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Abstract—Resource distribution in radio networks aims at
maximizing spectrum utilization while minimizing interference.
In this paper, we consider the problem of uniform radio resource
distribution on a periodic grid. We formulate the problem as
finding the sublattice configuration that maximises the distance
between adjacent resources, crucial for reducing interference and
improving throughput performance. Leveraging concepts from
lattice theory and discrete geometry, we present an enumera-
tive, parallelizable algorithm to explore all possible sublattices
and efficiently identify the optimal configurations. Additionally,
we investigate the existence and properties of scaled-rotated
sublattices, exploring how different lattice geometries impact
optimal solutions. Numerical results demonstrate the effectiveness
of the proposed algorithm and highlight insights into optimal
sublattice design for various lattice structures. Furthermore, the
results are applied to the identification of the beam layout in a
fixed multibeam geostationary satellite. Numerical results show
that the spectral efficiency of the optimised sublattice is higher
than all other sublattices. This work thus advances the field of
radio resource distribution and offers practical implications for
improving satellite network performance.

Index Terms—Radio resource assignment, frequency reuse,
wireless communications, satellite communications, lattice theory.

1. INTRODUCTION

In wireless networks, it is common practice to reuse the
same frequency spectrum in different areas (cells), provided
that such areas are sufficiently far apart to avoid interference.
This technique, named frequency reuse, is widely used in
broadcasting, mobile telephony, satellite communications and
other radio services. It applies not only to frequency, but to
any radio resource, e.g., polarization, spread spectrum code,
or time slots. We refer to any of these resources as a colour.
This technique was initially applied for planning broadcasting
transmitters networks for AM or FM radio and television
[1], but it found broader application in mobile-telephone
services with the cellular concept [2]: instead of using one
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powerful transmitter to cover a large area, multiple lower-
power transmitters are strategically placed to create cells, each
covering a smaller subarea. This led to a significant increase
in overall network capacity.

Multibeam coverage in satellite communications. Frequency
reuse is exploited in satellite communications systems to
increase the total capacity by utilizing the same frequency
band across multiple separate beams [3]. The transition from
broadcast to broadband satellite services has intensified fre-
quency reuse [4]. Broadband missions launched across low
Earth orbit (LEO), medium Earth orbit (MEO), and geostation-
ary Earth orbit (GEO) heavily rely on contiguous multibeam
coverage, where large areas are served by a lattice of beams
[4]. Narrower beams enhance gain, allowing the link budget
requirements to be met with less stringent user antenna per-
formance. Meanwhile, spectral resources can be reused across
the lattice, thereby allowing higher throughput within given
frequency allocations. Multibeam coverage is also central to
emerging direct-to-device missions and standards [5].

Fixed multibeam coverage. Multibeam coverage is com-
monly implemented with the generation of a fixed lattice
of uniform switchable beams. This is often the preferred
approach even for satellites with digitally transparent payloads
[6] and active antenna architectures, since real-time precoding
and beamforming are incompatible with foreseeable process-
ing capabilities [7]. The fixed lattice is split into periodic
sublattices such that the beams of any given sublattice are
sufficiently separated to avoid strong interference. The beams
associated with a given sublattice are then served by the same
frequency resource (colour). A notable example often adopted
in GEO satellite communication networks is the 4-colour
reuse scheme, where a hexagonal beam layout is split into 4
hexagonal sublattices, one for each colour [8]. Other popular
choices for segmenting hexagonal lattices into sublattices of
the same frequency and/or colour involve reuse factors of 3 or
7 [9]. A higher frequency reuse factor typically leads to lower
interference at the cost of a reduced frequency resource serving
each beam. In general, the objective is to select sublattices such
that this trade-off is optimised.

Beam layout assignment per colour. In satellite communi-
cation networks the number of colours (i.e. reuse factor) is
determined by a mix of system and regulatory constraints,
including assigned number of frequency slots, polarization
reuse, channelization aspects, antenna dispersion, and user
terminal bandwidth. Given a periodic lattice of beams and a
fixed number of colours, it remains an open problem to find an
assignment between the colours and the beams such that the
signal-to-interference-plus-noise ratio (SINR) is maximised.

Authorized licensed use limited to: Heriot-Watt University. Downloaded on October 16,2025 at 03:36:21 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2025.3621253

IEEE TRANSACTIONS ON COMMUNICATIONS

Relation to TIM. Topological interference management
(TIM) shows that, when only the binary interference topology
is known, carefully designed time/frequency schedules can
outperform hard frequency reuse [10]. However, the TIM gains
shrink as the radius of strong interference grows: when each
receiver is affected by many tiers of neighbours, the improve-
ment on the number of degrees of freedom over static reuse
becomes marginal [11]. This is precisely the operating regime
of GEO broadband missions, where spot beams generate non-
negligible interference over tens of cells, as in the example
in Sect.VI. Here, we address a different problem: for a given
number of orthogonal resources C, we constructively find the
sublattice that maximises the minimum co-channel distance
between beams. User—beam association and fast scheduling
are left to the radio resource management (RRM) layer and
are outside the scope of this work.

