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ABSTRACT

We introduce a novel framework to reconstruct highly undersampled signals from their measurements using a
correlated signal as an aid. The correlated signal, called side information, need not be close or similar to the
signal to reconstruct. Thus, our framework applies to the case in which the signals are multimodal. We use two
main ingredients: the theory of ¢1-f1 minimization, which establishes precise reconstruction guarantees of sparse
signals using a similar signal as an aid, and a set of training data consisting of several examples of pairs of the
signal to reconstruct and the side information. We adopt a statistical framework where the training and the test
data are drawn from the same joint distribution, which is assumed unknown. Our main insight is that a quantity
arising in the ¢;-¢; minimization theory to measure the quality of the side information can be written as the
0-1 loss of a classification problem. Therefore, our problem can be solved with classification methods, such as
support vector machines. Furthermore, using statistical learning theory, we provide guarantees for our method.
Specifically, the expected value of the side information quality decreases with O(1/y/T), where T is the number
of training samples. Simulations with synthetic data validate our approach.
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1. INTRODUCTION

The concept of sparsity allows encoding the structure of certain models in a principled way. During the last
decades, it has entered the jargon of the signal processing and statistics communities and has been crucial in
the development of many engineering technologies, from data compression [1] to medical imaging [2, 3], gene
sequencing [4], remote sensing [5], astronomical imaging [6], and camera design [7].

While encoding structure via sparsity reveals a certain type of prior knowledge about the model, there is
another type of prior knowledge that is typically easier to acquire but which, paradoxically, has been used
less frequently in reconstruction problems: examples of previously reconstructed signals, either from the same
modality or from a different one. For example, in the acquisition and reconstruction of a medical image, we
often have access to similar images [8-11]. Some imaging devices acquire different modalities, either sequentially
or simultaneously; see, for example, [12—-14] for medical imaging, and [15] for remote sensing. And, in video
processing and compression, previously reconstructed frames can aid the reconstruction of the current frame [16—
19).

A signal that can aid the reconstruction of another signal will be referred to as prior or side information.
Although techniques that effectively integrate prior information into sparse reconstruction schemes have been
proposed in recent years [8-11,20-22], some of which backed up by strong theoretical results [20,23,24], they
are limited to the case in which the prior information is similar to the signal to reconstruct, and fail when both
signals are significantly different, yet correlated. The aim of this paper is to introduce a framework that addresses
precisely this case.
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Problem statement. Let z* € R™ be s-sparse, i.e., it has at most s nonzero entries. Suppose we observe m
linear measurements b = Ax*, where the matrix A € R™*" has more columns than rows: m < n. Suppose also
that we have access to another signal y € R™, correlated to x*, but not necessarily close to it; for example, y
need not be sparse and, for a given metric d : R™ — R, d(z* — y) may be arbitrarily large. Our problem is then:
Reconstruct x* from its measurements b using the prior information y as an aid; also, characterize the number
of measurements m that guarantee perfect reconstruction.

Our approach. We address this problem by using a statistical framework that incorporates two main ingredi-
ents: a set of training data {(aj(t), y(t)) }?:1, which consists of pairs of signals drawn from some unknown joint
distribution P, and the theory for ¢;-¢; minimization developed in [23,24]. First proposed in [8], ¢1-¢; minimiza-
tion adds to the objective function of basis pursuit [25] the ¢1-norm of the difference between the optimization

variable and the prior information, that is, it solves

minizrnize llz|lL + Bllz — yll1 (1)
subject to Az =b,

where § > 0 is a tradeoff parameter. The work in [23,24] provides conditions under which z* is the unique
solution of problem (1). One of such conditions requires the number of measurements to be larger than a
quantity m, which is a function of the sparsity of * and of how close the prior information y is to x*. Naturally,
when y is close to z* (in a precise sense defined below), m is much smaller than the number of measurements
required by basis pursuit [i.e., (1) with § = 0]; in this case, the prior information helps reconstructing z*. On
the other hand, when y is not similar to x*, an instance of which is when y is not sparse, m becomes large
and, as a result, the prior information actually hinders reconstruction, in the sense that (1) may require more
measurements than basis pursuit.

In this paper, we propose to modify the prior information via a map g : R® — R" to be learned from the
training data, and solve instead
minimize ||z[[ + [|lz = g(y) s (2)

subject to Ax =0b.

