H0) and W2(pX , p
X̂

|H1), which

we define as in footnote 3 [or, in dual form, as in (25) below]

with expected values conditioned on H0 or H1. We have the

following result.
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Lemma 3. Let pX (resp. p
X̂

) be a GMM modeled as (6)

[resp. (7)], in which the probability of hypothesis H0 is p0
and of hypothesis H1 is p1 = 1− p0. Then,

W1(pX , p
X̂
) ≤

∥∥Σ̂ 1
2 − In

∥∥
F
+

∥∥DEcn − cn
∥∥
2
· p1 .

(14)

Proof. See Appendix B.

To enforce the second constraint in (8), we will thus impose

the right-hand side of (14) to be bounded by P .

Classification constraint. We now address the last con-

straint of (8). As in Assumption 2.4), we assume a Bayes

classifier, which achieves a minimal probability of error. Such

a probability, however, does not have a closed-form expression,

but is upper bounded by the Bhattacharyya bound [34]. For

a two-class GMM X ∼ p0 N (µ0, Σ0) + p1 N (µ1, Σ1), the

bound is

P
(
error⋆

)
≤ √

p0 p1

∫

Rn

√
pX|H0

(x) pX|H1
(x) dx

=
√
p0 p1 exp

[
− 1

8

(
µ1 − µ0

)⊤
[
Σ0 +Σ1

2

]−1

(µ1 − µ0)

− 1

2
log

∣∣(Σ0 +Σ1

)
/2
∣∣

√∣∣Σ0

∣∣∣∣Σ1

∣∣

]
, (15)

where | · | is the determinant of a matrix, and error⋆ is

the classification error achieved by a Bayes classifier. We

apply (15) to X and X̂ , whose models are in (6) and (7). Thus,

µ0 = 0n, µ1 = DEcn, and Σ0 = Σ1 = D(EE⊤ +Σ)D⊤.

Hence,

E

[
ǫc0(X, X̂)

]
= P

(
class(X̂) 6= c0

(
X̂

))

≤ √
p0p1 exp

[
− 1

8
c⊤nE

⊤D⊤
Σ̂

−1DEcn

]
.

(16)

So, in (8), rather than bounding E
[
ǫc0(X, X̂)

]
≤ C, we

impose instead that the right-hand side of (16) is upper

bounded by C, which is equivalent to

c⊤nE
⊤D⊤

Σ̂
−1DEcn ≥ −8 log

C√
p0p1

. (17)

This defines a nonconvex set over E, D, and Σ (via Σ̂).

Bound on RDPC. Instead of solving (8), we will aim to

solve a problem that upper bounds its optimal value:

R(D,P,C) ≤ min
E,Σ,D

∑m

i=1 log
(
1 + 1

Σii

)

s.t. (12) ≤ D

(14) ≤ P

(17) ,

(18)

where (12) and (14) refer to the right-hand side of the

respective equations. While the first constraint is exact, the

second and third constraints are more stringent versions of the

original constraints in (8). The resulting problem, however, is

still nonconvex and will require approximation techniques.

B. RDPCO: Heuristic algorithm for RDPC optimization

Solving (18) is difficult, as it is nonconvex and has

an infinite number of solutions. Indeed, E and D ap-

pear in the constraints of (18) always as the product

DE. Thus, if (E⋆,Σ⋆,D⋆) is a solution of (18) so is

(E⋆M ,Σ⋆,D⋆M−1) for any invertible matrix M . This

means there are too many degrees of freedom. We will

leverage this to first design the output covariance matrix Σ̂,

and then alternatively find the encoder-decoder pair (E,D),
via intuitive principles, and the rate matrix Σ, via a barrier-

type method applied to (18).

Design of Σ̂. While the original signals in (6) have non-

degenerate distributions, the decoded signals in (7) have de-

generate distributions. Specifically, assuming that E ∈ R
m×n

and D ∈ R
n×m have full rank and that range(E)∩null(D) =

∅, the output signals in (7) live in an m-dimensional subspace.

If the fixed vector cn, which represents the distance between

X|H0 and X|H1, is orthogonal to that subspace (equivalently

DEcn = 0n), then X̂|H0 and X̂|H1 become indistinguish-

able. In this case, classification is impossible and perception

is also undermined [note that the second term in (14) requires

‖DEcn − cn‖2 to be small].

To avoid this, we first generate the (degenerate) covariance

matrix Σ̂ := D(EE⊤ + Σ)D⊤ by guaranteeing that the

distance between X|H0 and X|H1 is preserved after trans-

mitting these signals through the channel. We achieve this

by guaranteeing that cn is an eigenvector of Σ̂ associated to

eigenvalue 1, while the remaining eigenvectors are associated

to eigenvalues of smaller magnitude. Specifically, we set

Σ̂ = QΛQ⊤, where the first column of Q is cn and the

remaining ones are the output of Gram-Schmidt orthogonaliza-

tion. Also, Λ = Diag(1, λ2, . . . , λm, 0, . . . , 0), with λi being

drawn uniformly at random from [0, 1], for i = 2, . . . ,m.

Once Σ̂ is fixed, we alternate between computing the

encoder-decoder pair (E,D) and the rate matrix Σ.

Finding (E,D). With Σ̂ fixed and assuming that, at

iteration k, Σ = Σk−1 is also fixed, we seek a factorization

Σ̂ = DEE⊤D⊤ + DΣk−1D
⊤. We do so via an intuitive

process that leads to a unique factorization. Specifically, we

design E and D such that DEE⊤D⊤ is as close to the

identity matrix as possible (to preserve signals passing through

the channel), while DΣk−1D
⊤ is as small as possible (to

mitigate the effects of noise). Also, we ensure the principal

direction cn is preserved: DEcn ≃ cn. These requirements,

weighted equally, can be cast as an optimization problem:

min
E,D

1
2

∥∥∥In −DEE⊤D⊤
∥∥∥
2

F
+ 1

2

∥∥∥DΣk−1D
⊤
∥∥∥
2

F

+ 1
2

∥∥cn −DEcn
∥∥2
2

s.t. Σ̂ = DEE⊤D⊤ +DΣk−1D
⊤ ,

(19)

which, eliminating the constraint, can be written as

min
E,D

1

2

∥∥∥In − Σ̂+DΣk−1D
⊤
∥∥∥
2

F
+

1

2

∥∥∥DΣk−1D
⊤
∥∥∥
2

F

+
1

2

∥∥cn −DEcn
∥∥2
2
. (20)
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We apply gradient descent to (20) in order to find (Ek,Dk).
It can be shown that the partial derivatives of the objective

g(E,D) of (20) are

∂g(E,D)

∂E
= D⊤(DEcn − cn)c

⊤
n (21a)

∂g(E,D)

∂D
= 4DΣkD

⊤DΣk−1 + 2(In − Σ̂)DΣk−1

+ (DEcn − cn)c
⊤
nE

⊤ . (21b)

Finding Σ. Once the encoder-decoder pair is fixed at

(Ek,Dk), we find the diagonal rate matrix Σ := Diag(σ) :=
Diag(σ1, . . . , σm) by applying a barrier method [35] to (18),

i.e., we solve a sequence of problems in t, each of which is

min
Σ=Diag(σ)

t hr(σ)− λDhD(Σ)− λPhP (Σ)− λChC(Σ) ,

(22)

where λD, λP , λC ≥ 0 are regularization parameters, and

hr(σ) =

m∑

i=1

log
(
1 +

1

σi

)
(23a)

hd(Σ) = log
[
Dk − tr

(
DkΣD⊤

k

)]
(23b)

hp(Σ) = log
[
Pk −

∥∥Σ̂
1
2

k − In
∥∥2
F

]
(23c)

hc(Σ) = log
[
c⊤nE

⊤
k D⊤

k Σ̂
−1
k DkEkcn + 8 log

C√
p0p1

]
.