Optimal solutions for canonical number of colours. The
theory of lattices [12] and the theory of numbers [13] offer
useful instruments to tackle this problem. The optimal solution
depends on the underlying lattice and on the number of
colours. Low order patterns for the hexagonal lattice were
identified by Espley [14]. After introducing the mathematical
basis of the geometry of lattices, Fastert [15] described a
method of linear distribution of colours providing optimal
minimum distances. Although limited to the particular case
of progressive distribution of colours on parallel lines, [15]
can be considered as the first application of the theory of
lattices to the resource assignment problem. The arrangement
of 2 frequencies and 2 polarizations (i.e. 4 colours) on a
hexagonal lattice has been widely adopted in satellite networks
[3]. It can be proven that an hexagonal placement of same
colour cells over an hexagonal lattice maximises the distance
between the closest neighbours assigned to the same colour. A
solution to this instance for a generic number of colours was
elaborated by Donald [2], who rediscovered a Diophantine
quadratic equation on the permissible number of colours that
had already been reported by Espley and attributed to E. V.
Newbery and J. W. Ryde [14]. Algorithms generating optimal
colour distributions on hexagonal lattices for arbitrary number
of colours were presented in [16]. The use of quadratic Dio-
phantine equations was extended by de Almeida and Palazzo
[17] to square lattices, but erroneously considered optimal.
Their approach replicates results of [18], which are also non-
optimal for square lattices.

Problem statement. The Diophantine equations in [2] and
in [17] for hexagonal and square lattices, respectively, enable
finding sublattices that are rotated and scaled versions of
the original ones. These equations, however, have integer
solutions only for a subset of colours C. Furthermore, while
these solutions achieve the maximum spacing between nearest
same-colour neighbours for hexagonal lattices, they do not for
square ones. Therefore, there is no general procedure that,
given an arbitrary number of colours and a lattice in arbitrary
dimension, computes the optimal sublattice maximizing the
distance between the closest neighbours assigned to the same
colour. Finally, the similarity of the two Diophantine equations
for the hexagonal and square lattices suggests the existence of
a generalised equation applicable to a broader class of bi-

dimensional lattices. We thus aim to answer the following
questions:

1) Given a regular lattice and an arbitrary number of colours,
what is the partition into regular sublattices that max-
imises the distance between same-colour closest neigh-
bours?

2) Given a regular lattice and an arbitrary number of colours,
is it possible to find a sublattice that corresponds to a
scaled-rotated version of the starting one?

The solution to 1) minimises the interference experienced by
each user. The solution to 2) applies to direct radiating antenna
(DRA) payloads with regularly spaced elements. In fact, these
architectures enable exploiting the regularity of the nulls in
the radiation patterns to mitigate interference [19], [20]. For
example, if we consider a DRA with elements placed on a
square lattice, the resulting radiation patterns will have nulls
that are located on a square lattice. Consequently, if we start
from a square beam layout, we would like to find a sublattice
that is also square (eventually rotated). In that case, for all
the colours, every beam centre is located on the nulls of the
remaining beams assigned to the same colour.
Contributions. We summarize our contributions as:

1) We describe the maximum same-colour nearest neigh-
bour distance sublattice (MASCONDS) algorithm. This
is a non-redundant enumerative algorithm which, after
applying a lattice reduction algorithm, explores all the
possible sublattice representative bases and selects the
one maximising the distance between the nearest neigh-
bours with the same colour. The method generalizes well
established results [14]-[18], [21], which can be obtained
as particular cases of the unified approach. The brute-
force approach guarantees that the solution corresponds
to a global optimum and outperforms discrete global
optimization methods by avoiding the exploration of
different solutions that correspond to the same sublat-
tice. Although the results are detailed for the case bi-
dimensional, the method can be applied “as is” to higher-
dimensional problems. The proposed method allows the
identification of iso-colour cells by means of vectorial-
modulo operation, as described in [22].

2) We generalize the Diophantine equations in [2], [16], [17]
for the existence of scaled-rotated sublattices to a broader
class of 2D lattices that includes the previous ones as
special cases.

3) We apply the MASCONDS algorithm to design a fixed
multibeam layout of a GEO communication satellite with
a non-canonical number of colours. The solution provided
by the algorithm results in higher spectral efficiency
(SE) performance compared to all remaining sublattice
configurations with the same number of colours.

Organization. The paper is organized as follows. In Sect.
II, we cover the fundamentals of lattice theory and formulate
the colour assignment problem. Sect. III presents our MAS-
CONDS algorithm. Sect. IV then generalises the Diophantine
equations to a broader class of 2D lattices. Numerical results
for different underlying lattices are discussed in Sect. V. In
Sect. VI, we apply the MASCONDS algorithm to compute
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the optimal fixed multibeam layout for a GEO communication
satellite. Conclusions follow in Sect. VII.

II. LarticE THEORY AND PROBLEM FORMULATION

Lattice theory is a fundamental branch of mathematics
dealing with the study of regular pattern of points in mul-
tidimensional spaces. Periodic lattices find applications across
various scientific disciplines, including crystallography [23],
materials science [24], cryptography [25], array processing
[26] and satellite communications [7], where understanding
and exploiting their underlying periodicity is fundamental.
Lattice. A uniform lattice over RV is an infinite discrete set
of points defined as [26]

N
A(D) = {7“ eRY:r=Dn-= Zn,-d,-,\/neZN}, (1)

i=1

where D = [d,,...,dy] € RM is a non-singular matrix.
The i-th element of vector n, denoted by n;, represents the
number of steps along d;. When N = 2, each lattice point
can be expressed as r = n;d; + nyd,. The most common 2D
lattices are the square and hexagonal ones, whose D matrices
correspond to

o o 3

N2/ V3 in D¢ guarantees |[det D| = 1. Given a lattice
A(D), any unimodular integer matrix M € ZV*N (ie. an
integer matrix with unitary determinant, [det M| = 1) produces
a new base matrix D’,

3

3
1], @
2

ol

where

D' =DM, 3)

which generates the same lattice, i.e. A(D) = A(D’). Con-
sequently, any lattice can be associated to several different
bases. Two matrices D and D’, satisfying (3) for some integer
unimodular M matrix are called right-equivalent.