Notice that we set 5 = 1 in (2). The reason is that ¢1- ¢; theory states that this is the best choice for § and,

hence, we will use this value henceforth. Assuming the training data {(J;(t),y(t))}til and the pair (z*,y) are
drawn from the same distribution P, our approach generalizes well, as our theoretical and experimental results
indicate. We point out that our results are preliminary, as we focus on learning a map ¢ that minimizes just
one specific feature of the “quality” of the prior information g(y). To be able to reduce the required number of
measurements, we also need to consider other features. This will be explained in detail in Sections 3 and 4.

Organization. We start by briefly overviewing related work in Section 2. Next, Section 3 gives the necessary
background on the theory of ¢1- ¢; minimization. Our approach is described in Section 4, and experimental
results are given in Section 5.

2. RELATED WORK

We divide techniques that perform multi-modality signal reconstruction by learning relations from training data
into two categories: coupled dictionary learning, and Bayesian inference. We overview some of this work, and
then mention other related approaches.

Coupled dictionary learning. The typical scenario for coupled dictionary learning is an image processing
task and several examples of pairs of images from two different modalities. Examples of such tasks include
classification [26,27], super-resolution [28—-31], image fusion [32,33], source separation [34,35], image retrieval [36],
and audio-visual analysis [37]. The main idea in coupled dictionary learning is to explore the degrees of freedom
in conventional dictionary learning to enforce coupling between different modalities. Although there are several



ways of enforcing this coupling, to the best of our knowledge, none of them is backed up by theory or has
performance guarantees. Also, learning coupled dictionaries is a computationally intensive task.

Bayesian inference. Bayesian approaches to inverse problems also require training data. Typically, a proba-
bilistic model for the signals is postulated, and the model’s parameters are learned from training data. Examples
of Bayesian approaches involving reconstruction with aid signals include multitask compressive sensing [38, 39],
and reconstruction with side information using Gaussian mixture models [40,41]. These approaches, however,
are limited to signals with similar statistical properties. To overcome this limitation, [42,43] proposed a sparse
reconstruction Bayesian approach based on copula functions that leverages correlated signals with distributions
potentially different from the distribution of the signal to reconstruct.

Other related work. Related approaches include distributed compressed sensing [44,45] and simultaneous
sparse approximation [46—48]. In these frameworks, multiple correlated signals are reconstructed by enforcing
similar sparsity patterns. Note that there is no concept of “learning” or training data in these frameworks.

Finally, we mention that recently there has been considerable interest in approaches that learn inverse oper-
ators via deep neural networks, e.g., [49-51], bypassing the need to solve basis pursuit, i.e., (1) with 5 =0, a
computationally expensive task. These use several pairs of signals (1'(t), b(t)), related by b(Y) = Az as training
data. While deep neural networks can also potentially be used in our framework to learn the map ¢ in (2), they
would be used in a very different way; we would still need to solve the optimization problem in (2) to perform
reconstruction. However, in contrast with [49-51], our approach would not be tied to a specific measurement
matrix A. Indeed, the learning aspect of our method refers to the relation between the signal to reconstruct and
the side information, and it does not involve any signal measurements.

3. BACKGROUND: ¢;-¢; MINIMIZATION

This section briefly reviews the theory of ¢1-¢; minimization from [23,24]. There, as in this paper, the goal is
to reconstruct an s-sparse signal x* from linear measurements b = Ax*, where A : R™*" has a large nontrivial
nullspace (m < n), with the aid of a side information vector y € R™. The reconstruction is performed by solving
the ¢1-¢1 minimization problem in (1).

The work in [23,24] provides a bound on the number of measurements that guarantees that x* can be
reconstructed perfectly. The bound should obviously be a function of the quality of the side information, of how
close y is to z*. This notion of quality is captured by two parameters:

Lx*,y) = ‘{z cal >0, af >y Ui al <0, 2F < y1}| (3)
Ex*,y) =iy # 2 =0} = [{i : yi =27 #0}]. (4)

The parameter £ in (3) plays the most prominent role, and was called number of bad components in [23,24].
Notice that it counts the number of components in which z} is nonzero, and z} > y; (if 7 > 0) or z} < y; (if
xF < 0). Therefore, by definition, ¢(z*,y) < s, the sparsity of x*.

The following result from [24, Thm. 1] considers the case S = 1, which was shown to be optimal in the sense
that it minimizes the bounds for generic 3, irrespective of any problem parameter.

