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Abstract—This paper addresses optimal frequency reuse in
multibeam satellite systems featuring regular beam lattices, such
as those employed in GEO, MEO, and LEO constellations. To
maximize spectral efficiency while mitigating co-channel inter-
ference, the study formulates the resource assignment problem
as an optimization over lattice substructures. We apply the max-
imum same-colour nearest-neighbour sublattice (MASCONDS)
algorithm, a globally optimal method that identifies the sublattice
partition maximizing the minimum co-channel distance for any
lattice and reuse factor. Numerical analyses with a hexagonal
lattice for a non-canonical reuse factor validate the approach
using a GEO communication payload with a direct radiating
array model operating in Ka-band. The MASCONDS solution
consistently yields the highest carrier-to-interference ratio across
all configurations. These results demonstrate the method’s effec-
tiveness for advanced satellite payloads constrained by digital
processor port counts.

Index Terms—Radio resource assignment, frequency reuse,
wireless communications, satellite communications, lattice theory.

1. INTRODUCTION

In modern high-throughput satellite communication sys-
tems, including those deployed in geostationary (GEO),
medium (MEO), and low (LEO) Earth orbit, the imperative
to maximize data capacity calls for the use of aggressive fre-
quency reuse. Large service regions are covered by a periodic
grid of spot beams, often idealized as a multibeam lattice.
The available frequency spectrum, or any other orthogonal
radio resource (collectively referred to as a 'colour'), is reused
across different beams to boost overall system capacity. This
practice, however, comes at the cost of high Co-Channel
Interference (CCI), which is a dominant limiting factor on the
achievable Spectral Efficiency (SE). Mitigating CCI through
careful planning is thus essential for system performance.

Many advanced satellite architectures [1-2], even those fea-
turing digital payloads [3], employ a fixed, regular beam lattice
due to practical constraints related to payload complexity
and antenna implementation [4-5]. Consequently, the resource
assignment must rely on a static geometric partitioning. This
is achieved by segmenting the primary beam lattice into a set
of periodic sublattices, where all beams belonging to the same
sublattice are assigned the same colour. As an example, Fig.1a
and Fig.1b show two ways of partitioning a hexagonal lattice
into sublattices with 3 colours. The quality of this geometric
scheme determines the level of interference experienced by
users. The core technical problem is therefore one of discrete
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Figure 1: Plot of two different sublattices of a hexagonal lattice with 3 colours.

geometry: fo select the optimal sublattice configuration that
maximizes the minimum distance between any two co-channel
beams, thereby minimizing CCI and maximizing SE.

Existing analytical methods often rely on number theory,
particularly Diophantine equations, which were developed
decades ago to address specific lattice types (e.g., hexagonal or
square) [6-7]. While historically significant, these approaches
suffer from two major limitations. First, they only yield integer
solutions for a restricted subset of possible reuse factors,
C. Second, for certain lattices (like the square lattice), the
solutions derived are known to be sub-optimal, failing to
guarantee the maximum possible co-channel separation. Thus,
for an arbitrary, non-canonical number of resources C and
a general two-dimensional lattice (which are becoming of
practical interest [4]), system designers lacked a rigorous
method to guarantee the highest performing geometric layout.
Therefore, in [8], we introduced the maximum same-colour
nearest-neighbour sublattice (MASCONDS) algorithm, that
provides a universal, globally optimal solution procedure for
resource assignment. The work provides a unified, constructive
solution by addressing a core geometric question applicable to
modern multibeam systems:

Given a regular beam lattice and an arbitrary number
of colours C, what is the partition into regular sublattices
that maximizes the minimum co-channel distance (d.;,),
consequently minimizing interference?