Volume of a lattice. The volume of a lattice is defined as the
volume of its cell, vol (A) = |det D] (area in the 2D case), and
is invariant to the choice of the basis, since |det M| = 1. The
unit cell can be either the fundamental parallelogram or the
Voronoi region [26].

Reduced-form D matrix. In the following, we assume that
D is in reduced form, i.e. it always satisfies the two following
properties:

lldill < lldall < -+~ < lldll, (4a)

{di}fi , corresponds to the shortest vector lattice basis. (4b)

Sublattice. Given A(D), a sublattice with C colours is a par-
tition of the lattice into C interleaved lattices. Each sublattice
can be obtained by translating the sublattice centred at the
origin. An example of a sublattice with two colours is shown
in Fig.la, where the blue circles correspond to the sublattice
centred at the origin and the red squares are obtained by
applying a [1,0] translation. Mathematically, a sublattice of
A(D) corresponds to the lattice A(DM), where M € ZV*N

BOoEHOEHO6MEGEG
1 O B OEOEOE
> EH O EHDOEHOME¢
1 O B OEHOEOE
d>EH O EHDOEO6MEE
1O EBO0EHO0EOER
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DoEmoeEoen
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1 OEHOEHOEOTR

-4 - 0 2 4 -4 - 0 2 4
(a) Config. A (b) Config. B

Figure 1: Plot of two different sublattices of a square lattice with 2 colours.
Configuration B is also known as quincunx.

is an integer matrix with |[det M| = C. If we define V' = DM,
the following sublattice matrices

1 olfo 2 0 2
VA:DDMAz[o 1”1 o] 2[1 0}’

1 ol[1 1 11
%:DDMB:[O 1”—1 1]:[—1 1]’

correspond to the ones in Fig.1a and Fig.1b, respectively.
Distance maximization problem. For a given number of
colours C, a lattice can be partitioned into several possible sub-
lattices. An important problem in communications (or resource
allocation) is then finding the sublattice whose distances
between the closest same-coloured neighbours is maximal. For
example, in the two configurations in Fig.1, B is preferred
over A, since the distance between the closest same-coloured
neighbours is V2, whereas in A it is 1. Mathematically, the
problem can be formulated as follows

&)

M} eargmax min |[DMn|,
MezV<N neZN\(0} (6)
|det M|=C
where the € operator is used instead of the equal sign, since
there can be different optimal sublattices. Consider an example
in R? with C =4, D = Dy, and the following matrices

M, = [é ;} @)

Both matrices are optimal, as they achieve the maximum same-
colour nearest-neighbour distance, i.e. dyni, = 2. However,
while in the first case there are 4 neighbours with distance
equal to 2, in the second one there are 2 neighbours within
distance 2 and 2 neighbours within distance V5.

Next, we present an algorithm for solving (6).

III. MASCONDS ALGORITHM

The first step in solving (6) consists in enumerating all the
possible sublattices of A(D) that have C colours. Considering
configuration A in Fig.la, it can be observed that multiple
M matrices generate the same sublattice. One possible choice
corresponds to the matrix M, in (5), while an alternative is

M; = [(1) ﬂ ®)

which generates the same sublattice. In general, any discrete
right-equivalent matrix of M, results in the same sublattice
regardless of the original lattice. Consequently, all the discrete
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right-equivalent matrices of M, generate the sublattice in
Fig.1a. Analogously, all the right-equivalent matrices of Mp
in (5) generate the sublattice in Fig.1b.

Hermite normal-form matrix. Given the above degree of
freedom, we restrict our search to matrices that have a simple
representation, namely Hermite normal-form matrices. A non-
singular non-negative integer matrix H is in Hermite normal-
form if it satisfies the two following properties:

Integer upper triangular matrix :

Hjj=0, Vijj:1<j<i<N. (9a)
Off-diagonal elements smaller than pivot :
O0<H;j<HpVi,j:1<i<j<N. (9b)
From property (9a) and (9b), it follows that
N
\det H| = ]—[ H;=C. (10)

i=1
From the Hermite normal-form theorem, each sublattice is
represented uniquely by only one Hermite normal-form matrix
[27]. If we denote by Hy.c € ZV*N the set of Hermite normal-
form matrices of size N X N with determinant equal to C,
problem (6) can be reformulated as

M} £ H} earg max min

|IDHmn .
HeHyc nezZV\{0}

1D
Hermite normal-form matrix generation. All the possible
matrices in Hermite normal-form with determinant equal to
C can be built as follows: first, we find all the combinations
of positive integer diagonal entries that satisfy (10). For each
pivot combination, the elements of each row are set to O if
they are to the left of the pivot, as per (9a), and are set to
non-negative integer values smaller than the pivot if they are to
the right, as per (9b). As an example, for a 2D lattice (N = 2)
with C = 4, all the possible sublattices are

4 0[|4 1(|4 2|4 3 2 0f|12 11 |1 O
[0 IHO IHO IHO 1} [O 2] [O 2} [O 4]'
(12)
The matrices within each of the three groups have the same
pivot combination, i.e. (4,1), (2,2), and (1,4), respectively.
One can check that each matrix generates a different sublattice.