Theorem 3.1 (%4)

Let 2* € R™ be the vector to reconstruct and let y € R™ be the prior information. Assume £(z*,y) > 0 and
that there exists at least one index 7 for which =} = y; = 0. Let the entries of A € R™*" be i.i.d. Gaussian
with zero mean and variance 1/m. If

m > m := 20(z*,y) log (m)

PI{on ) 5

then, with probability greater than 1 — exp ( — %(m — m)z), x* is the unique solution of (1) with g = 1.



This result states that if the number of measurements is larger than the quantity in (5), then ¢;-¢; mini-
mization (1) with 5 = 1 reconstructs * with high probability, where the probability is over the realizations of
the random matrix A. A similar bound had been derived in [52] for basis pursuit, i.e., (1) with 8 = 0 or, in
other words, without using any side information. Specifically, basis pursuit is guaranteed to reconstruct * under
similar assumptions as Theorem 3.1 if m > 2slog(n/s) + (7/5)s + 1. Thus, when n is large enough, the bound
in (5) can be much smaller the one for basis pursuit. Recall that, by definition, ¢(z*,y) < s.

As shown both in theory and in practice [19,23,24], the most important factor in reconstruction using
£1-f1 minimization is the number of bad components ¢(z*,y). Our goal in this paper is therefore to learn a
transformation of y, g(y), that renders ¢ (x*, g(y)) small. That is the content of the next section.

4. LEARNING TRANSFORMATIONS FROM DATA

This section addresses the problem of learning a map g : R™ — R"” that transforms a possibly unfavorable prior
information y into a favorable one, g(y). We start by formulating the problem we want to solve and then show
that it is equivalent to solving a set of classification problems. Then, we propose a method for learning g from
training data and provide generalization guarantees.

We mention that g will be learned with the goal of minimizing the quantity ¢(z*,y) in (3), not the full
bound (5). Nevertheless, the framework we introduce here can be extended to minimize the full bound, and this
will be the object of future work.

4.1 Problem formulation and relation to classification

The most important term in the bound for ¢;-¢; minimization in (5) is ¢(a*,y), so we will focus on learning
g : R — R” such that that term is minimized for the training data. More formally, given a training set

{(z®,y®) }3;1, our goal is to find a map g that solves

T

inimi g( ® (t))7 6

miningize ', g(y™") (6)
t=1

where G is a subset of all the maps from R™ to R™. This subset encodes our prior knowledge of the problem and

should be chosen carefully. Before specifying which family of functions G we allow, we decompose the problem

in (6) into n independent problems.

Decomposing the problem. Representing the ith component of the map g : R” — R"™ as g;, we first note
that é(x,g(y)) can be written as E(x,g(y)) =3, Lisign(:)-(z:—g: (y))>0}> Where 1 is the indicator function
of the event FE, i.e., 1 = 1 if F holds, and 15 = 0 otherwise; cf. the definition of ¢ in (3). Assuming that
G =Gy X -+ X G, this means that (6) can be written as

t=1 i=1

T n
S D () (-} o) "

Switching the order of the sums, (7) decomposes into n independent problems, the ith of which is

minimize 1 , (8)
9:€G; tezﬁ {sign(zgﬂ)-(x§‘>—gi(y(t>))>0}

where 7T; = {t : xgt) # O} is the set of indices in ¢ for which xl@ is nonzero. We discarded the terms

t ¢ 7T; in the objective function of (8), because they impose no constraints on g;, that is, ¢t ¢ T; implies

]-{Sign(w(t))v(z(t)7g_(y(t)))>0} = 0 for all g;. We will see next that if we restrict the set of allowable functions G; to

the affine ones, problem (8) is exactly the empirical risk minimization of a classification problem with the 0-1
loss.



Interpretation as a classification problem. In a binary classification problem [53-56], we are given T sets
of features and their respective class, {(u(t),v(t))}thl, where u(®) € R" represents the features of the tth data
point, and v(*) € {—1,+1} its class. The goal is to learn a classifier, i.e., a function h : R* — {—1, 41}, that
separates the feature points according to their class: h(u(t)) =o® forallt=1,...,T. Then, given a data point
u € R™ not belonging to the training set, h should generalize well, i.e., h(u) should be an accurate prediction of
the (unknown) class of w.