(23d)

where Σ̂k = DkEkE
⊤
k D⊤

k +DkΣD⊤
k . In (23b), Dk absorbs

all the terms independent from Σ when we set E[
∥∥X̂ −

X
∥∥2
2
] ≤ D in (12) [including D]. To obtain (23c), note that

imposing the right-hand side of (14) to be smaller than P is

equivalent to
∥∥Σ̂

1
2

k−In
∥∥2
F
≤

(
P−‖DkEkcn−cn‖2 ·p1

)2
=:

Pk. And hp(Σ) depends on Σ via Σ̂k. Finally, (23d) is the

direct application of the log-barrier function to (17).

To solve each instance of (22), we apply again gradient

descent. While the gradients of hr in (23a) and hd in (23b) can

be computed directly, namely dhr(σ)/dσi = −1/(σ2
i + σi),

for i = 1, . . . ,m, and ∇σhd(Σ) = −diag(D⊤
k Dk)/[Dk −

tr(DkΣ,D⊤
k )], where diag(·) extracts the diagonal entries of

a matrix into a vector, computing the gradients of hp in (23c)

and hc in (23d) is more laborious. Their expressions are shown

in (24) where, for simplicity, we omitted the iteration index.

RDPCO algorithm. We summarize all the above steps in

Algorithm 1, which we name RDPCO for RDPC Optimization.

Steps 1-4 describe the procedure to generate the covariance

matrix Σ̂ = D(EE⊤ + Σ)D⊤, whose factors are then

computed in steps 5-16. The barrier method in steps 8-11

stops whenever the duality gap is below 0.01 or the num-

ber of iterations reaches m/100, both parameters determined

experimentally. The remaining parameters that we used in our

experiments are reported in Section VI-A.

V. SOLVING RDPC WITH INVERSE-DOMAIN GAN

RDPCO attempts to solve the RDPC problem (3) under

restrictive assumptions [see Assumption 2]. In this section,

Algorithm 1 RDPCO algorithm

Input: mean cn ∈ R
n; probabilities p0, p1 = 1 − p0; bounds on

distortion D, perception P , and classification C; initial barrier
parameter t0 and update parameter µ; max. # of iterations K;
stopping criteria parameter ǫ; parameters λD, λP , λC .

Initialization: Σ0 = Im

Generate Σ̂

1: Set Q̃ =
[
cn R

]
, where R ∈ R

n×n−1 has i.i.d.N (0, 1) entries

2: Apply Gram-Schmidt orthogonalization to Q̃ to obtain Q
3: Generate λi ∈ [0, 1], i = 2, . . . ,m randomly and build Λ =

Diag(1, λ2, . . . , λm, 0, . . . , 0) ∈ R
n×n

4: Set Σ̂ = QΛQ⊤

Find E,D,Σ
5: for k = 1, . . . ,K do
6: Find (Ek,Dk) via gradient descent applied to (20) [cf. (21)]
7: Set t = t0
8: for r = 1, . . . , ⌈m/100⌉ do
9: Find Σr via gradient descent applied to (22)

10: t← µt
11: end for
12: Set Σk = Σr

13: if ‖(Ek,Dk,Σk)− (Ek−1,Dk−1,Σk−1)‖F ≤ ǫ then
14: Stop
15: end if
16: end for

leveraging the modeling power of neural networks, in particu-

lar generative adversarial networks (GANs) [10], we propose

an algorithm that works under more general assumptions. In

our channel diagram (2), we will thus model the encoder pY |X
with a neural network e(· ;θe) : R

n → R
m parameterized

by θe, and the decoder p
X̂|Ŷ as neural network d(· ;θd) :

R
m → R

n parameterized by θd. These networks will be

trained as in ID-GAN [11] which, however, was proposed

for a task different from JSCC/JSCM. Specifically, given an

(adversarially-trained) image generator, the goal in [11] was

to train an encoder to obtain a semantically-meaningful latent

code for image editing. We adopt this process of training the

generator first, and then the encoder.

A. Proposed scheme

Fig. 1 shows our framework based on ID-GAN. As in [11],

we first train an image generator/decoder d(· ; θd) (Fig. 1,

top) adversarially against discriminator f1, which learns to

distinguish a real signal from a randomly generated one,

d(Z ; θd), where Z ∼ N (0m, Im) is a vector of i.i.d.

standard Gaussians. This is the conventional GAN setup [10],

[36]. As the discriminator is a particular case of a classifier,

outputting just a binary signal, it is also known as a critic.

Once the decoder is trained, we fix it and train the encoder

e(· ; θe) together with its own critic f2, which again learns to

distinguish real signals from randomly generated from ones

(Fig. 1, bottom). Comparing (2) and Fig. 1 (bottom), we see

that pY |X is implemented by e(· ; θe), pX̂|Ŷ is implemented

by d(· ; θ⋆
d), and the Gaussian channel noise p

Ŷ |Y (ŷ|y) =

N (y,Σ) has (diagonal) covariance matrix Σ = σ2
t Im, where

σt is a parameter we learn (or fix) during training. If we

normalize the output Y of the encoder to have unit power,
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∇σhp(Σ) =

[
diag

(
D⊤

(
Im − 2

(
DEE⊤D⊤ +DΣD⊤)−1

)
D

)]/(
Pk −

∥∥Σ̂ 1
2 − In

∥∥2
F

)
(24a)

∇σhc(Σ) =

diag

(
D⊤(DEE⊤D⊤ +DΣD⊤)−1

DEcc⊤E⊤D⊤(DEE⊤D⊤ +DΣD⊤)−1
D

)

c⊤nE
⊤
k D⊤

k Σ̂
−1DkEkcn + 8 log C√

p0p1

(24b)

TRAINING OF DECODER

Z∼N (0m, Im) d(· ; θd)

decoder

f1(· ; θf1
)

critic 1

TRAINING OF ENCODER

e(· ; θe)

encoder

N∼N (0m, σ2
t Im)

d(· ; θ⋆
d)

decoder

f2(· ; θf2
)

critic 2

c(·)

classifier

fixed

Fig. 1. Proposed ID-GAN framework for solving the RDPC problem (3). The
decoder is first trained adversarially with critic 1 in the first step (top). The
decoder is then fixed and coupled with an encoder, which is in turn trained
with critic 2 in order to preserve both reconstruction quality and classification
accuracy (bottom). Critics 1 and 2 have the same architecture.

then the signal-to-noise ratio (SNR) is determined by σt as

SNRt = −10 log10 σ2
t , and the channel rate is

R = m log2

(
1 +

1

σ2
t

)
. (24)

Next, we explain the training processes of the decoder and

encoder in more detail.

B. Training the decoder

To train the decoder d(· ; θd) and critic f1 as in Fig. 1

(top), we use the Wasserstein GAN (WGAN) [36] framework.