If C = le p;", where p, is a prime factor and m, its
multiplicity, the total number of pivot combinations is

PN
(Y35

t=1

13)

which corresponds to the number of partitions of the set {p; :
my,t = 1,..., P} into N subsets, where p; : m; denotes a set
with element p, repeated m, times. Since the partition of each
prime factor is independent of the others, (13) corresponds to
the product of the partitions of each prime factor separately.
The latter problem is a well-known problem in combinatorics
(stars and bars problem), whose solution can be found in [28].

The total number of distinct Hermite normal-form matrices
of size N X N with determinant C is equal to [29]

P N-1 pm,+n -1
L|Hyc|= [_“—[;—_1 (14)
t=1 n=1 !

4
Algorithm 1 MASCONDS
Inputs:
D |, Lattice base matrix > DijjeR, i, j=1,..., N
C , Number of colours
Outputs:
H™* , Optimal sublattice matrix »HS€Z, i j=1,..., N

N «Size(D, 1)
H < GENERATEHERMITENORMALFORMMATRICES(N,C)
> H is a cube of dimension (N, N, L) containing
all the Hermite normal-form matrices as layers
L « Size(H,3)
for (=1,...,L do
H <« Hgx(:,:,1)
V « DH
Vz(:, :, ) « LarriceREpUCTIONALGORITHM(V)
> The reduced V' matrix with columns sorted in ascending
order of length is stored in the /-th layer of the Vi cube

> This loop can be parallelized

end for

H* « Hg(:,:, lmax)

Lattice reduction. The second step in solving (11) consists
in finding among all the Hermite normal-form matrices the
one associated to the sublattice with the largest minimum
distance. Since the total number of sublattices is finite, a
brute force approach, where the minimum distance for each
sublattice is computed, allows finding the optimal solution.
In general, the matrix V = DH is not in reduced form,
i.e. does not satisfy (4a) and (4b), so we start by running a
lattice reduction algorithm. Lattice reduction algorithms can be
classified into two categories: exact algorithms, with running
times at least exponential in the dimension N, and approximate
algorithms, with polynomial running times. The problem of
lattice reduction has been studied extensively, e.g. [27]. Here,
as we focus on 2D lattices, we apply the Lagrange algorithm
[30], which is exact in 2D. Due to the exponential complexity
of the lattice reduction problem on N, the proposed algorithm
may become infeasible for high-dimensional cases. However,
most applications in electromagnetism and communications
deal with 2D or 3D lattices, so the algorithm can be run in a
negligible amount of time compared to the other operations.
MASCONDS Algorithm. The pseudo-code of the algorithm
is described in Alg. 1. GENERATEHERMITENORMALFORMMATRICES
generates all the Hermite normal-form matrices with C colours
as detailed in the previous paragraphs, while LarticEREDUC-
TIONALGORITHM is any exact lattice reduction algorithm.
Parallelization. For each candidate Hermite normal-form
matrix H in H; we (i) foom V = DH, (ii) apply a
lattice-reduction routine to V', and (iii) evaluate the objective
(minimum same-colour nearest neighbour distance) for that
candidate. These per-candidate computations are independent,
no data are shared across candidates, so the overall procedure
can be parallelised. For example, in Matlab [31], parFoR dis-
tributes the computation across different cores, while ARRAYFUN
parallelizes the computation on the GPU.

Theorem 1. Given a non singular matrix D € RNV and an
integer C > 0, Alg. I outputs a solution to problem (11).

Proof. Given C > 0, the prime factorization theorem [32]

guarantees the uniqueness of the factorization C = []2, p.
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Thus, the procedure described in (12), which the function
GENERATEHERMITENORMALFORMMATRICES implements, gener-
ates the full set Hyc. The result follows by noticing that
Alg. 1 (exhaustively) selects the matrix H € Hy  associated
with the sublattice whose minimum distance between same-
coloured neighbours is maximal. [ ]

Computational complexity analysis. The computational
complexity of Alg. 1 is dominated by the most expensive
function inside the loop, the lattice reduction algorithm, whose
complexity using the exact algorithm from [33] is O(2%).
Although here we provide the asymptotic complexity of the
algorithm in terms of N and C, it is worth mentioning that in
most communication problems N is either 2 or 3, and C is
typically smaller than 100.

Theorem 2. Alg. I has computational complexity O(CN122N)
if the for loop is run sequentially and O(2*N) if run in parallel.

Proof. In both cases, the dominant operation in Alg. 1 is
the lattice reduction algorithm inside the loop. From [33],
it has complexity O(22V). So, if the loop is run in parallel,
the complexity of Algorithm 1 is O(22"). On the other hand,
if the loop is run sequentially, we need to multiply the
previous expression by L. In Appendix A, we prove that
L= O(In (max, p;) CV ‘1), where max, p, is the largest prime
factor of C. Consequently, the total complexity corresponds
to O(CN~122V), where the In(max, p,) is neglected in the O
(soft-O) notation. [ ]

Upper bound on the nearest-neighbour distance. We con-
clude this section by providing an upper bound on the nearest-
neighbour distance of an N-dimensional lattice. The Hermite’s
constant of dimension N is defined as [30]

. dinin(A) )2
= sup | ———— , 15
w Aeé’w(vol(z\)”’v ()

where
dmin(A) = min |7 (16)
reA\{0)
Hermite was the first one to provide an upper bound on
his constant, which is an exponential one, while in [30] the
following linear bound is provided

N
YN < 1+ Z
From (15), the following upper bound on the maximum

minimum distance of any lattice A can be derived

dmin(A)? < yyvol (AN

a7

(13)
If we consider a sublattice with C colours, (18) becomes

din(A(DM))* < yyvol (AMDM)YN = yyC*™ |det DIV .

