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For a given                ,
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MAP rule / minimizes risk when
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The likelihood ratio test is optimal:

And vice-versa.

If there is another (possibly random) decision rule                                  such that

then
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Structure e.g.,  sparsity

Suppose         and         are sparse: only have                  nonzero entries

Procedure: hard-threshold entries of estimates

hard-thresholding operator

(same for      )
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Same Experiments
Assume

Vary                                   between  1  and  2 Test with            over 5000 random trials

Probability of error

High-dimensional theory
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 Motivation:  Hypothesis Testing in High-Dimensions

 Introduction to LASSO and other sparsity problems

 Gaussian graphical model selection

 Matrix completion

Outline



93/40

A Crime Problem



94/40

A Crime Problem



95/40

A Crime Problem

Goal: Predict  # crimes / million based on the other indicators



96/40

Linear Regression



97/40

Linear Regression

Linear/affine model



98/40

Linear Regression

Linear/affine model

predictors



99/40

Linear Regression

Linear/affine model

predictors

samples



100/40

Linear Regression

Linear/affine model

predictors

samples



101/40

Linear Regression

Linear/affine model

predictors

samples

response variable
(crime rate)



102/40

Linear Regression

Linear/affine model

predictors

samples

offset

response variable
(crime rate)



103/40

Linear Regression

Linear/affine model

predictors

samples

offset

response variable
(crime rate)

table entry



104/40

Linear Regression

Linear/affine model

predictors

samples

offset

response variable
(crime rate)

table entry

coefficient to be determined



105/40

Linear Regression

Linear/affine model

predictors

samples

offset

response variable
(crime rate)

table entry

coefficient to be determined



106/40

Linear Regression

Linear/affine model

predictors

samples

offset

response variable
(crime rate)

table entry

coefficient to be determined



107/40

Linear Regression

Linear/affine model

predictors

samples

offset

response variable
(crime rate)

table entry

coefficient to be determined



108/40

Linear Regression

Linear/affine model

predictors

samples

offset

response variable
(crime rate)

table entry

coefficient to be determined

Find coefficients:



109/40

Linear Regression

Linear/affine model

predictors

samples

offset

response variable
(crime rate)

table entry

coefficient to be determined

Find coefficients: least-squares



110/40

Linear Regression

Linear/affine model

predictors

samples

offset

response variable
(crime rate)

table entry

coefficient to be determined

Find coefficients: least-squares



111/40

Linear Regression



112/40

Linear Regression



113/40

Linear Regression

offset



114/40

Linear Regression

offset

police funding / resident  ($/year)



115/40

Linear Regression

offset

police funding / resident  ($/year)

% of 25+ year-olds with 4+ years of high-school



116/40

Linear Regression

offset

police funding / resident  ($/year)

% of 25+ year-olds with 4+ years of high-school

% of 16-19 year-olds not in high-school 

% of 18-24 year-olds in college

% of 25+ year-olds with 4+ years of college



117/40

Linear Regression

offset

police funding / resident  ($/year)

% of 25+ year-olds with 4+ years of high-school

% of 16-19 year-olds not in high-school 

% of 18-24 year-olds in college

% of 25+ year-olds with 4+ years of college

Problems with least-squares



118/40

little interpretability

Linear Regression

offset

police funding / resident  ($/year)

% of 25+ year-olds with 4+ years of high-school

% of 16-19 year-olds not in high-school 

% of 18-24 year-olds in college

% of 25+ year-olds with 4+ years of college

Problems with least-squares



119/40

little interpretability all coefficients contribute to prediction

Linear Regression

offset

police funding / resident  ($/year)

% of 25+ year-olds with 4+ years of high-school

% of 16-19 year-olds not in high-school 

% of 18-24 year-olds in college

% of 25+ year-olds with 4+ years of college

Problems with least-squares



120/40

little interpretability all coefficients contribute to prediction

Linear Regression

offset

police funding / resident  ($/year)

% of 25+ year-olds with 4+ years of high-school

% of 16-19 year-olds not in high-school 

% of 18-24 year-olds in college

% of 25+ year-olds with 4+ years of college

Problems with least-squares

small bias,  large variance



121/40

little interpretability all coefficients contribute to prediction

Linear Regression

offset

police funding / resident  ($/year)