This consists of finding the parameters θd of the decoder

that minimize the Wasserstein-1 (or earth-mover) distance

W1(pr, pθd
) between the distribution pr of real data and

the distribution pθd
of data generated by d(Z ; θd), with

Z ∼ N (0m, Im). We consider the Kantarovich-Rubinstein

dual form of the Wasserstein-1 distance:

W1(pr, pθd
) = sup

‖f1‖L≤1

EX∼pr
[f1(X)]− EX∼pθd

[f1(X)] ,

(25)

where the supremum is over the functions f1 : R
n → R

that are 1-Lipschitz continuous. While the critic f1 is found

by maximizing the argument in (25), the parameters of

the decoder are found by minimizing the full Wasserstein

distance W1(pr, pθd
). This distance enables overcoming the

mode collapse observed in the original GAN framework [10],

which used instead the Jensen-Shannon divergence. To enforce

Lipschitz-continuity of the critic f1, [36] proposed to limit

its parameters to a small box around the origin. The work

in [37], however, found that this technique leads to instabilities

in training (exploding/vanishing gradients) and showed that a

gradient penalty solves these problems. We thus adopt the loss

suggested in [37] for finding critic f1:

Lf1 = EX∼pθd
[f1(X)]− EX∼pr

[f1(X)]

+ λg EX̃∼pθd,r

[(
‖∇x̃f1(X̃)‖2 − 1

)2]
, (26)

where λg ≥ 0, and X̃ is a point sampled uniformly on the

line joining a real data point X ∼ pr and a point Y ∼ pθd

generated by the decoder. The third term in (26) eliminates

the need to constrain the critic to be Lipschitz-continuous

[constraint in (25)]; see [37] for more details. In turn, the

parameters θd of the decoder are found by minimizing (25)

which, when f1 is fixed, is equivalent to minimizing

Lθd
= −EX∼pθd

[f1(X)] = −EZ∼N (0m, Im)

[
f1
(
d(Z ; θd)

)]
.

(27)

During training, there are two nested loops: the outer loop

updates θd; and the inner loop, which runs for ncritic iterations,

updates the parameters of the critic such that the supremum

in (25) is reasonably well computed. See [36], [37] for details.

C. Training the encoder

After training the decoder, we fix its parameters to θ⋆
d and

consider the scheme in Fig. 1 (bottom) to train the encoder

e(· ; θe). As the decoder, the encoder is also trained adver-

sarially against a critic f2 to enhance perception quality, but

also takes into account the reconstruction quality and semantic

meaning of the reconstruction. The former is captured by an

MSE loss between the original and reconstructed images, and

the latter by a cross-entropy loss between the image label

and the output of a pre-trained classifier c(·) applied to the

reconstructed image.

Derivation of the loss for the encoder. To motivate our

loss for the encoder, we start from the RDPC problem (3),

considering ∆(x,y) = ‖x − y‖22 as the distortion metric,

d(pX , p
X̂
) = W1(pX , p

X̂
) as the perception metric, and the

cross-entropy ǫc0(X, X̂) = CE(c(X̂), ℓ(X)) as the classifi-

cation loss, where ℓ(X) denotes the class of X . Then, there

exist constants λd, λp, and λc (related to D, P , and C), such

that (3) and

min
pY |X , p

X̂|Ŷ
,Σ

m∑

i=1

log
(
1 +

1

Σii

)
+ E

[
λd

∥∥X − X̂
∥∥2
2
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Algorithm 2 ID-GAN compression: training of the encoder

Input: Training images/labels {(x(t), ℓ(t))}Tt=1, pretrained decoder
d(·), pretrained classifier c(·), learning rate α, momentum pa-
rameters β1, β2, batch size S, number of iterations of critic ncritic,
and loss hyperparameters λg , λd, λp, λc

Initialization: Set encoder θ
(1)
e and critic θ

(1)
f parameters randomly;

set channel noise standard deviation σ
(1)
t > 0 randomly

In each epoch:
1: S = randperm({1, 2, . . . , T})
2: for j = 1, . . . , ⌈T/S⌉ do
3: Select next S batch indices Sj from S
4: for k = 1 to ncritic do
5: Generate (channel) noise Z ∼ N (0m, Im)

6: L
(1)
f2

= 1
S

∑
s∈Sj

f2
(
d
(
e(x(s) ; θ

(j)
e ) + σ

(j)
t Z

)
; θ

(k)
f

)

7: L
(2)
f2

= 1
S

∑
s∈Sj

f2
(
x(s) ; θ

(k)
f

)

8: for s ∈ Sj do
9: Draw ǫ ∼ U(0, 1) randomly

10: x̃(s) = (1− ǫ) ·x(s) + ǫ · d
(
e
(
x(s) ; θ

(j)
e

)
+ σ

(j)
t Z

)

11: end for

12: L
(3)
f2

= 1
S

∑
s∈Sj

(∥∥∇x̃f2(x̃
(s))

∥∥
2
− 1

)2

13: Lf2 = L
(1)
f2
− L

(2)
f2

+ λgL
(3)
f2

14: θ
(k+1)
f = Adam

(
θ
(k)
f , λpLf2 , α, β1, β2

)

15: end for
16: θ

(j)
f = θ

(ncritic)
f

17: for s ∈ Sj do

18: x̂(s) = d
(
e
(
x(s) ; θ

(j)
e

)
+ σ

(j)
t Z

)
, w/ Z∼N (0m, Im)

19: end for
20:

Le = m log2

(
1 + 1/σ

(j)
t

2
)
+

1

S

∑

s∈Sj

λd

∥∥∥x(s) − x̂
(s)

∥∥∥
2

2

+ λcCE
(
c(x̂(s)), ℓ(s)

)
− λpf2

(
x̂

(s) ; θ
(j)
f

)

21:

(
θ
(j+1)
e , σ

(j+1)
t

)
= Adam

((
θ
(j)
e , σ

(j)
t

)
, Le, α, β1, β2

)

22: end for

+ λcCE
(
c(X̂), ℓ

(
X

))]
+ λpW1

(
pX , p

X̂

)
(28)

have the same solution. Problem (28) is non-parametric, i.e.,

the functions representing the encoder pY |X and the decoder

p
X̂|Ŷ have no structure. As mentioned, we assume they

are implemented by neural networks e(· ;θe) and d(· ;θd),
respectively. The encoder, in particular, normalizes its output

signal to unit power. According to the channel model (2), the

output of the decoder is then X̂ = d(e(X) +N), where we

omitted dependencies on θe and θd for simplicity. Under these

assumptions and further assuming that the different channels

have equal variance [i.e., (24)], (28) becomes

minimize
θe,σt

m log2

(
1+

1

σ2
t

)
+E

[
λd

∥∥X−d(e(X)+σtZ)
∥∥2
2

+ λcCE
(
c
(
d(e(X) + σtZ)

)
, ℓ

(
X

))]
+ λpW1

(
pX , p

X̂

)
,

(29)

where, akin to the reparameterization trick [38], we replaced

N by σtZ, with Z ∼ N (0m, Im). This makes the depen-

dency of N on σt explicit and enables computing derivatives

with respect to σt. Note that the expectation in (29) is with

respect to X and Z. Note also that θd is not included in

the optimization variables of (29), as the decoder has already

been trained. Adopting the approximations for W1 described

in Section V-B, we find the parameters of the encoder and

channel noise level by solving

minimize
θe,σt

m log2

(
1+

1

σ2
t

)
+E

[
λd

∥∥X−d(e(X)+σtZ)
∥∥2
2

+ λcCE
(
c
(
d(e(X) + σtZ)