(19)
The exact value of the Hermite’s constant for 1 < N < 8 and
N =24 are provided in [30]. In particular, for bi-dimensional
lattices, v, = 2/ V3, which is achieved by the hexagonal
lattice, where dnin(A(Dg))?> = 2/V3 and vol (A(Dg)) =
ldetDO| = 1. Consequently, among all the planar lattices
with the same unit cell size, i.e. same area, the hexagonal
one guarantees the largest distance between neighbours. This

explains the reason why base stations should be arranged on
an hexagonal lattice in a cellular network [2].

IV. ScALED-ROTATED SUBLATTICES

While an algorithm to find the optimal sublattice with C

colours was presented in Sect. III, in this section we address
the following question: given a lattice A, is it possible to
find a matrix M that generates a sublattice with C colours
that corresponds to a scaled and rotated version of A? Such
a solution is desirable in applications that require that the
sublattice preserves the shape of the original one. For example,
we would like to find all the C values that allow to generate
a square sublattice from a square lattice.
Scaled-rotated sublattice existence condition. Mathemati-
cally, we know that the sublattice matrix can be expressed as
V = DM, where we assume that D is the reduced original
lattice matrix. However, if the sublattice matrix V' must be a
scaled and, eventually, rotated version of the original one D,
then V' must be also expressed as

V = DM = VCRD, (20)

where R € RVV is a rotation matrix (R™' = R”, det R = 1).
The factor VC is necessary to ensure that |[det V| = C |det D).
Since D is non-singular, we can express M as

M = NCD'RD € 7M. @21

Consequently, given a lattice with reduced matrix D, a mag-
nified sublattice with C colours can be found if and only
if there exists a rotation matrix R such that the right hand
side of (21) yields an integer matrix. One notable example
corresponds to the case AC € N and R = Iy, where 201
becomes M = ACIy regardless of D. Contrary to the
previous example, the C values that admit a scaled-rotated
sublattice depend on the chosen original lattice A(D).

A special class of 2D lattices: SRC-2D lattices. In the
following, we present some results for the bi-dimensional case,
i.e. N = 2. Since D is in reduced form, we can assume without
loss of generality that d, = aRsd,, where

—sin¢
cos¢ |’

A

A |COSP
¢~ |sing

is a 2D rotation matrix and a € [1, +00). Let us restrict our
attention to the 2D lattices that are closed under the composite
scaling-rotation operation, i.e. that satisfy the following prop-
erty: Yv; € A(D), then v, = aR4v; € A(D). To simplify
the notation, we refer to this class of lattices as SRC-2D
lattices. Rotationally symmetric lattices, such as the square
and hexagonal ones, are special cases, where @ = 1, and
¢ =m/2 and ¢ = /3, respectively. Since v, v, € A(D), then
v; = Dm, and v, = Dm, with m;, m, € Z>. Consequently,
the expression

(22)

Dm, = aRy;Dm; & m,=aD"'R,;Dm, (23)

should provide an integer vector, i.e. m, € Z?, for any
m € Z*. The latter condition is met if and only if the matrix
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Figure 2: Plot of the scaled (a) and optimal (b) sublattice of a square lattice
with 64 colours.

aD‘1R¢D is an integer matrix. For the bi-dimensional case,
the latter corresponds to

0

2
-1 _ -
D R =[] | (4

that is an integer matrix if and only if

hy € N\{0},

hy ) hy
, heZ:
2\ ? 2

The pairs (h; = 1,h; = 0) and (h; = 1, hy = 1) both satisfy the
conditions in (25) and correspond to the square and hexagonal
lattice, respectively. However, the condition is also met by
lattices whose reduced base vectors have different lengths,
such as (h; = 2, h; = 0), which is a rectangular lattice.
Scaled-rotated sublattice existence condition for SRC-2D
lattices. By taking advantage of the special property of SRC-
2D lattices, the condition in (21) is equivalent to the following
one

a = /’ll,

25
< 1. (23)

¢== arccos(

Imy € Z* : |IDmy|* = ClldiIP, (26)

which can be expressed as
m! D" Dm,

Am, € 7 :
: d’d,

=C, 27
which corresponds to the general expression of the Diophan-
tine equation [2], [16], [17]. Assuming that m; = [i, 717, for

the square lattice, i.e. D = Dy, (27) becomes

2+ 7=C, (28)

and for the hexagonal lattice, i.e. D = Dg

2+ij+jf=C (29)

These two cases have been extensively studied already, and
the list of the first hundred integers that satisfy either (28) or
(29) can be found in [16], [17].

Are scaled-rotated sublattices optimal? A question that then
arises is whether, for those lattices that admit a scaled-rotated
sublattice with C colours, the latter corresponds to the optimal
sublattice, i.e. the one that maximises the same-colour nearest-
neighbour distance. In general, the answer is negative. For
example, Fig.2 shows two different configurations for a square
lattice with 64 colours. Since m; = [8,0]7 is a solution of
(28), this lattice and number of colours combination admits
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Figure 3: Optimal sublattice of a square lattice with C = 209. The resulting
sublattice is close to a rotated hexagonal lattice.

a scaled-rotated sublattice, as shown in Fig.2a. However, the
optimal sublattice, obtained with Alg. 1, does not correspond
to the scaled one and is shown in Fig.2b. The M matrices
associated to the two configurations are

MA:[S 0}’ MB=[7 —2}7 30)