After reporting the main results in [8], in this manuscript we
compare the carrier-to-interference ratio (C/I) performance of
a GEO multibeam satellite operating in Ka band considering
all possible sublattices of a hexagonal lattice with a non
canonical number of colours C = 80. Contrary to the example
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Figure 2: Plot of three sublattices of a hexagonal lattice (with det D = 1) with C = 80 colours. The red marks denote the sublattice elements associated to
the colour that includes the element in the origin. (a) and (b) are randomly selected solutions, (c) is the optimal solution obtained with the MASCONDS

algorithm, which provides the largest dpi, among all solutions.

in [8], in this manuscript we validate our approach with a more
realistic antenna model, i.e. a direct radiating array (DRA)
with a limited number of radiating elements in line with the
constraint on the number of ports that can be connected to
a state-of-the-art digital transparent processor (DTP) [3]. The
numerical results confirm that the solution obtained with the
MASCONDS algorithm provides the best C/I performance
among all possible sublattices.

II. LarTicE THEORY AND PROBLEM FORMULATION

A high-throughput multibeam satellite system uses a pe-
riodic arrangement of spot beams, which can be modelled
mathematically as a uniform lattice A(D) in R? [5], [9]. The
lattice is defined by a non-singular basis matrix,

D = [d;,d,] e R*? )
such that its points are
r = Dn ,with n € Z? 2)

We assume D is in reduced form, corresponding to the shortest
vector lattice basis [8].

Frequency reuse is achieved by partitioning the primary
lattice A(D) into C distinct sublattices. Each sublattice cor-
responds to the set of points assigned the same resource
(colour). A single sublattice A’ is mathematically generated
by a transformation of the original basis:

AN =ADM), (3)

where M € Z**? is an integer matrix. The reuse factor C is
determined by the determinant of this matrix,

C =|det M| . “)

The objective is to mitigate CCI by maximizing the distance
between co-channel beams. This is equivalent to finding the
transformation matrix M} that yields the maximum possible
minimum distance (dni,) between any two points in the same
sublattice:

M/} € argmax min ’||DMn||. (5)

Mez22 neZ?\(0
|det M|=C

The optimal matrix M is key to ensuring maximum SE for
the system.

III. MASCONDS ALGORITHM

The critical challenge in solving (5) is that multiple transfor-
mation matrices M can generate the same sublattice, leading
to computational redundancy. To ensure a non-redundant and
globally optimal search, the MASCONDS algorithm leverages
the Hermite Normal-Form (HNF) theorem.

Every unique sublattice A’ is represented by one and only
one non-singular integer matrix H in HNF, satisfying two
properties:

« it is upper triangular, and

« its off-diagonal elements are non-negative and smaller

than the pivot elements.

This allows us to restrict the search space from all possible M
matrices to the finite set H, ¢ of HNF matrices with |[det H | =
C. The problem is thus reformulated as:

H} carg max min |[DHn|. (6)
HeH, c nez?\{0}

The MASCONDS algorithm solves (6) via a complete, non-
redundant enumeration as follows [8]:

1) Generation: All possible HNF matrices H € H, ¢ are
generated based on the prime factorization of C.

2) Sublattice Basis: For each candidate H, the candidate
sublattice basis matrix is calculated as V = DH.

3) Distance Calculation: An exact Lattice Reduction Al-
gorithm (e.g., the Lagrange algorithm for N =2 [10]) is
applied to V. The shortest vector found (the first column
of the reduced V') corresponds directly to the minimum
co-channel distance d,,;, for that configuration.

4) Optimization: The algorithm selects the HNF matrix H*
that produced the maximum value of di;y.

Due to the non-redundant nature of the HNF set, this pro-
cedure is guaranteed to find the globally optimal solution.
Furthermore, the per-candidate calculations are independent,
allowing for efficient parallelization.
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Figure 3: Plot of the squared norm of the first and second shortest sublattice vectors as a function of the numbers of colours C for a hexagonal lattice.
V =[v;,v,] is the reduced sublattice matrix. The red and blue curves are obtained using the MASCONDS Algorithm. Since multiple lattices with different
|lva]| can achieve the same ||v]|, the blue region is the one subtended between the minimum and maximum values. The green dots correspond to the scaled-
rotated sublattice (||lva|> = |lv1]1*). The solid black line corresponds to the upper bound in [8].

