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Abstract—Overlapping strategies for hybrid beamformed 

direct radiating arrays have been studied in the past decades as 

a means to improve the gain of a directive beam. It is widely 

known that overlapping subarrays guarantees the suppression 

or the partial mitigation of some unwanted grating lobes. 

However, such techniques come with a cost, either in terms of 

hardware or in terms of digital complexity. Performance-wise, 

the overlapping strategies have also shown particular cases 

where the scanning improvements were not evident. This paper 

presents a study of the general overlapping principles in hybrid 

analogue-digital beamformed direct radiating arrays for the 

case of a GEO satellite application. This study allows to identify 

cases where the overlapping technique is beneficial compared to 

a non-overlapped array. 
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I. INTRODUCTION  

VER the past years, with the transition from broadcast to 

broadband satellite communications, active direct 

radiating array antennas have been seen as a key solution 

to guarantee high performance in terms of capacity, 

flexibility and reconfigurability [1]. Such configuration gives 

a full flexibility in terms of coverage as beams can be steered 

along any desired direction within the field-of-view. 

However, the hardware complexity of such antenna 

configurations is unaffordable particularly in light of today’s 

on-board processors that can process digitally up to a few 

hundreds of ports. In conjunction with hardware limitation 

for the solid-state amplifiers, the technological requirements 

lead to unrealistic architectures, especially for GEO 

coverages where thousands of radiating elements are needed. 

Hybrid beamforming is introduced as a solution to reduce 

the antenna complexity [2,3]. Instead of having all the 

radiating elements connected to the on-board processor, the 

system is split into analogue beamformed subarrays which in 

turn are digitally processed. At the analogue level, radiating 

elements are processed within a subarray. In turn, the digital 

level performs the lattice of subarrays. This cascade of 

analogue beamforming (ABFN) and digital beamforming 

(DBFN) guarantees a reduction in the number of ports from 

thousands to dozens. In terms of coverage, the analogue 

device enables large regional beam generations, within which 

narrow spot beams are defined by the digital processor (Fig. 

1.) [5].  

However, this improvement in terms of complexity comes 

with drawbacks from a performance perspective. Indeed, 

subarrays are now seen as large radiating elements from the 

digital point-of-view. Grating lobes are generated: they are 

undesirable for the payload system as they correspond to 

interferences for multibeam antennas. To fulfil the grating 

lobe mitigation, several techniques have been explored in the 

literature such as sparsity [6] or polyominoes arrays [7, 8]. 

Another technique exploits overlapped subarrays [9-10].  

 

 
Fig. 1. : Hybrid beamforming scheme [5] 

The latter technique enables to fully or partly suppress 

some grating lobes. In [9], each subarray is overlapped with 

the adjacent ones: the elements at the edges of the subarrays 

are fed by 2 subarrays. Although the technique is efficient 

when scanning close to nadir, this architecture relies on 

different types of active radiating elements along the array 

and at least two types of amplifiers are required to implement 

such an architecture. In [10], the subarrays are overlapped 

thanks to an interleaved layer of tiles shifted by half the size 

of a subarray along the two Cartesian axes directions. It 

permits to mitigate odd grating lobes and has a simple 

hardware scheme. However, the levels of even grating lobes 

are increased, additional subarrays are used, and the power 

normalisation must occur at element level to avoid power 

loss, which increases the digital complexity. In this 

contribution, a general case considering both periodic 

overlapping configurations is presented. The contribution is 

limited to radiating elements fed by at the maximum 2 

subarrays to give a first approach of the general 

configuration. From this linear architecture, it is shown that, 

with an equivalent complexity, overlapping is not always 

beneficial. 

 

O 



II. UNIFORM LINEAR ARRAY WITH DISPLACEMENT OF THE 

TILES TOWARD THE CENTRE OF THE ARRAY 

 

A. Technique definition 

First, a non-overlapped linear array is defined with 

6 subarrays each of 6 radiating elements, as shown in Fig. 2. 

For defining a general case, we revisit the concept of 

overlapped arrays. For all cases from [9] to [10], despite 

having very different visions on how to generate an overlap 

between subarrays, a common feature is observed. Centres of 

gravity for each subarray can be identified. It corresponds to 

the middle of them. Then, a sampling step is added such that 

the final centre of gravity considers the closest radiating 

element as the new centre. If it is situated in-between 2 

radiating elements, the first one from the left side is chosen. 

Indeed, by identifying the centres of gravity of the subarrays, 

it is analysed that the main idea relies on the displacement of 

the tiles toward the centre of the overall array. Therefore, the 

general overlapping is defined as follows: 

• The subarrays at the edge are extended by a controlled 

percentage of the size of a subarray 

• The centres of gravity of the extended tiles/subarrays are 

retrieved. 

• From these centres, the regularity between the other 

central centres of gravity is kept. These situated in-

between are moved according to a division of the new 

total distance between the edge feeds by the number of 

subarrays. 

• The subarrays are all extended by the same number of 

radiating elements. The tile related to each subarray is 

attached to it thanks to a sampling of the total array 

length. 