)
, ℓ

(
X

))

− λpf2(d(e(X) + σtZ))
]
. (30)

As remarked in Section I-A, we design the encoder and

channel noise level σt jointly. In practice, one would instead

estimate the channel noise level and design the power of the

encoder. The advantage of doing as we do is that the first term

of (30) is convex in σt. The parameters θf2 of critic f2, in

turn, are computed like in (26), by minimizing the loss

Lf2 = λp

{
E

[
f2
(
d(e(X) + σtZ)

)
− f2(X)

]

+ λg E

[(∥∥∇x̃f2
(
X̃

)∥∥
2
− 1

)2]
}
, (31)

where X̃ = (1 − ǫ)X + ǫ d(e(X) + σtZ) and ǫ ∼ U(0, 1)
is uniformly distributed in [0, 1]. The first expectation is with

respect to X and Z, and the second with respect to X and ǫ.
Training algorithm. The complete training procedure of

the encoder is shown in Algorithm 2. Its inputs include

training images x(t) and corresponding labels ℓ(t), and a

pretrained decoder d(·) and classifier c(·). After initializing

the parameters of the encoder, associated critic, and channel

noise level, in each epoch we randomly permute the indices

of the training data (step 1) and visit all the training data in

batches of size S. This takes ⌈T/S⌉ iterations, where T is the

number of data points. The loop in steps 4-15 performs ncritic

iterations of Adam to minimize the critic loss in (31) and thus

to update the critic f2 parameters θf (where we omit the index

2 for simplicity). This corresponds to computing the supremum

in the Wasserstein distance (25) between the real data X

and the reconstructed one X̂ = d
(
e
(
X

)
+ N

)
. The terms

in (26) are computed separately, with the last term requiring

the creation of the intermediate variables x̃(s) in steps 8-11. As

usual, expected values were replaced by sample averages over

the batch. After having updated the parameters of critic f2,

we perform one iteration of Adam to minimize the encoder

loss in (30) and thus to update the encoder parameters θe
and channel noise level σt. This requires passing each image

in the batch through the encoder and decoder to create x̂(t),

as in steps 17-19. In step 21, the parameters of the encoder

and the channel noise level are updated simultaneously. In our

experiments, reported in Section VI, we run two versions of

Algorithm 2: one exactly as described, where the noise level

σt, and thus SNRt = −10 log10 σ
2
t , is learned during training;

and another where SNRt is fixed to a predefined value.

VI. EXPERIMENTAL RESULTS

We now present our experiments to evaluate the perfor-

mance of the proposed algorithms, RDPCO (Algorithm 1)
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Fig. 2. Values of (a) distortion, (b) perception, and (c) classification error for RDPCO for varying distortion parameter D. These metrics are computed by
the right-hand side of the expressions in (12), (14), and (16), respectively.
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(b)

Classification error

D

(c)

Fig. 3. Values of (a) distortion, (b) perception, and (c) classification error for RDPCO for varying latent dimension m and hyperparameters (P,C) = (4.1, 0.1).

and ID-GAN (Algorithm 2). We start with RDPCO and then

consider ID-GAN.

A. RDPCO algorithm

Recall that RDPCO (Algorithm 1) solves the approxi-

mation (18) of (3). Before explaining the experiments, we

describe how we set the parameters of the algorithm.

Experimental setup. In Algorithm 1, we generate cn ∈ R
n

randomly with i.i.d. Gaussian entries with zero mean and vari-

ance 4. The classes are always equiprobable, i.e., p0 = p1 =
1/2. In the gradient descent method in step 6, we employ a

constant learning rate of 10−4 for 20k iterations. In the barrier

method in steps 8-11, we initialize t as t0 = 0.01 and update

it with a factor of µ = 2. The parameter ǫ in step 13 is set to

10−5. To balance the terms in (22), we set λD = 1/ log(D),
λP = 1/ log(P ), and λC = −1/ log(

√
p0 p1). During the

experiments, we vary D, P , C, and R [which depends on

the latent dimension m and noise level σt; cf. (24)]. To

evaluate the performance of the algorithm, we visualize how

two metrics vary, e.g., rate and distortion, while the remaining

parameters are fixed.

Metrics as a function of D. Here, we fix the input

dimension to n = 5 and the latent one to m = 2. Fig. 2 shows

how distortion, perception, and classification error metrics vary

with D in (18). These metrics are, respectively, the right-hand

side of (12), of (14), and of (16). In Figs. 2(a)- 2(b), we see that

when C (resp. P ) is fixed, increasing P (resp. C) increases

either the distortion or perception metrics. This behavior is as

expected according to Theorem 1. In Fig. 2(c), we observe

that for a fixed C, modifying P produces no significant effect

on the classification error, indicating that the classification

constraint becomes active before the perception one.

Fig. 3 is similar to Fig. 2, but P and C are fixed to 4.1 and

0.1, respectively, while the latent dimension m varies. When

m = 1, all metrics are invariant to D. This is because, as seen

in Fig. 3(b), the perception constraint is active (it equals its

limit of 4.1), dominating the two other constraints. For m =
2, 3, their classification error behaves similarly, but m = 3
achieves better perception and worse distortion.

Rate-distortion analysis. In this experiment, as in Fig. 2,

we vary both P and C in the constraints of (18). Fig. 4(a)

shows the resulting rate-distortion curves. For a fixed P ,

decreasing C increases the rate; similarly, for a fixed C,

decreasing P increases the rate as well. This validates the

tradeoff established in Theorem 1. Fig. 4(b) shows the rate-

distortion curves under the same parameters as Fig. 3, i.e.,

(P,C) = (4.1, 0.1). We can see again that, for m = 1, the

rate is invariant to D, since the perception constraint is the
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Fig. 4. Rate-distortion curves of RDPCO for (a) varying P and C, and (b)
varying compressed dimension m with hyperparameters (P,C) = (4.1, 0.1).

only active one. For m = 2, 3, the curves have the familiar

tradeoff shape. In this case, m = 2 yields a rate-distortion

curve better than m = 3. The reason is that, as we saw in

Fig. 3(b), the perception constraint is the most stringent of

three constraints, and m = 2 achieves a perception value closer

to the limit of 4.1, leading to a better rate-distortion tradeoff

in Fig 4(b). These results corroborate the RDPC tradeoff we

derived. Indeed, they point to the existence of an optimal

latent dimension m that minimizes the rate while satisfying

the distortion, perception, and classification constraints.

B. ID-GAN algorithm

We now consider ID-GAN (Algorithm 2) applied to the

popular MNIST dataset [39], which has 60k training images

and 10k test images of size 28 × 28 depicting digits from 0
to 9 (10 classes). Before describing the experimental setup

in detail, we explain how all the functions in the ID-GAN

framework in Fig. 1 were implemented.