0 8 4 8
that both have determinant equal to 64. Since Dy = I, the
minimum distance of the two configurations corresponds to 8
and V65 > 8 for configuration A and B, respectively.
Optimality of the hexagonal sublattice. On the other hand,
if the original lattice is hexagonal and admits a scaled-rotated
sublattice for a given C, i.e. an integer solution of (29) exists,
this also corresponds to the optimal one. The explanation is
simple: the optimal bi-dimensional lattice is the hexagonal one,
as anticipated in the last paragraph of Sect. IIl. To further
emphasize this finding, we consider a sublattice of a square
lattice that almost achieves the upper bound in (18), where
vol (A) = vol (A(DaM3y,)) = |det Miy,| = 209. Fig3 shows
the optimal sublattice obtained with the proposed algorithm.
The corresponding M matrix is

15 4
ool 2 e
with dﬁm =241 < (2/ \/5)209 ~ 241.33. The two reduced

sublattice base vectors have equal length and their angle
corresponds to 60.14°, which is close to the 60° angle of an
hexagonal lattice.

V. CLOSEST NEIGHBOUR DISTANCE ANALYSIS

Fig.4 represents the norm squared of the shortest and second
shortest vectors in the sublattice as a function of the number of
colours C. The starting lattice is the square lattice (D = Dy)
in Fig.4a, the hexagonal one (D = Dg) in Fig.4b, and the
isosceles triangular one in Fig.4c. The latter corresponds to
the lattice A(D,) with

NS
D, [O ﬂ |

This is chosen as an example of a non conventional lattice,
since ||d;|| # ||d;|| contrary to the square and hexagonal cases.

(32)
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(c) Isosceles Triangular Lattice.

Figure 4: Plot of the squared norm of the first and second shortest sublattice
vectors as a function of C. V' = [v},wv;] is the reduced sublattice matrix.
The red and blue curves are obtained using Alg. 1. Since multiple lattices
with different ||va]| can achieve the same |lv]|, the blue region is the one
subtended between the minimum and maximum values. The green dots
correspond to scaled-rotated sublattices (lvall? = Jlvi]l? in (a) and (b), and
loall? = (5/4)|lv1|P in (c)). The solid black line corresponds to the upper
bound in (33).

Furthermore, since @ = V5/2 and ¢ = arctan(2) do not satisfy
the conditions in (25), this lattice does not belong to the class
introduced in Sect. IV. Consequently, it is not sufficient to
verify the Diophantine equation in (27) to assess that a scaled-
rotated sublattice exists, (21) must hold instead.

Here we assume that V' = [v;, v;] is in reduced form, so
v and v, correspond to the first and second shortest vectors
in the sublattice, respectively. Consequently, the red and green
dots show how dIznin = |j|]? changes with C for the optimal
and scaled-rotated sublattices. Since the optimal solution is the
one that maximises dp,, by definition, the red dots are always
above or equal to the green ones.

The blue dots correspond to the norm squared of the second
shortest vector, i.e. |[vo]> > |jvi]?, of the optimal sublattice
obtained with the proposed algorithm. In general, more sub-

lattices can be optimal and achieve the maximum minimum
distance, as anticipated in Sect. II. Therefore, different optimal
solutions have the same ||v{|| value, but different ||v,|| values.
This is captured in the figures by plotting the region subtended
between the two extreme cases, i.e. the optimal solution with
the smallest and largest ||v,|| value. For the scaled-rotated
sublattices, the ||v,|| values are omitted. In fact, since the
sublattice is a scaled-rotated version of the original lattice, the
ratio between ||v;|| and ||v;|| corresponds to the one between
|[dz]| and ||d;]. As a consequence, lval? = |lvglP* for the
square and hexagonal lattice, while lval? = (5/4)|lvy|* for
the isosceles triangular one.

By replacing vol (D) = 1 and y, =2/ V3 in (19), we obtain
the following upper bound on the minimum distance

011 = dun AV = —=C. (33)

Finally, as a common feature of the three plots, we can
observe that, depending on the starting lattice, not all C values
support a scaled-rotated lattice, as introduced in Sect. IV. On
the other hand, if C is a perfect square, a scaled lattice always
exists regardless of the starting lattice, and M = VCI,.

Considering the square lattice curves in Fig.4a, we can
observe that the C values that support a scaled-rotated sub-
lattice correspond to the ones that admit an integer solution
of the Diophantine equation in (28). The reader can compare
these values against the ones in [17]. From (20), it follows
that |Jv;]]> = C||d,||* for the scaled-rotated sublattice, which
explains the position of the green dots on the dashed line
llvg]> = C. In addition, the scaled-rotated solution does not
correspond to the optimal one as discussed in Sect. IV and
shown in Fig.2.

On the other hand, considering the curves in Fig.4b for
the hexagonal lattice, the optimal solution corresponds to the
scaled-rotated one when it exists. This is an expected result
since the hexagonal lattice is the optimal planar lattice, i.e. the
one that guarantees the largest spacing between same-colour
neighbours given the unit cell area. Consequently, contrary
to the square lattice case, here the upper bound is regularly
achieved. Analogously to the square lattice case, the C values
that support a scaled-rotated sublattice correspond to those that
admit an integer solution of the Diophantine equation in (29),
and they can be cross checked against the ones in [17].

Finally, Fig.4c shows the curves when the starting lattice
corresponds to the isosceles triangular one. Since ||d;|| =1 as
in the square lattice case, the green dots are on the dashed line
llog]? = C. Contrary to the two previous cases, since this lattice
does not satisfy the conditions in (25), a rotation matrix R that
satisfies (21) must be found for every C to prove the existence
of a scaled-rotated sublattice. Like in the square lattice case,
this sublattice does not correspond to the optimal one.