 

 
Fig. 2.: General overlapping case. On the first row, non-overlapped array. In 
red crosses radiating elements and black strips delimit the subarrays. In red 

crosses, radiating elements. On the second row, the subarray is extended. The 

rectangles indicate the size of a subarray. On the third row, the feeds are 
displaced and associated to each subarray. On the fourth row, an example 

with a larger extension is shown. 

The full process is described in Fig.2. One of the main 

highlights is the proximity of the subarrays' centres compared 

to the non-overlapped array. Indeed, by extending the 

subarray the unit cell associated with the array periodicity is 

reduced. It is noted that, in the proposed case, extending the 

subarrays further implies a more significant displacement of 

the subarray centres toward the middle of the linear array. 

Another observation is that, because the array length is 

sampled by the number of tiles, the overlap between adjacent 

subarrays is aperiodic. Indeed, 2 radiating elements are fed 

by 2 subarrays at the edges while 3 of them are fed by 2 

subarrays between the second and the third subarrays (Fig. 2. 

third row). On the contrary, in the case-study in [9], the 

overlapping between adjacent subarrays is periodic. This is 

due to a manufacturing correction. Indeed, implementing an 

array with feeds all situated at the centre of the tiles is simpler 

as the connections between radiating elements and subarrays 

are similar for all subarrays.  

However, the theoretical idea behind [9] and the general 

overlapping is the same with extension of the inner tiles. 

Except adding a periodicity, the feeding network is similar. It 

is detailed in Fig. 3. 

 
Fig. 2. : Feeding network of the general overlapped case 

As shown, radiating elements at the edge of a tile are 

connected to the adjacent subarray’s ABFN. The main 

differences between [9] and the general overlapping are the 

positions of the connections between the ABFNs and DBFN 

and the number of red connections between radiating 

elements. However, in such feeding network, the power is 

first normalized at each ABFN level, and then at DBFN such 

that the network is lossless. The phase between neighbour 

subarray is not in coherence, which leads to the need of an 

additional step of normalization at radiating element level. It 

is similar in both [9] and presented configurations.  

 

B. Radiation pattern characteristics 

According to the previously defined architecture, the 

radiation patterns are generated in Fig. 4. for a scan of the 

spot beam at 𝜃 = 1°. The ABFN scanning is fixed at nadir 

and only a DBFN steering is considered. For all cases the 

power is uniformly distributed over the array. The overlap 

ratio indicated under each radiation pattern corresponds to the 

ratio of radiating elements added to each subarray. For 

instance 1/6 would be 1 radiating element added to the 6 from 

the inner tile. The maximum overlap considered here is ½, 

which means the subarrays are at the maximum overlapped 

with the adjacent subarrays, and there cannot be more than 2 

overlapped subarrays. 

As depicted, there is a displacement toward the end-of-

coverage of the grating lobes. Indeed, if the grating lobe 

situated at θ =− 5.5° θ =− 5.5° is considered, it is observed 

that between 0 and 1/3 overlap, the grating lobe moves from 



to θ = −6° 𝐺 = −20 . However, its level is not necessarily 

attenuated: for instance, when comparing the 0 and ½ overlap 

cases, the same grating lobe gain is at dB. This displacement 

is due to the lattice associated with the periodicity. Indeed, 

having closer feeds implies farther grating lobe.  

When considering the first order grating lobe at 𝜃 =
 −2.2°, its level is reduced significantly the more the array is 

overlapped. Indeed, it goes from 𝐺 = 27.2 dB without 

overlap to 26.4 dB for 1/6 , to finally end up at 20.3 dB for 

½. The mitigation is due to the extension of the subarray. 

Indeed, changing the inner subarray has an impact on the 

subarray pattern: generating larger subarrays consequently 

produces a narrower subarray pattern. The null of the 

aforementioned pattern is therefore ideally positioned to 

isolate the first order grating lobe from the main beam. 

In terms of grating lobes, it seems that there is an overall 

improvement. Nevertheless, this improvement seems 

dependent on the scanning position. 

 

 
Fig. 3. : Radiation patterns simulated with different extension ratios 

 

III. EXTENSION OF THE GENERAL OVERLAPPING TO 

DRASTICALLY CLOSER TILES CASES 

 

A. Further array characteristics 

The overlapping methodology presented in [10] can also 

be seen as a particular case compared to the one defined in 

this contribution. Since the transition from one case to the 

other is not straightforward, it is detailed in Fig.5. As 

immediately noticed, this case is an extension of the previous 

Section II where not more than 2 subarrays can feed a 

radiating element. 

