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Problem

Motivation
Hypothesis testing in high-dimensions

Observe a random vector

or ?

False positive:

False negative:
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Decision Rule:  Likelihood Ratio

False positive:

False negative:

i.i.d. realizations of

For a given                ,

If ,   then decide

If ,   then decide

MAP rule / minimizes risk when
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Neyman-Pearson Lemma

Neyman-Pearson Lemma

The likelihood ratio test is optimal:

And vice-versa.

If there is another (possibly random) decision rule                                  such that

then
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Linear Discriminant Analysis

Assume  (to simplify):                                    and (one observation)
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classical error expression

Probability of error (assuming        and        are equally likely)

(using Gaussianity and manipulating...)

need to be estimated

and        samples

High-dimensional regime: and        same order as
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Fisher linear discriminant function

Unbiased estimators:

Plug estimators into log-likelihood ratio:

Fisher Linear Discriminant
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Fisher Linear Discriminant
Assume

Vary                                   between  1  and  2 Test with            over 5000 random trials

Probability of error

High-dimensional theory

[Kolmogorov]
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What can help in high-dimensions?

Structure e.g.,  sparsity

Suppose         and         are sparse: only have                  nonzero entries

Procedure: hard-threshold entries of estimates

hard-thresholding operator

(same for      )
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Example
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Sparsity makes problem low-dimensional

Same Experiments
Assume

Vary                                   between  1  and  2 Test with            over 5000 random trials

Probability of error

High-dimensional theory
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 Motivation:  Hypothesis Testing in High-Dimensions

 Introduction to LASSO and other sparsity problems

 Gaussian graphical model selection

 Matrix completion

Outline
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A Crime Problem

Goal: Predict  # crimes / million based on the other indicators
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Linear Regression

Linear/affine model

predictors

samples

offset

response variable
(crime rate)

table entry

coefficient to be determined

Find coefficients: least-squares



15/40

little interpretability all coefficients contribute to prediction

Linear Regression

offset

police funding / resident  ($/year)

% of 25+ year-olds with 4+ years of high-school

% of 16-19 year-olds not in high-school 

% of 18-24 year-olds in college

% of 25+ year-olds with 4+ years of college

Problems with least-squares

small bias,  large variance zeroing coefficients can improve mean-squared error
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In reality, we solved ...

LASSO

regularization parameter 

L1-norm

least absolute selection and shrikange operator 

Coefficient value

funding

4 years of high-school (25+)

no-hs (16-19)
college (25+)

college (18-24)
necessary because
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L1-Norm Induces Sparsity

LASSO   (aka Basis Pursuit Denoising)

Constrained LASSO

Relaxed Basis Pursuit

for some       depending on

for some       depending on

Basis Pursuit when 
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L1-Norm Induces Sparsity

Assume

has solutions

Assume margin around

What about the L2-norm?
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Compressed Sensing (CS)

Example:  Compressed Sensing
Sucess rate  (50 trials)

number of measurements

Theory

BP performance

sparse

iid Gaussian

Basis Pursuit

Theorem [Chandrasekaran et al. 12’]

unknown,  but     -sparse measurements

iid entries
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Application: Image Reconstruction

not sparse

Natural images have sparse representations

sparse or near-sparse

dictionary (wavelet, DCT, gradient space)
Ordered coefficients:

Haar wavelet  (5 levels)
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Solve

Application: Image Reconstruction

Suppose we observe  only 50% of pixels

wavelet

observed indices

PSNR:  21.31 dB
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Application: Image Reconstruction

wavelet

partial DFT

Solve

PSNR:  24.93 dB

each entry of      has info from entire image
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 Motivation:  Hypothesis Testing in High-Dimensions

 Introduction to LASSO and other sparsity problems

 Gaussian graphical model selection

 Matrix completion

Outline
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Gaussian Graphical Model Selection

given       idd  observations of          denoted                                    estimateProblem:

Assumption: most pairs of coordinates                   are conditionally independent 

precision matrix                               is  sparse

independent
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Gaussian Graphical Model Selection

pdf :

Maximum likelihood estimator of

sample covariance matrix

(assuming it is invertible                           )
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applies L1-norm only to off-diagonal entries

Graphical LASSO

Maximum likelihood estimator

Assumption: most pairs of coordinates                    are conditionally independent 

Graphical LASSO

sensible estimators even for non-Gaussian RVs
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Example: Dow Jones
Price of stock of  6 companies at beginning of each week of 2011  (Jan-Jun)

remove
mean
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Example: Dow Jones
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Example: Dow Jones

graphical LASSO

we assume no correlation,  i.e.,  no edge

Number of edges
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Example: Dow Jones

graphical LASSO

we assume no correlation,  i.e.,  no edge

Alcoa – American Express

Alcoa – Boeing
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Example: Dow Jones
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 Motivation:  Hypothesis Testing in High-Dimensions

 Introduction to LASSO and other sparsity problems

 Gaussian graphical model selection

 Matrix completion

Outline
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Matrix Completion
Suppose someone gave you  $1M  for completing a table like this...

users

movies

rating user i gives to movie  j

Key insight: only a few factors may explain users’ tastes   (genre, actors, ads, ...)

ratings

influence of factors on users’ tastes 

characterization of movies Fewer degrees 
of freedom
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rank

Singular value decomposition: any real                matrix can be decomposed as

orthogonal orthogonal

sparse vector if matrix is low-rank
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nuclear norm

low-rank

Our problem

observed entries

nonconvex

relax
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Example Result

Theorem [Chandrasekaran et al. 12’]

measurements

iid entries

unknown,  but rank

w.h.p.
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Experiments

Sucess rate  (20 trials)

iid entries

all-zeros,  and 1 at random entry

bound
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 Structure is key in  high-dimensional problems

 Sparsity encodes several types of structure

 Several applications  (and theory)

 LASSO,  basis pursuit, ...  improve  interpretability and (often)  performance

 Didn’t cover:  optimization theory  and  algorithms

Conclusions
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https://github.com/joaofcmota/udrc-summerschool

http://jmota.eps.hw.ac.uk/documents/Mota21-HighDimensionalStatsAndSparsity-UDRC.pdf
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