One way of learning g from the training data is via empirical risk minimization:

T
1
Shimize — (t) o)
minimize g L(h,(u U )), (9)

where H is a set of allowable functions, also called the hypothesis set, and L : H x (R™ x {—1,+1}") — R is the
loss function. The specific choice for H and L depends on our prior knowledge about the problem. A natural
loss function for classification problems is the 0-1 loss, defined as

_ i h(u) # v
Lo (b, (u,0)) = { 0 i hiu) = v. (10)

Regarding the hypothesis set H, many choices are possible, but the simplest ones are generally preferred for their
ability to generalize better [53-56]. A simple class of functions that works particularly well in binary classification
is the set of affine functions. These are represented by an hyperplane H,, , := {z : w'z +r = 0}, which is
parameterized by (w,r) € R x R. A point u € R™ is classified as belonging to class 1 if w'u +r > 0 and to
class —1 if w u +r < 0.* In this case, the hypothesis set can be written as

H= {szign(sz—i—r) cw e R™, T‘ER}7 (11)

With this choice for H, the 0-1 loss in (10) can be written more succinctly as 1{1}‘(10T We are now in

u+7')<0} ’
condition to establish the relation between each problem (8) and binary classification.

Lemma 4.1

If G; is the set of hyperplanes in R", i.e., G; = Hg, 7, '= {y — @, y +7; : w; € R", 7; € R}, then problem (8)
can be written as an empirical risk minimization problem (9) with the 0-1 loss (10) over the following hypothesis
set:

H = {szign(sz-l-r) cejw=1forsomei=1,...,n, weR", TGR}, (12)
where ¢; = (0,...,1,...,0) € R" is the ith canonical vector.

Notice that the hypothesis set H’ is the same as H in (11), but with the additional constraint that at least
one component of w is 1.

Proof. Since problem (9) with 0-1 loss (10) and hypothesis (11) can be written as

T

minimize E 1
w,r - {U(t)~(w—ru(i)+r)<0} ’
t—

*We assume that when w' u + 7 = 0, the class of u can be selected arbitrarily. Under a probabilistic model for the
data, however, this case will typically happen with probability 0. We will therefore ignore this issue in the subsequent
development.



we only need to show that sign(gjgt)) . (xz(_t) _ gi(y(t))) > 0 with ¢; € G; can be written as NON (wTu(t) 1) <0,
where u® and v® represent known data, and w and r are parameters of g;. Indeed, g; € G; means that
9i(y®) =@ y® + 7, and thus

-
The correspondence is then immediate: v(*) = sign(au‘l(-t))7 w = [E;r 1}T, u® = {y(t)—r 7z§t)} ,and r = T,.

Notice that this representation requires imposing the last component of w to be 1, and thus justifies using H’
rather than H. 0O

Drawbacks of empirical risk minimization. We just showed that the problem we want to solve, (7),
decomposes into n independent problems, each of which is equivalent to empirical risk minimization for a binary
classification problem, with the 0-1 loss function. This approach, however, has two major drawbacks. The first is
that minimizing a sum of 0-1 loss functions is a nonconvex, NP-hard problem when the optimal objective is not
0 [57]. The other is that empirical risk minimization fails to generalize well. Indeed, the no-free-lunch theorem
of [56, Thm. 5.1] shows that even when the empirical risk minimization is 0, the generalization error can be
arbitrarily large.

Overcoming these drawbacks requires two modifications: approximating the 0-1 loss function by a convex
surrogate, and regularizing the problem by penalizying hyperplanes that, though valid, are too close to points of
any of the classes.

4.2 Classification using SVMs and proposed estimators

We overcome the drawbacks pointed out in the last section by using support vector machines (SVMs) [54-56,58].
There are essentially two versions of SVMs: one that assumes the training data points are linearly separable
(hard-SVM), and another that allows non-linearly-separable data (soft-SVM). Note that a hard-SVM assumes
that the optimal value of empirical risk minimization with the 0-1 loss is zero which, in our problem, means that
the optimal value of (8) is 0. Although this is unrealistic in some scenarios, we still describe what a hard-SVM
is, because it makes the introduction to soft-SVMs easier.

class +1

N
class —1 Hy,

Figure 1. Illustration of an SVM for linearly separable classes: among all the hyperplanes H,,  that separate two different
classes of data points, a hard-SVM finds the one that has maximal margin, i.e., it maximizes the distance 2/||w||2 between
H,, , and H;;T.