% of 25+ year-olds with 4+ years of high-school

% of 16-19 year-olds not in high-school 

% of 18-24 year-olds in college

% of 25+ year-olds with 4+ years of college

Problems with least-squares

small bias,  large variance zeroing coefficients can improve mean-squared error



122/40

LASSO



123/40

LASSO
least absolute selection and shrikange operator 



124/40

LASSO
least absolute selection and shrikange operator 



125/40

LASSO

regularization parameter 

least absolute selection and shrikange operator 



126/40

LASSO

regularization parameter 

L1-norm

least absolute selection and shrikange operator 



127/40

LASSO

regularization parameter 

L1-norm

least absolute selection and shrikange operator 



128/40

LASSO

regularization parameter 

L1-norm

least absolute selection and shrikange operator 

Coefficient value



129/40

LASSO

regularization parameter 

L1-norm

least absolute selection and shrikange operator 

Coefficient value

funding



130/40

LASSO

regularization parameter 

L1-norm

least absolute selection and shrikange operator 

Coefficient value

funding

4 years of high-school (25+)



131/40

LASSO

regularization parameter 

L1-norm

least absolute selection and shrikange operator 

Coefficient value

funding

4 years of high-school (25+)

no-hs (16-19)
college (25+)

college (18-24)



132/40

In reality, we solved ...

LASSO

regularization parameter 

L1-norm

least absolute selection and shrikange operator 

Coefficient value

funding

4 years of high-school (25+)

no-hs (16-19)
college (25+)

college (18-24)



133/40

In reality, we solved ...

LASSO

regularization parameter 

L1-norm

least absolute selection and shrikange operator 

Coefficient value

funding

4 years of high-school (25+)

no-hs (16-19)
college (25+)

college (18-24)



134/40

In reality, we solved ...

LASSO

regularization parameter 

L1-norm

least absolute selection and shrikange operator 

Coefficient value

funding

4 years of high-school (25+)

no-hs (16-19)
college (25+)

college (18-24)
necessary because
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Application: Image Reconstruction

not sparse

Natural images have sparse representations

sparse or near-sparse

dictionary (wavelet, DCT, gradient space)
Ordered coefficients:

Haar wavelet  (5 levels)
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PSNR:  24.93 dB

each entry of      has info from entire image
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Graphical LASSO

Maximum likelihood estimator

Assumption: most pairs of coordinates                    are conditionally independent 

Graphical LASSO

sensible estimators even for non-Gaussian RVs
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 Motivation:  Hypothesis Testing in High-Dimensions

 Introduction to LASSO and other sparsity problems

 Gaussian graphical model selection

 Matrix completion

Outline



253/40

Matrix Completion



254/40

Matrix Completion
Suppose someone gave you  $1M  for completing a table like this...



255/40

Matrix Completion
Suppose someone gave you  $1M  for completing a table like this...

users

movies



256/40

Matrix Completion
Suppose someone gave you  $1M  for completing a table like this...

users

movies

rating user i gives to movie  j



257/40

Matrix Completion
Suppose someone gave you  $1M  for completing a table like this...

users

movies

rating user i gives to movie  j

Key insight:



258/40

Matrix Completion
Suppose someone gave you  $1M  for completing a table like this...

users

movies

rating user i gives to movie  j

Key insight: only a few factors may explain users’ tastes   (genre, actors, ads, ...)



259/40

Matrix Completion
Suppose someone gave you  $1M  for completing a table like this...

users

movies

rating user i gives to movie  j

Key insight: only a few factors may explain users’ tastes   (genre, actors, ads, ...)

ratings



260/40

Matrix Completion
Suppose someone gave you  $1M  for completing a table like this...

users

movies

rating user i gives to movie  j

Key insight: only a few factors may explain users’ tastes   (genre, actors, ads, ...)

ratings



261/40

Matrix Completion
Suppose someone gave you  $1M  for completing a table like this...

users

movies

rating user i gives to movie  j

Key insight: only a few factors may explain users’ tastes   (genre, actors, ads, ...)

ratings

influence of factors on users’ tastes 



262/40

Matrix Completion
Suppose someone gave you  $1M  for completing a table like this...

users

movies

rating user i gives to movie  j

Key insight: only a few factors may explain users’ tastes   (genre, actors, ads, ...)

ratings

influence of factors on users’ tastes 

characterization of movies 



263/40

Matrix Completion
Suppose someone gave you  $1M  for completing a table like this...

users

movies

rating user i gives to movie  j

Key insight: only a few factors may explain users’ tastes   (genre, actors, ads, ...)

ratings

influence of factors on users’ tastes 

characterization of movies Fewer degrees 
of freedom
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Example Result

Theorem [Chandrasekaran et al. 12’]

measurements

iid entries

unknown,  but rank

w.h.p.
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Experiments

Sucess rate  (20 trials)

iid entries

all-zeros,  and 1 at random entry

bound
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 Structure is key in  high-dimensional problems

 Sparsity encodes several types of structure

 Several applications  (and theory)

 LASSO,  basis pursuit, ...  improve  interpretability and (often)  performance

 Didn’t cover:  optimization theory  and  algorithms

Conclusions
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