Network architectures. Fig. 5 shows the architectures of

the decoder d(· ; θd) [Fig. 5(a)] and of the critics f1 and

f2 [Fig. 5(b)]. The latter have the same architecture, but

they are initialized independently, with different seeds. The

decoder in Fig. 5(a) increases the dimensions of the data

by first using a fully connected network, whose output is

reshaped to a 4 × 4 × 256 tensor, and then by upsampling

along the channel. The upsampling is performed via transposed

convolutions with ReLU activations. The architecture of the

critics [Fig. 5(b)] is symmetric to that of the decoder. The

input image is compressed via a convolutional network, whose

output in the last layer is mapped to a probability vector with

a sigmoid function. The architecture of the encoder, on the

other hand, downsamples the input image using only fully

connected layers, as shown in Fig. 6. The network architecture

of the classifier [cf. Fig. 1, bottom] is similar to the one of

the encoder, except that the last layer is mapped to a 10-

dimensional vector (coinciding with the number of classes of

MNIST) and a sigmoid is applied to each entry. We train the

classifier beforehand and fix it when training the encoder.

Experimental setup. In Algorithm 2, we used a learning

rate α = 10−5 and acceleration parameters β1 = 0.5 and β2 =
0.9 for Adam, a batch size of S = 50, and ncritic = 5 iterations

for the inner loop of the critic. The loss hyperparameters and

training noise level SNRt will be reported for each experiment.

Also, we ran the algorithm for just 5 epochs. The reason for

such a small number is that, as described in Section V-C, the

decoder has already been trained when we run Algorithm 2.

In fact, the decoder was also trained with few epochs, 8.

Algorithms. We compare the proposed ID-GAN algo-

rithm against D-JSCC [2], the parallel autoencoder-GAN

(AE+GAN) [12], and a traditional approach in which source

coding, channel coding, and modulation are designed sepa-

rately: JPEG and Huffman codes for source coding, 3/4 LDPC

codes for channel coding, and BPSK for modulation [40].

Metrics and comparison. For comparison metrics, we

selected the mean squared error (MSE), the Fréchet in-

ception distance (FID) [41], and the classification error

(1/|V|)∑v∈V 1c0(x̂(v)) 6=ℓ(v) , where V is the test set, and 1

the 0-1 loss. FID captures perception quality by measuring the

similarity between distributions of real and generated images.

The smaller the FID, the closer the distributions. In summary,

the smaller all the metrics, the better the performance. Com-

paring the performance of a JSCM system against a traditional

system, however, is challenging. For example, [2] proposed to

use the ratio of bandwidth compression. Yet, in a traditional

system, it is not obvious how to accurately determine the ratio

between the size of images and the corresponding vectors

in IQ-domain. Instead, we will use rate as defined in (24),

i.e., channel rate, which quantifies the amount of information

that a symbol can convey through a channel. In particular,

the dimension m of the latent variable y corresponds to the

number of constellations in a traditional system. Thus, to

compare the different algorithms in a fair way, we fix during

testing the channel rate (24), making the results independent

from the latent dimension m.

Results. Fig. 7 shows how the above metrics vary with

the rate (24), measured in bits/image, for D-JSCC [2],
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Fig. 5. Architectures of the decoder d(· ; θd) and of the critics f1 and f2 in ID-GAN [cf. Fig. 1]. FC stands for fully connected layer, conv for convolutional
layer, and conv_transp for transposed convolutional layer. We indicate the dimensions of the layer as well as the size of the kernels, stride, and padding.

28×28×1

image

FC

1×784

FC+BN+LeakyReLU

1×512 1×256 1×128

FC+BN

+Tanh

1×128 1×m

Fig. 6. Architecture of the encoder e(· ; θe), consisting of fully connected
layers of indicated dimensions. Layers 2-4 contain a batch normalization (BN)
layer and use LeakyReLU as activation. Layer 5 uses tanh instead.

AE+GAN [12], and the proposed ID-GAN. The curves repre-

sent the average values over the 10k test images of MNIST. For

ID-GAN, we fixed the hyperparameters as (λg, λd, λp, λc) =
(1, 103, 1, 103) and considered four different fixed training

noise levels, SNRt ∈ {−10, 5, 20,∞} dB [SNRt = ∞
corresponds to no noise], and also a value of SNRt that is

learned during training. The vertical lines in Figs. 7(a)-7(c)

indicate the rates corresponding to SNRt = −10 dB, 5 dB

and 20 dB.

Fig. 7(a) indicates that image distortion, measured by the

MSE, decreases with the rate for all the algorithms. D-JSCC

outperforms all the other methods, as it was designed to

minimize image distortion (MSE). Indeed, according to the

RDPC tradeoff (Theorem 1), if the perception and classifica-

tion metrics are ignored, an algorithm can achieve a smaller

distortion for a given rate. When ID-GAN is trained with fixed

SNRt, we observe that the larger the value of SNRt, the lower

the achieved MSE for all rates. As we need to take into account

other metrics (FID, classification error), this indicates the

difficulty of manually selecting SNRt. The version of ID-GAN

with learned SNRt found an optimal value of SNRt = 16.5
dB during training, and its MSE performance follows closely

the performance of ID-GAN versions with SNRt = 20 dB and

SNRt = ∞ (the lines of latter practically coincide).

In Fig. 7(b), however, D-JSCC is the algorithm with the

worst FID performance, with an optimal point around a rate

of 5 bits/image. For AE+GAN, the FID metric decreases

monotonically, eventually surpassing ID-GAN trained with

SNRt = 20 dB and ∞. Indeed, these versions of ID-GAN

were the best overall in terms of FID performance, again

closely followed by ID-GAN with learned SNRt. When ID-

GAN is trained with SNRt = −10 dB or 5 dB, FID reaches a

minimum around a rate of 10 bits/image and then it increases.

When SNRt is learned during training, its FID value decreases

until a rate of 20 bits/image, and then it increases gradually.

This implies that when SNRt is learned, the perception quality

of ID-GAN is stable for a certain range of the rate. The

reason why FID values increase for larger rates in ID-GAN is

likely due to the mismatch between the noise levels during

testing and training: indeed, the smaller the training noise

level, the earlier the FID curve starts to increase. This happens

only for FID likely because the decoder, which is largely

responsible for the perception quality of the output, is fixed

during the training of the encoder. This decoupling may make

perception quality more sensitive to discrepancies between

training/testing setups.

Fig. 7(c) shows how the classification error of the algorithms

varies with the rate. All the versions of ID-GAN [except

for SNRt = −10 dB, for rate > 40 bits/image] outperform

both D-JSCC and AE+GAN, which have almost overlapping

lines. Within ID-GAN versions with fixed SNRt, we see that

SNRt = 5 dB yields the best classification error across all

the rates. Decreasing it to −10 dB or increasing it to 20 dB

or ∞ results in a worse classification error. The downside

of such a good performance in terms of classification error

is the poor performance in terms of distortion [Fig. 7(a)]

and perception [Fig. 7(b)] for large rates. ID-GAN with

learned SNRt, on the other hand, achieves a good performance

across all metrics [Figs. 7(a)-7(c)], effectively balancing rate

and all the metrics. We conclude that ID-GAN achieves a

tradeoff better than AE+GAN, outperforming it in all metrics

for rates . 40 bits/image. It also achieves perception and

classification performance better than D-JSCC, at the cost of

worse distortion.