IV. NuMmEeRIicAL REsuLTS

Fig.2 shows an example of a partitioning of a hexagonal
lattice into C = 80 sublattices. We purposely chose C = 80,
as this is not a canonical colour for the hexagonal lattice,
i.e. it does not satisfy the Diophantine equation in [6]. Fig.2a
and Fig.2b are two randomly selected examples of sublattices,
while Fig.2c is obtained by running the MASCONDS algo-
rithm. Given its global optimality, the MASCONDS solution
provides the largest dp,;, among the three solutions with a value
of 9.31 against 7.44 and 7.75 for the sublattices in Fig.2a and
Fig.2b, respectively.

Fig.3 shows how drznin changes with the number of colours C
for a hexagonal lattice with det D = 1. The red dots in the fig-
ure represent drzni 2 = v |I” for the MASCONDS solution, while
the blue dots represent the norm of the second shortest vector
in the sublattice ||Jv,|*. Since multiple sublattices can achieve
the same dy,i,, but have different ||v;]|, the blue region in the
plot subtends the minimum and maximum ||v;|| values. For the
canonical C values, the MASCONDS solution corresponds to
the scaled-rotate sublattice [8], which is a hexagonal sublattice
itself. This is not a surprising result since the hexagonal lattice
is the one that achieves the largest spacing among all planar
lattices with the same density. Therefore, the scaled-rotated
solution corresponds to the optimal solution for the hexagonal
lattice case and regularly achieves the upper bound in [8].

A. GEO Communication Performance Example

In this section we apply the MASCONDS algorithm to
identify the beam layout in a multibeam GEO communication
satellite operating in Ka band. The performance is evaluated
at 19.5 GHz.

The beams are uniformly arranged on a hexagonal lattice
over a circular coverage of radius 4°. Each beam is assigned to
one of the C = 80 available colours by applying the sublattice
strategy described in the previous sections. The inter-beam
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(a) Beam at (0,0).

(b) Beam at (3.75,3.90)1072.

Figure 4: Normalised radiation pattern (dB) of the central and a scanned beam.
The white crosses correspond to the beam centres for colour 1 considering the
largest nearest-neighbour distance sublattice. The black crosses correspond to
the beam centres of all the remaining colours.

spacing in the u-v plane is chosen in such a way that the
distance between the two closest neighbouring beams assigned
to the same resource is equal to the antenna’s half power
beamwidth (HPBW) for the MASCONDS solution.

The antenna corresponds to a circular DRA of diameter
D = 1.2 m with elements arranged in a hexagonal lattice with
inter-element spacing

2 A
0= ———— =~ 52)\, 7
/3 sin4° +sin 8.7° M

which guarantees that all grating lobes’ centres are outside
Earth for all scan angles. Such a large inter-element spacing
is necessary to connect all 199 radiating elements to the DTP,
in line with the number of ports supported by state-of-the-art
DTPs [3].

Each element radiates an ideal right-hand circularly po-
larised cos? @ pattern over the upper hemisphere only. The
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Figure 5: Surface plot of the C/I for the three sublattices with C = 80 in Fig.1. The plot is obtained by considering all beams simultaneously active and
by assigning the user to the closest beam. The white crosses correspond to the beams’ centres for colour 1, while the small black crosses to the ones of all

remaining colours.
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Figure 6: CDF of the C/I for all sublattices with C = 80 of an hexagonal
lattice. The red curve represents the MASCONDS solution. The blue curves
represent all the other sublattices.

q value is obtained from the element’s directivity as ¢ =
D,/4-1/2 [5], and

4
D, = )\2A
where i = 107%/19 is the product of the aperture efficiency and
radiation efficiency, and A, = 2 V3(6/2)* is the physical area
of the hexagonal element. By considering the inter-element
spacing in (7), we obtain D, = 22.7 dBi, and ¢ = 46.3. In
reality, our ideal element will likely correspond to a smaller
hexagonal array with small element spacing connected to
an analog beamforming network, which leads to a hybrid
beamforming DRA architecture like the one in [11].