A general result that emerges from the three figures and is
suggested by the upper bound expression is that dp;, grows as
V/C. Intuitively, if the area grows by a factor C, it is reasonable
that the minimum distance grows as its square root. In general
for N dimensional lattices, since the hyper-volume grows by
C, the minimum distance grows by V/C in line with the general
expression of the upper bound in (18) with vol (A) = C.
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Figure 5: Normalised radiation pattern (dB) of the central and a scanned beam.
The white crosses correspond to the beam centres for colour 1 considering the
largest nearest-neighbour distance sublattice. The black crosses correspond to
the beam centres of all the remaining colours.

Finally, a note on the computational time required to com-
pute the optimal sublattice using Alg. 1. Considering the case
C =999, it took an average of 2.5 ms to compute the optimal
sublattice on a laptop with an intel® core™i5 processor with
1.3 GHz base speed, 10 physical cores, and a 16 GB RAM.

VI. SateLLITE FIXED MULTIBEAM LAYOUT ASSIGNMENT

In this section, we examine a Ku-band multi-beam GEO
communication satellite use case where Alg. 1 is employed
to compute a fixed grid of beams for a C value that does not
support a scaled-rotated sublattice. Colours here represent any
set of orthogonal resources, including CP-OFDM/OFDMA
sub-carriers for 5G non-terrestrial network [34] or DFT-s-
OFDM ones [35], [36]. The choice of C is constrained by
regulatory or system requirements and cannot be arbitrary. As
an example, we select C = 41, which proves to happen in
practical implementations. The coverage considered is circular
with a radius of 4° (sin(4°) in the u-v plane) consistent
with typical scan ranges in GEO missions. While higher
performance can be achieved by optimizing the antenna for
a specific mission, such as European continental coverage,
the industry trend is shifting towards reconfigurable, software-
defined payload solutions that enable the same platform to be
used for various missions. This shift justifies the adoption of
a simple circular coverage.

Antenna model. To simplify the problem, we consider the
right-hand circularly polarized electric field radiated by a
circular aperture with a diameter of 1.5m and uniform am-
plitude illumination [37]. A linear phase shift is applied to
steer the beam. The corresponding antenna gain is 45.3 dBi
for the central beam and decays as cosf when scanning. A
total radiated power of 7 kW is distributed over a bandwidth
of 2 GHz, resulting in a power spectral density (PSD) of
# =3.5-10" W/Hz. When the power is uniformly distributed
across the beams, the PSD per beam corresponds to PIN,
where N}(_,f) corresponds to the number of beams in colour c.
While in a DRA architecture the beams are radiated by an
active electronically scanned array, the uniform aperture model
allows for an analytical computation of the radiated field and
minimises the number of parameters requiring optimization.
Despite its simplicity, this model provides meaningful results
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(a) MASCONDS.

Figure 6: Surface plot of the SINR for the MASCONDS solution (a) and one
of the remaining sublattices (b). The plot is obtained by considering all the
beams simultaneously active and by assigning the user to the closest beam.
The white crosses correspond to the beam centres for colour 1, while the
black crosses to the ones of all the remaining colours.

(b) Other sublattice.

applicable to any architecture. Fig.5a and Fig.5b illustrate the
co-polar component pattern for the central beam and a scanned
beam in the u-v plane.

Beam lattice and C selection. Concerning the beam lat-
tice, we consider a hexagonal beam lattice, since it allows
to maximise the number of beams within the coverage, as
described in Sect. III. The lattice spacing has been selected
such that the distance between closest same-colour neighbours
for the sublattice obtained with Alg. 1 corresponds to the —3dB
beamwidth. Consequently, same-colour closest neighbours’
beams overlap at —3dB. For C = 41, there are 42 different
sublattices in total according to (14). However, due to the
symmetry of the problem, these lead to only 8 different sets
of results. As an example, by rotating 60° the sublattice in
Fig.5a the results do not change.

Link budget analysis. Assuming a line-of-sight propagation
model as the one described in [7], the SINR experienced by
user u in colour c is

Sieto

SINR = (34)

(©’
L+ 200 S b
when all the beams are simultaneously active (worst case
scenario). b(,f) is the closest beam to user u in colour ¢, and

2 ~(TX) ~Rx
S (c) A P )‘c Gub G( ) (35)
ub N;; Y\ drr, kg TR0’

where GflTbx) is the gain of beam b at the location of user u, 7,
is the distance between the satellite and user u, A. is the free
space wavelength of colour c, kp is Boltzmann’s constant, and
GR®R/TRX) g the receiver G/T, which is set to 1017/10 for all
the users. In (34), we assumed that the colours are orthogonal,
i.e. users assigned to different colours do not interfere, and
same-colour interference is treated as additional noise (no
interference cancellation). Fig.6 shows the SINR experienced
by a user in every coverage position when it is assigned to the
closest beam and all the other same-colour beams are active.
Fig.6a corresponds to the MASCONDS algorithm’s sublattice,
and Fig.6b to one alternative sublattice.

Spectral efficiency evaluation. To evaluate the performance,
we compare the SE considering all possible sublattices. The
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Figure 7: CDF of the DVB-S2X SE for all sublattices with C = 41 of
an hexagonal lattice. The red curve represents the MASCONDS solution,
whose SINR is reported in Fig.6a. The blue curves represent all the remaining
sublattices. Fig.6b corresponds to the second curve from the left.