Visual illustration. Fig. 8 shows concrete image examples

reconstructed by all the algorithms. In this experiment, the

latent dimension m in D-JSCC [2], AE+GAN [12], and

ID-GAN was fixed to 8 and the respective rate was then

computed via (24). The parameters of ID-GAN were set to

(λg, λd, λp, λc) = (1, 500, 1, 103), and SNRt was learned. The

first column depicts the images reconstructed by a traditional

JPEG+LDPC+BPSK system. Even when the rate is high, the

reconstructed images fail to match the input one, likely due

to quantization and compression artifacts in JPEG. As the rate

decreases, we observe a cliff effect, with the image quality

degrading abruptly. D-JSCC [2] in the second column, on

the other hand, is based on an autoencoder which, given
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Fig. 7. Different metrics versus rate (24) for the proposed ID-GAN, D-JSCC [2], and AE+GAN [12]. In ID-GAN, we set (λg , λd, λp, λc) = (1, 103, 1, 103)
and, during training, we either learned SNRt := −10 log10 σ

2
t or fixed it to −10 dB, 5 dB, 20 dB (vertical lines depicting the corresponding rates), or ∞

(no noise). For all the metrics, the lower the better. (a) mean-squared error (MSE), (b) Fréchet inception distance (FID), and (c) classification error.

Traditional D-JSCC [2] AE+GAN [12] ID-GANRate

103
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101

Input

Fig. 8. Example images reconstructed by a traditional method
(JPEG+LDPC+BPSK), D-JSCC, AE+GAN training, and proposed ID-GAN
with learned SNRt and parameters (λg , λd, λp, λc) = (1, 500, 1, 103).

the high bandwidth ratio, outputs blurry images at all rates.

As in Fig. 7, even though D-JSCC outperforms the other

algorithms in MSE, it has a relatively poor perception quality

(FID) and classification error. In the third column, the images

reconstructed by AE+GAN [12] have poor perceptual quality

for a low rate, i.e., 10. We noticed that the quality of its output

images collapses when its training parameters λd, λp, and

λc are not carefully set, revealing the difficulty in balancing

different loss terms. The proposed ID-GAN scheme shown in

the fourth column, in contrast, not only preserves semantic

information in images, but also reconstructs them with high

perceptual quality. Compared to D-JSCC and AE+GAN, ID-

GAN generates images with various styles, including different

angles and thickness, even at extremely high bandwidth com-

pression ratios.

Rate-distortion analysis. To illustrate how ID-GAN and

RDPCO behave similarly, Fig. 9 adapts to MNIST the setup

of Fig. 4, which shows rate-distortion curves of RDPCO

with varying (P,C) or m. We fixed the training noise level

of ID-GAN to SNRt = ∞ so that we can visualize the

effect of modifying its hyperparameters. Fig. 9(a) shows, for

different rates, a behavior similar to RDPCO in Fig. 4(a) when

we modify its hyperparameters (λd, λp, λc) accordingly. Note

that these hyperparameters apply only during training; during

testing, we inject different levels of channel noise, obtaining

different rates. The first column of Fig. 9(a) weighs all the

metrics equally. The second column imposes a more stringent

requirement on classification performance by setting λc two

orders of magnitude larger than λd and λp [akin to decreasing

C in (18)]. While classification accuracy is maintained, we

observe loss of details, like digit orientation and line thickness.

The third column imposes a larger weight on perception. At

low rates, even though semantic information is altered, our

algorithm still generates meaningful digits.

Fig. 9(b), akin to Fig. 4(b), shows how different values of m
affect the output images of ID-GAN for different rates. Images

in the first column, for m = 2, are blurry and discontinuous,

indicating that they may disregard the perception and classifi-

cation losses. However, when m = 8, the output images seem

to be more suitable for transmission at all rates, preserving

perception, but with a few semantic mistakes, e.g., a digit 2
becoming a 3. When m = 64, the algorithm requires higher

rates to reconstruct the images accurately.

Ablation study. We performed a small ablation study to

assess whether all the terms in the loss associated to the

encoder (30) are necessary for good performance. To do so, we

fixed the noise level at SNRt = 30 dB, corresponding to a rate

of 50, which is large enough to enable seeing visual differences

in the reconstructed images. First, we trained the encoder with

just the MSE loss, i.e., (λd, λp, λc) = (1, 0, 0) in (30). A set

of reconstructed digits from the test set is shown in the second

column of Fig. 10. The digits are blurry, as the encoder learns

just to compress pixel-level information and disregards any

semantic information. Then, we trained the encoder with the

MSE and classification loss, i.e., (λd, λp, λc) = (1, 0, 40). As

shown in the third column of Fig. 10, the algorithm preserved

semantic information better, e.g., correctly depicting a 4 in
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Fig. 9. (a) Corresponding behavior of ID-GAN on MNIST images. The triples on top of each column represent hyperparameters (λd, λp, λc). We fixed
SNRt = ∞. (b) corresponding behavior of ID-GAN on MNIST images with fixed SNRt = ∞.

Input MSE loss

(ID-GAN)
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Fig. 10. Visualization of the results of the ablation study. In the second
column, only the MSE term of (30) was considered during training. In the
third, both the MSE and the cross-entropy terms were considered. And in the
fourth, the full loss (30) was considered.

the 3rd row and column, but the digits exhibit poor diversity.

For example, all the 2’s look similar. Finally, we trained the

encoder using the full loss, with (λd, λp, λc) = (1, 1, 40). The

reconstructed digits in the last column of Fig. 10 are not only

sharp, of the correct class (except for the 4 in row 1, column

2) but also exhibit more diversity, thus looking more realistic.

VII. CONCLUSIONS

We formulated and analyzed the tradeoff between rate,

distortion, perception, and rate (RDPC) in a joint source

coding and modulation (JSCM) framework. We showed the

existence of a tradeoff and proposed two algorithms to achieve

it. One algorithm is heuristic and was designed under sim-

plifying assumptions to minimize an upper bound on the

RDPC function; the other was based on inverse-domain GAN

(ID-GAN) and works under a general scenario. Experimental

results showed that ID-GAN achieves a better tradeoff than

a traditional method, in which source coding and modulation

are designed separately, and a tradeoff better or similar to

recent deep joint source-channel coding schemes. Experiments

revealed that improving perception quality and classification

accuracy require higher rates, and also showed the existence

of an optimal compressed/latent dimension that minimizes

rate while satisfying constraints on distortion, perception, and

classification.

ACKNOWLEDGMENTS

We thank the two reviewers for their insightful suggestions,

which significantly improved the quality of the paper.

REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of Information
Theory. Wiley & Sons, 1991.

[2] E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, “Deep joint
source-channel coding for wireless image transmission,” IEEE
Trans. Cog. Comms. Network., vol. 39, no. 1, pp. 89–100,
2019.

[3] M. Fresia, F. Peréz-Cruz, H. V. Poor, and S. Verdú, “Joint
source and channel coding,” IEEE SP Mag, vol. 27, no. 6,
pp. 104–113, 2010.

[4] Y. Blau and T. Michaeli, “The perception-distortion tradeoff,”
in CVPR, 2018, pp. 6228–6237.

[5] W. Hua, D. Chen, J. Fang, J. F. C. Mota, and X. Hong,
“Semantics-guided contrastive joint source-channel coding for
image transmission,” in IEEE Int. Conf. Wireless Communica-
tions and Signal Processing (WCSP), 2022, pp. 505–510.



15

[6] Z. Lei, P. Duan, X. Hong, J. F. C. Mota, J. Shi, and C.-X.
Wang, “Progressive deep image compression with hybrid
contexts of image classification and reconstruction,” IEEE J.
Selected Areas in Communications, vol. 41, no. 1, pp. 72–89,
2023.