Hard-SVM. Even when we assume that the optimal value of empirical risk minimization (9) with 0-1 loss (10)
and hypothesis (11) is zero, there may exist several solutions (or hyperplanes) that achieve the optimum. Among
those, an SVM selects the hyperplane whose margin is maximal. To define margin, consider a hyperplane
Hyr={z : w'z+r =0}, and two other hyperplanes with the same orientation as H,, ., but shifted in opposite



directions: Hpj, ={z : w'z+r=1}and H,, ={z : w'z+7r = —1}.T Sece Fig. 1 for an illustration. Then,
margin is defined as the distance between H,j . and H, ., and can be shown to be equal to 2/|w|2 [ [54, §7.1]].*
A hard-SVM finds the hyperplane with maximal margin such that all the points in class +1 (resp. —1) are
supported by H.f . (resp. Hy ), as in Fig. 1. That is, w u® +r > 1 if v® =1, and w'u® +r < -1 if

v® = —1. In sum, the solution of a hard-SVM is
minimize  ||w]|3 (13)
subject to v - (wTu® +7) > 1, t=1,...,T,
a convex problem that can be solved via quadratic programming [59].
Soft-SVM. In practice, the classes of points may not be linearly separable. In this case, not only problem (13)
becomes infeasible, but also empirical risk minimization becomes NP-hard [57]. However, a simple modification

to (13) can be made to account for this case: introduce a vector & = (&1,...,&r) € RY of slack variables and
allow each constraint of (13) to be violated, while penalizing violations. For example,

miiruliTnéize Hwllg + £17.¢ (14)
subject to v - (wTu® +7) >1-¢, t=1,...,T
g > OT )

where O, 17 € RT are the all-zeros and all-ones vectors in R”, and A > 0 is a tradeoff parameter. If we view the
components of £ as epigraph variables [59], we can eliminate them and obtain an equivalent formulation of (14):

T
A 1
minimize §||w|\§ +7 ;max {O, 1—v® . (wlu® + 7‘)} . (15)

The function LM1&¢((w,r), (u,v)) := max{0,1 — v - (w'u + )} is known as hinge loss. It is convex and, since
max{0,1—z} > 1{,<0y for all z € R, it uniformly upper bounds the 0-1 loss: L""&°((w,r), (u,v)) = max{0,1 —
v (wu+1)} > L wrurm<op = L8 ((w,r), (u,v)), for all (w,r) € R® x R and (u,v) € R" x R. Therefore,
(15) is a regularized convex relaxation of (9) with (10)-(11).

Proposed estimators. Given the correspondences established in the proof of Lemma 4.1, we then propose to
approximate each problem (8), with G; restricted to the set of affine functions, as

A 1
mi%jrgize §||EZ||§ + 7 Z max {O, 1 —sign (3;1(}‘/)> . (w;.'—y(t) - xgt) +ﬂ->} , (16)
isT 7 te7-i

for i =1,...,n. Notice that problem (16) has to be solved n times, one time for each component. Although (16)

is an approximation of our original, nonconvex problem (8), in the next section we show how to bound this
approximation error.

4.3 Performance guarantees

In this section, we use a statistical learning framework to provide an upper bound on the expected value of the
number of bad components #(z*,y) in (3). As generalization is impossible without any assumptions on the data,

we need to introduce a model of how the test data (z*,y) is related to the training data {(x(t), y(t)) }tT:I'

tThe number 1 in these definitions can be replaced by any other positive constant without any consequence.

YA quick way to see this is to fix 2~ € H, , and compute the margin as the optimal objective of min{||z — z7||2 :
z € H;fr} Squaring the objective and applying the KKT conditions, the solution of this optimization problem is
2=z 4+ (1 —r—w'z)w/|w|z. Since =1 —7 —w'2z~ =0, we have ||z* — 27 ||2 = 2/||w]|2.



Assumption 4.2

1. Let (2,%,P) be a probability space and let X : @ — R” and Y : © — R"™ be random variables whose

joint probability distribution is unknown. Assume the training data {(x(t), y(t)) }Z;l and the test datum
(z*,y) are i.i.d. realizations of the pair (X,Y).

2. There exists R > 0 such that ]P{HYH2 < R} = 1.

Our main result is as follows.

Theorem 4.3

Let X and Y denote random vectors in R™ and let Assumption 4.2 hold. Denote by W* € R?*"*+1 the matrix
with rows [Ef—r F;‘], i =1,...,n, where (@;‘,ﬂ*) is a solution of (16). Then, for any 0 < 0 < 1, with
probability at least 1 — §, the expected number of bad components in (3) is bounded as

i) <3 5501, (o0 () + 2

N 2log(2/d
+ (14w z) 28D

(17)

We omit the proof for brevity. It relies on Theorem 26.12 from [56], which is a consequence of McDiarmid’s
inequality and some properties of the Rademacher complexity measure.