Fig.4a and Fig.4b show the normalised beam patterns radi-
ated by the DRA for the central beam and a steered beam,
respectively. The steering is obtained by applying a linear
phase shift with uniform amplitude as the excitation. The peak
directivity is 45.7 and 45.1 dBi for the central and scanned
beam, respectively.

®)

The performance metric is the C/I computed as follows

2
c (Po/ P By (1 B 61)
[7] ) (ca) \ | e 2’ €))
u Zb("")ibff"‘) (PO/ (rw) |Eb(fu)(ru, Qu, ¢u)|
where
i & jkr,,~[7=(e,¢)—r 0 4 ]
E;;L))(r, 0,¢) = COSq@Ze (;,() ,,<>) ’ (10)

where (7, 6,, ¢,) are the spherical coordinates of user u in the
satellite coordinate system, ¢, and bﬁf «) are the colour and beam
assigned to user u based on the minimum distance criteria, V)
is a constant with unit V, r,, = [x,,, y,, 017 is the position of the
n-th radiating element, N7 is the number of radiating elements
in the DRA, #(6, ¢) = [sin 6 cos ¢, sinfsin ¢, cos F]7 is the unit
vector pointing to (6, @), (9;3), ¢(bf3)) is the angular direction of
beam »© in colour c, k is the free-space wavenumber. Finally,
Py is the (uniform) power assigned to each beam, and

o o2 |EC) (r ) ¢)|
c b( )
P = f f (11)

is the surface integral of the Poyntlng vector of (10) over the
spherical surface with radius r. { is the free-space impedance.

Fig.5 shows the surface plot of the C/I for the three
sublattices in Fig.2. For each u-v point, we assume that the user
is served by the closest beam and experiences the interference
from all the remaining beams that share the same colour. By
comparing Fig.5c with Fig.5a and Fig.5b, we can conclude that
the MASCONDS solution provides the best C/I performance
among the three solutions. Finally, Fig.6 shows the cumulative
distribution function of the C/I for all possible sublattices with

= 80. The plots confirm that the MASCONDS solution
achieves the largest C/I for the majority of points.

These results are in line with the ones presented in [8],
where the antenna is modelled as an ideal circular aperture,
and C = 41 colours in Ku band are considered.

2 5in 0dOdg,



V. CoNCLUSION

In this letter, we presented a rigorous geometric optimiza-
tion methodology to tackle the critical problem of mitigating
CCI and maximizing C/I in fixed multibeam satellite antennas.
The core of our approach involved formally casting the fre-
quency reuse assignment as the problem of finding the sublat-
tice configuration that maximizes the minimum distance (dp;n)
between co-channel beams. We presented the MASCONDS al-
gorithm in [8], which serves as a definitive solution procedure
for this challenge. This algorithm leverages the non-redundant
properties of the Hermite Normal-Form representation in lat-
tice theory, enabling a systematic and complete enumeration
of all possible unique sublattice configurations. Consequently,
we are able to guarantee the globally optimal solution for
any underlying beam lattice geometry and for an arbitrary
reuse factor (C). This capability is vital, as it overcomes the
primary limitations of previous, fragmented analytical methods
that were restricted to only a few canonical values of C.
Finally, we validated the practical efficacy of our method
by applying the algorithm-optimized distance approach to a
DRA-based GEO communication satellite beam layout using a
non-canonical reuse factor. The resulting optimized frequency
plan consistently demonstrated superior C/I performance com-
pared to all other feasible sublattice configurations. This work
provides system architects with a robust, generalizable, and
computationally efficient tool essential for next-generation,
high-throughput multibeam system design.
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