[7] W. Hua, L. Xiong, S. Liu, et al., “Classification-driven discrete
neural representation learning for semantic communications,”
IEEE Internet of Things, vol. 1, no. 1, pp. 1–14, 2024.

[8] Y. Blau and T. Michaeli, “Rethinking lossy compression: The
rate-distortion-perception tradeoff,” in ICML, 2019, pp. 675–
685.

[9] D. Liu, H. Zhang, and Z. Xiong, “On the classification-
distortion-perception tradeoff,” in NeurIPS, 2019, pp. 1–10.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative
adversarial nets,” in NeurIPS, 2014, pp. 1–9.

[11] J. Zhu, Y. Shen, D. Zhao, and B. Zhou, “In-domain GAN
inversion for real image editing,” in ECCV, 2020, pp. 592–608.

[12] E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte, and L. V.
Gool, “Generative adversarial networks for extreme learned
image compression,” in ICCV, 2019, pp. 221–231.

[13] N. Farsad, M. Rao, and A. Goldsmith, “Deep learning for joint
source-channel coding of text,” in ICASSP, 2018, pp. 2326–
2330.

[14] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning en-
abled semantic communication systems,” IEEE T-SP, vol. 69,
pp. 2663–2675, 2021.

[15] Z. Weng and Z. Qin, “Semantic communication systems for
speech transmission,” IEEE J. Selected Areas in Communica-
tions, vol. 39, no. 8, pp. 2434–2444, 2021.

[16] S. Wan, Q. Yang, Z. Shi, Z. Yang, and Z. Zhang, “Cooper-
ative task-oriented communication for multi-modal data with
transmission control,” in IEEE Int. Conf. Comms. Workshops,
2023, pp. 1635–1640.

[17] Q. Y. Z. Zhang, S. He, and et al., “Semantic communication
approach for multi-task image transmission,” in IEEE VTC,
2022, pp. 1–2.

[18] D. B. Kurka and D. Gündüz, “Bandwidth-agile image trans-
mission with deep joint source-channel coding,” IEEE Trans.
Wireless Comm., vol. 20, no. 12, pp. 8081–8095, 2021.

[19] D. B. Kurka and D. Gündüz, “DeepJSCC-f : Deep joint source-
channel coding of images with feedback,” IEEE J. Selected
Areas in Inf. Th., vol. 1, no. 1, pp. 178–193, 2020.

[20] J. Xu, B. Ai, N. Wang, and W. Chen, “Deep joint source-
channel coding for CSI feedback: An end-to-end approach,”
IEEE J. Selected Areas in Communications, vol. 41, no. 1,
pp. 260–273, 2023.

[21] M. Jankowski, D. Gündüz, and K. Mikolajczyk, “Wireless
image retrieval at the edge,” IEEE J. Selected Areas in Com-
munications, vol. 39, no. 1, pp. 89–100, 2020.

[22] M. Yang, C. Bian, and H.-S. Kim, “Deep joint source channel
coding for wireless image transmission with OFDM,” in IEEE
Int. Conf. Comms., 2021, pp. 1–6.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323,
no. 6088, pp. 533–536, 1986.

[24] J. Xu, B. Ai, W. Chen, A. Yang, P. Sun, and M. Rodrigues,
“Wireless image transmission using deep source channel cod-
ing with attention modules,” IEEE Trans. Circuits Sys. for
Video Tech., vol. 32, no. 4, pp. 2315–2328, 2022.

[25] T. Karras, S. Laine, and T. Aila, “A style-based generator
architecture for generative adversarial networks,” in CVPR,
2019, pp. 4401–4410.

[26] E. Erdemir, T.-Y. Tung, P. L. Dragotti, and D. Gündüz,
“Generative joint source-channel coding for semantic image
transmission,” IEEE J. Selected Areas in Communications,
vol. 41, no. 8, pp. 2645–2657, 2023.

[27] T. Karras, S. Laine, M. Aittala, J. Hellsten, and J. Lehtinen,
“Analyzing and improving the image quality of StyleGAN,”
in CVPR, 2020, pp. 8110–8119.

[28] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang,
“The unreasonable effectiveness of deep features as a percep-
tual metric,” in CVPR, 2018, pp. 586–595.

[29] Z. Yan, F. Wen, R. Ying, C. Ma, and P. Liu, “On perceptual
lossy compression: The cost of perceptual reconstruction and
an optimal training framework,” in ICML, 2021, pp. 11 682–
11 692.

[30] I. Csiszár and P. C. P. C. Shields, “Information theory and
statistics: A tutorial,” Found. and Trends in Communications
and Information Theory, vol. 1, no. 4, pp. 417–528, 2004.

[31] T. van Erven and P. Harremoës, “Rényi divergence and
Kullback-Leibler divergence,” IEEE T-IT, vol. 60, no. 7,
pp. 3797–3820, 2014.

[32] I. Olkin and F. Pukelsheim, “The distance between two random
vectors with given dispersion matrices,” Linear algebra and its
applications, vol. 48, pp. 257–263, 1982.

[33] D. C. Dowson and B. V. Landau, “The Fréchet distance
between multivariate normal distributions,” J. Multivariate
Analysis, vol. 12, pp. 450–455, 1982.

[34] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification,
2nd edition. Wiley, 2001.

[35] S. Boyd and L. Vandenberghe, Convex Optimization. Cam-
bridge University Press, 2004.

[36] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gener-
ative adversarial networks,” in ICML, 2017, pp. 214–223.

[37] I. Gulrajani, F. Ahmed, M. Arjovsky, and et al., “Improved
training of Wasserstein GANs,” in NeurIPS, 2017, pp. 1–11.

[38] D. P. Kingma and M. Welling, “Auto-encoding variational
bayes,” in ICLR, 2014, pp. 1–14.

[39] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proc IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[40] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf.
Th., vol. 8, no. 1, pp. 21–28, 1962.

[41] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S.
Hochreiter, “GANs trained by a two time-scale update rule
converge to a local Nash equilibrium,” in NeurIPS, 2017,
pp. 1–12.

[42] C. Villani, Optimal Transport: Old and New. Springer, 2009.



16

APPENDIX A

PROOF OF THEOREM 1

For convenience, we restate Theorem 1:

Theorem. Let X be a multiclass model as in (1). Consider

the communication scheme in (2) and the associated RDPC

problem in (3). Assume the classifier c0 is deterministic and

that the perception function d(·, ·) is convex in its second

argument. Then, the function R(D,P,C) is strictly convex,

and it is non-increasing in each argument.

Proof. If we increase either D, P , or C in right-hand side

of (3), the constraint set of the optimization problem is

enlarged or remains the same. This means that R(D,P,C)
is non-increasing with any of these variables.

To show strict convexity, we take arbitrary pairs

(D1, P1, C1) ≥ 0 and (D2, P2, C2) ≥ 0 and, for any

0 < α < 1, show that

(1− α)R(D1, P1, C1) + αR(D2, P2, C2)

> R
(
(1−α)D1+αD2, (1−α)P1+αP2, (1−α)C1+αC2

)
.