SE is computed from the SINR as 17 = npyp_sax (SINR), where
npve-s2x(+) is a third-order polynomial that interpolates the
values in Table 20a in [38], which provides the SE obtained
with adaptive coding and modulation for different E/Ny
values, where E; is the energy per symbol and Ny is the
receiver noise spectral density. Fig.7 shows the cumulative
distribution function (CDF) of the SE for the entire user
population across all sublattices. The red curve represents
the SE for the MASCONDS solution, while the blue curves
represent the SE for all other sublattices. By comparing
the curves, we can conclude that the MASCONDS solution
provides the best SE distribution. This can be explained by
looking at the SINR distribution in Fig.6. While all solutions
have the same total number of beams distributed across the
C = 41 colours, the MASCONDS one in Fig.6a guarantees the
best SINR distribution because of the larger distance between
same-colour neighbours, which results in lower interference.
On the other hand, the solution in Fig.6b, which corresponds to
the second curve from the left in Fig.7, experiences low SINR
values due to the proximity of same-colour beams. Finally, if
atmospheric losses were included in the analysis, all solutions
would experience lower SINR, therefore, SE values. However,
the MASCONDS solution would still provide the best SE over
all sublattices.

Not an RRM algorithm. We conclude with an important
observation. This section does not address the RRM problem
in a multi-beam satellite. Instead, it introduces a sublattice-
based methodology for determining the beam centres in a fixed
multibeam communication satellite with C = 41 orthogonal
resources. Once the precoding weights of the fixed beam are
calculated and stored in memory, the DTP executes a low-
complexity RRM algorithm, such as the H-RRM approach
described in [39], to assign each user to a colour based on
the current traffic distribution. In the resulting assignment, not
all users are allocated to their closest beam. This is because, in
some cases, two users may share the same closest beam while
a neighbouring beam remains unassigned. In such scenarios,
the RRM algorithm assigns one user to the closest beam and
the other to the neighbouring beam with a different colour.
As shown in Fig.5, each beam covers multiple cells of the
hexagonal lattice. Nonetheless, the results presented in this
section confirm that the MASCONDS is the ideal candidate
for a uniform beam placement in a fixed multibeam payload.

VII. CONCLUSIONS

This paper addressed the critical issue of optimally distribut-
ing the available resources in a fixed multibeam satellite. By
formulating the problem as a maximization of the distance be-
tween same-colour nearest neighbours within a periodic lattice,
we have presented an enumerative algorithm that efficiently
explores all possible sublattice configurations to identify the
optimal solutions. Leveraging concepts from lattice theory, our
approach offers a systematic method for attacking the problem.

Through extensive numerical results, we have demonstrated
the effectiveness of our algorithm in identifying optimal
sublattice configurations for various lattice structures. Our
results highlight the importance of considering not only the
spatial arrangement of resources but also the underlying lattice
geometry in radio resource distribution. Additionally, we have
investigated the existence and properties of scaled-rotated
sublattices, providing insights into alternative configurations
that may offer comparable performance to optimal solutions.

The implications of our findings extend beyond theoreti-
cal considerations, offering practical guidance for improving
throughput performance. Although we focused on a GEO
communication satellite use case, our approach can be applied
as is to any other use case involving lattices and resource reuse,
such as LiFi networks [40]. Moreover, our approach provides
a foundation for future research in sublattice optimization,
paving the way for non-exhaustive search strategies within a
reduced space of all possible solutions.

APPENDIX A
LIMITING BEHAVIOUR (ORDER) OF L

Here, we derive the order of L in (14) as a function of N
and C > 1. From (14), we can derive the following inequality

P N- P p”
N-1 t
e

1 -—
P t=1 n=1 P
m

(36)
where we used C = H,_l p, ' in the last step. Equality holds
in (36) when the multiplicities of the prime factors tend to
infinity. Taking the natural logarithm of the second term in

(36), we obtain the following

N-1 n+m, N-1

(37

IA

+00 ln( pn )
peP(max, p,) n=1 p" -1

where P(m) = {p € P: 2 < p < mj} is the set of all the prime
numbers smaller than or equal to m. We show below that

,,}ilem[ > (-

peP(m) n=1

) —In(In(m))| = K ~ 1.4079,

(38)
converges. The value of K has been obtained numerically.
Therefore, when max, p, is large enough,

L < OV eZrerimmsinn TS () . oN-1K1p (max p,). (39)
t
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We conclude that
L=0 (1n (mtax p,)CN_l). (40)

To show the convergence of (38), we start by expressing the
sequence in (38) as the sum of two sequences as follows

flm] = Z Zln( )—ln(ln(m))
peP(m) n=1
- ln( P )—ln(ln(m)) ln( n”” )
pE;m) p=1 p;m); pr-l
= a[m] + b[m].

41)
The sequence b[m] is bounded as follows

0 <b[m] = Z Zln( ) Z Zln(1+ 1)

pEP(m) n=2 peP(m) n=
=2 o Z ST
pe?’(m) n= 2 peP(m) 1 n’—O pn
> o Zm = 2 :
_ e S 6
peP(m) p 1 n:2 peP(m) (p 1)

(42)
where the first inequality follows from In(1 + x) < x, Vx > 0,
and the last one from the series >/ e l/k2 = 72/6. Since b[m]
is monotonically increasing and bounded, we can conclude
that it converges. On the other hand, a[m] converges to [41]

lim a[m] =y, (43)

m—+oo

where y corresponds to the Euler-Mascheroni constant. There-
fore, the sequence f[m] converges as the sum of two converg-
ing sequences.
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