This result is surprisingly general, as it relies on very mild assumptions about the data. It says that, with
a given (small) probability over the realizations of the random variables X and Y, the expected value of the
number of bad components £(X,Y) decreases with O(1/+v/T), where T is the number of training samples. Notice
that all the terms in the right-hand side of (17) are known after learning the parameters w,; and 7; via (16), so
the bound can be used in practice to assess the accuracy of estimation. However, as the assumptions are quite
general, the bound tends to be loose. An interesting observation is that (17) is independent of A, but it strongly
depends on the norms of w; through the matrix W*. Indeed, (17) validates the format of the cost function
in (16): we attempt to minimize both the norm of @;, which affects the last two terms of (17), and the hinge
loss of the training data, which contributes to the first term of the right-hand side of (17).

5. EXPERIMENTS

To illustrate the performance of our approach, we conducted simple experiments using synthetic data. Recall
that we are focusing on the minimization of the quantity ¢(x, g(y)) in (3), not necessarily the global bound (5);
hence, our experiments will consider minimizing that quantity only.

Experimental setup. We started by generating the parameters of a true affine transform, x = W*y + r*,
with all entries of W* € R™*"™ and r* € R" drawn i.i.d. from the normal distribution, and n = 500. This
rendered an invertible W*. The training data {(x(t),y(t))}tll was generated as follows: each () € R” had a
randomly selected support of size 50, and its nonzero entries were drawn i.i.d. normal. The corresponding y*)
was computed as y = (W*)~! (") — r*). The number of training samples was T' = 2000. And, using exactly

the same procedure, we created an equal number of test samples. The training data was then used to solve the
n = 500 instances of (16), always with A set to 0.01. We used CVX [60] as the solver of (16).
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Figure 2. Number of bad components for raw y and for transformed y, g(y), with (a) training data and (b) test data.

Results. The results of the experiments are shown in Fig. 2. Each panel displays two boxplots, the leftmost
referring to the values of ¢(z,y), i.e., with raw prior information y, and the rightmost referring to the values of
£(z,g(y)), i.e., with a transformed y. In a boxplot, the median is represented with a horizontal line, and the
second and third quartiles are enclosed in a box. The largest (resp. smallest) data point that is at a distance of
the upper (resp. lower) quartile smaller than 3/2 times the box height is marked with a “whisker”. The points
at larger distances are interpreted at outliers and are represented with dots.

Fig. 2(a) shows the boxplots of ¢(x,y) and #(x, g(y)), with g computed via (16), for the training data. As
expected, the values of £(z, g(y)) were much smaller than the values of ¢(z,y). For example, the median of ¢(x, y)
was 38, whereas the median of £(z, g(y)) was 12.

For the test data, Fig. 2(b) shows similar results, indicating that our approach generalizes well. While the
distribution of values of #(x,y) is essentially the same as for the training data in Fig. 2(a) [they were generated
by a similar process|, the values of ¢(x,g(y)) are larger for the test data than for the training data. This, of
course, is as expected, since the transformation g was learned from the training data. The important point is
that in Fig. 2(b) most values of £(z, g(y)) are smaller that the values of £(x,y). Indeed, the median was 38 for
the former [the same value as in Fig. 2(a)], and 21 for the latter. This indicates that our approach generalizes
well, and has the potential to be used in further research to reduce the global number of measurements in (5).

6. CONCLUSIONS

We introduced a new framework to address the problem of reconstructing sparse signals from a small number
of measurements with the aid of side information, a signal correlated with the signal to reconstruct. The main
feature of our framework is that it does not require the signal and the side information to be similar and, for this
reason, it has the potential to be used in applications with multimodal signals. Our approach uses training data
to learn a map that transforms the possibly unfavorable side information into a favorable one. In this paper, we
just introduced the framework and focused on improving a specific measure of quality of the side information.
The method we propose comes with statistical learning guarantees, and we validated it with simulations on
synthetic data.

Our framework opens up several interesting research directions. For example, it can be easily extended to
jointly improve the two measures of quality of the side information, as specified in the theory of ¢1-f1 minimization.
Another direction is to learn maps more general than just affine ones, for instance, using kernel methods and
also neural networks.
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