(32)

To do so, we define, for j = 1, 2,
(
p
(j)
Y |X , p

(j)

X̂|Ŷ , Σ(j)
)
:= argmin

pY |X , p
X̂|Ŷ

,Σ

∑m

i=1 log
(
1 + 1

Σii

)

s.t. E
[
∆(X, X̂)

]
≤ Dj

d(pX , p
X̂
) ≤ Pj

E
[
ǫc0(X, X̂)

]
≤ Cj ,
(33)

and denote by X̂(j) the output of (2) with the parameters

computed in (33). Using the strict convexity of the function

x 7→ log(1+1/x) for x > 0, the left-hand side of (32) equals

(1− α)R(D1, P1, C1) + αR(D2, P2, C2)

=
∑

i

[
(1− α) log

(
1 +

1

Σ
(1)
ii

)
+ α log

(
1 +

1

Σ
(2)
ii

)]

>
∑

i

log

(
1 +

1

(1− α)Σ
(1)
ii + αΣ

(2)
ii

)
(34)

≥ min
pY |X , p

X̂|Ŷ
,Σ

∑m

i=1 log
(
1 + 1

Σii

)

s.t. E
[
∆(X, X̂)

]
≤ (1− α)D1 + αD2

d(pX , p
X̂
) ≤ (1− α)P1 + αP2

E
[
ǫc0(X, X̂)

]
≤ (1− α)C1 + αC2

(35)

= R
(
(1− α)D1 + αD2, (1− α)P1 + αP2,

(1− α)C1 + αC2

)
. (36)

Step (35) to (36) follows from the definition of R(D,P,C)
in (3). The rest of the proof will consist of showing that the

step from (34) to (35) holds. Indeed, this will follow if we

show that the triple

(
(1− α)p

(1)
Y |X + αp

(2)
Y |X , (1− α)p

(1)

X̂|Ŷ + αp
(2)

X̂|Ŷ ,

(1− α)Σ(1) + αΣ(2)
)

(37)

satisfies the constraints of the optimization problem in (35).

First, notice that (37) defines valid parameters for the

communication process in (2). Specifically, because convex

combinations of probability distributions are also probability

distributions, (1−α)p
(1)
Y |X+αp

(2)
Y |X and (1−α)p

(1)

X̂|Ŷ +αp
(2)

X̂|Ŷ
characterize valid encoding and decoding processes. If Σ

(1)

and Σ
(2) are diagonal positive definite matrices, then their

convex combination also is. Let then X̂(α) denote the output

of (2) with the parameters in (37). Notice that

p
X̂(α)|Ŷ = (1− α)p

(1)

X̂|Ŷ + αp
(2)

X̂|Ŷ . (38)

We will show that X̂(α) and its probability distribution

p
X̂(α) = (1− α)p

(1)

X̂
+ αp

(2)

X̂
, (39)

where p
(1)

X̂
and p

(2)

X̂
are the distributions of the output of (2)

with the parameters in (33), satisfy the constraints in (35).

Indeed, for the first constraint, conditioning on Ŷ ,

E
[
∆(X, X̂(α))

]

= E
Ŷ

[
E
[
∆
(
X, X̂(α)

)
| Ŷ

]]
(40)

= E
Ŷ

[
(1− α)E

[
∆
(
X, X̂(1)

)
| Ŷ

]

+ αE
[
∆
(
X, X̂(2)

)
| Ŷ

]]
(41)

= (1− α)E
[
∆
(
X, X̂(1)

)]
+ αE

[
∆
(
X, X̂(2)

)]
(42)

≤ (1− α)D1 + αD2 . (43)

In (40) and (42), we applied the tower property of expectation.

From (40) to (41), we used (38). And from (42) to (43), we

used (33). For the second constraint, we use the assumption

that d(·, ·) is convex in its second argument and, again, (38)

and (33):

d
(
pX , p

X̂(α)

)
= d

(
pX , (1− α)p

(1)

X̂
+ αp

(2)

X̂

)

≤ (1− α)d
(
pX , p

(1)

X̂

)
+ αd

(
pX , p

(2)

X̂

)
.

≤ (1− α)P1 + αP2 .

Finally, for the last constraint, we plug X̂(α) into (5):

E

[
ǫc0(X, X̂(α))

]
=

∑

i<j

pj ·
∫

Ri

d p
X̂(α)|Hj

(44)

=
∑

i<j

pj ·
∫ ∫

Ri

d p
X̂(α)|Ŷ , Hj

d p
Ŷ

(45)

=
∑

i<j

pj ·
∫ ∫

Ri

d p
X̂(α)|Ŷ d p

Ŷ
(46)

= (1− α)
∑

i<j

pj ·
∫ ∫

Ri

d p
X̂(1)|Ŷ d p

Ŷ

+ α
∑

i<j

pj ·
∫ ∫

Ri

d p
X̂(2)|Ŷ d p

Ŷ

(47)

= (1− α)E
[
ǫc0

(
X, X̂(1)

)]
+ αE

[
ǫc0

(
X, X̂(2)

)]

(48)

≤ (1− α)C1 + αC2 . (49)
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From (44) to (45), we conditioned on Ŷ . From (45) to (46),

we used the Markov property of (2). From (46) to (47), we

used (38). From (47) to (48), we applied the same steps as

in (5), but in reverse order. And, finally, from (48) to (49), we

used (33).

APPENDIX B

PROOF OF LEMMA 3

For convenience, we restate Lemma 3:

Lemma. Let pX (resp. p
X̂

) be a Gaussian mixture model

following (6) [resp. (7)], in which the probability of hypothesis

H0 is p0 and of hypothesis H1 is p1 = 1− p0. Then,

W1(pX , p
X̂
) ≤

∥∥Σ̂ 1
2 − In

∥∥
F
+

∥∥DEcn − cn
∥∥
2
· p1 .

Proof. We use the dual form of Wasserstein-1 distance in (25):

W1

(
pX , p

X̂

)
= sup

‖f‖L≤1

EX∼pX

[
f(X)

]
− EX∼p

X̂

[
f(X)

]

≤ sup
‖f‖L≤1

(
EX∼pX

[
f(X) |H0

]
− EX∼p

X̂

[
f(X) |H0

])
p0

+ sup
‖f̂‖L≤1

(
EX∼pX

[
f̂(X) |H1

]
− EX∼p

X̂

[
f̂(X) |H1

])
p1

(50)

=: W1

(
pX , p

X̂
|H0

)
· p0 +W1

(
pX , p

X̂
|H1

)
· p1 (51)

≤ W2

(
pX , p

X̂
|H0

)
· p0 +W2

(
pX , p

X̂
|H1

)
· p1 (52)

=
∥∥Σ̂ 1

2 − In
∥∥
2
p0 + p1

√∥∥Σ̂ 1
2 − In

∥∥2
F
+
∥∥cn −DEcn

∥∥2
2

(53)

≤
∥∥Σ̂ 1

2 − In
∥∥
F
+

∥∥cn −DEcn
∥∥
2
· p1 .

In (50), we first conditioned on H0 and H1, and then used the

subadditivity of the supremum. The inequality is due to using

different variables f and f̂ . From (50) to (51), we defined

the Wasserstein-1 conditional on an event. From (51) to (52),

we used the fact that Wp(·, ·) ≤ Wq(·, ·) whenever p ≤ q;

see [42, Remark 6.6]. From (52) to (53), we applied (13) to

the models in (6) and (7). And in the last step, we used the

triangular inequality.
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