As depicted, the first change compared to the inner non-

overlapped array is to consider feeds that are drastically 

closer. It implies subarrays significantly broadened because 

of the displacement of the centre of gravity due to the 

extension. It is illustrated with the second row. On the third 

row, it is observed that, by superimposing the extended 

subarrays associated with all the feeds, there are areas within 

the linear array for which radiating elements are fed by 

several subarrays. Here, these areas are shown for feeds that 

are twice closer than the inner ones. When comparing these 

areas with the inner subarray length, it corresponds to twice 

smaller subarrays. However, there are different lengths 

associated with the aforementioned portions. On the fourth 

row, missing tiles are added to limit bore-effect. The overall 

number of subarrays is doubled. The number of subarrays 

between subarrays intersections is the same across the array: 

here, it corresponds to 3 radiating elements. Nevertheless, it 

is worth mentioning that these 3 radiating elements are not 

fed by an equal number of subarrays. For instance, at the 

edges there are 8 subarrays per radiating elements while at 

the centre there are 12. The interest of overlapping is that 

subarrays that are not in phase coherence feed the same 

radiating elements. A constraint given for the general 

overlapping definition is to ensure each radiating element is 

fed by at the maximum 2 subarrays. To achieve so, the 

subarrays are truncated around the centre of gravity. All 

subarrays are therefore the same length and the hardware 

complexity is managed by replicating the same devices across 

the architecture. 

The architecture from [10] is a particular case as there is 

exactly twice closer subarrays compared to the inner non-

overlapped array. This is also the case illustrated in Fig. 5. 

Because the subarrays are truncated such that they cannot 

cover more than another subarray, their length is exactly 

equal to the ones from the inner array. 

In terms of the feeding network, the principle is the same 

as in Fig. 3., considering that ABFN are introduced in 

cascades. It is worth mentioning that in terms of digital 

complexity, adding subarrays is synonymous with adding 

digital controls to the DTP. 

As a summary, the general overlapping case is the 

following: the tiles are displaced toward the centre of the 

linear array thanks to the extension of subarrays. If the 

subarrays are superimposed more than twice, then they are 

equally cut and tiles are added to avoid bore-effects (Fig. 5.). 

Otherwise, they are unchanged and do not require any 

additional feed (Fig. 2.). 

 

 
Fig. 4. : General overlapping case. On the first row, non-overlapped. On the 
second row, displacement of the tiles toward the centre with subarrays highly 

extended. On the third row, superposition of subarrays from all the tiles. In 

green dot lines; the green subarray is truncated to prevent elements fed by 
more than 2 subarrays. On the fourth row, additional tiles are added to cover 

the edges and truncation applied to all subarrays. 

 

B. Radiation pattern characteristics 

The radiation pattern of the general overlapped 

configuration with additional DCs is given in Fig. 6. for a 

scan at θ = 1° . It is noted that the configuration has subarrays 

of 36 radiating elements. For the inner array, the architecture 

corresponds to 6 subarrays. For the overlapped with a 1/6 



offset, it means 1 element is fed by two subarrays and 5 are 

fed by only one. It adds 1 subarray. For the half offset, there 

are 6 additional subarrays. The purpose here is to see if, for a 

uniform power distribution across the linear arrays, there is 

any improvement in terms of grating lobe mitigation. 

For the 1/6 offset. There is a slight tapering effect on the 

grating lobes. The same phenomenon of grating lobe 

displacement occurs as per the case 1/6 from Fig. 4, which is 

related to similar overlaps. This case acts as a justification 

that both overlapping cases from the literature can be 

generalized by the proposed case of tile displacement.  

When comparing the inner array with the half offset case, 

it is worth noting that all the odd grating lobes are suppressed. 

This is of strong added value in terms of interference. 

However, the inner array has twice less DCs. If a non-

overlapped array with a same number of DCs is considered, 

and hence has twice smaller subarrays to keep the same 

radiating aperture, the radiation patterns are exactly the same 

between the overlapped and the non-overlapped 

configurations.  

When the tiles are displaced toward the centre of the 

array, it is possible to totally mitigate some grating lobes at 

the condition of having tiles situated twice closer than for the 

inner array. This is due to the non-coherence of phase. The 

perfect phase opposition between adjacent subarrays occurs 

for a perfect superimposition of them of half the size of a 

subarray. However, displacing the tiles a bit less does not 

prevent from grating lobes and simply adds a digital 

complexity. The only option for tiles drastically moved 

toward the centre is therefore to have twice closer tiles than 

the inner configuration. 

 

 

 
Fig. 5. : radiation patterns with different number of tiles added to the array 

due to the extensive overlap.  

 

IV. SCAN LOSS DISCUSSION 

 

An important objective is to improve the scanning 

performances. For satellite communications a high gain 

within a defined area is required. This area can also be 

broadened to reduce the complexity further. The idea in this 

section is to exploit the observations made from the two 

defined cases of the general overlapping. From these 

depictions, the overlapping parameters can be studied. The 

first processed case is the one from section II. The purpose is 

to define in which cases, if any, there is an improvement 

compared to the non-overlapped case. 

 To achieve such comparison, the main beam at DBFN 

level is scanned within the regional ABFN beam from nadir. 

The angle is increased every θ θ 0. 01° . For every iteration 

of , the main beam is scanned. A threshold is set called the ½ 

power threshold. It corresponds to the gain with the 

maximum radiating aperture minus 3 dB. Beyond this value, 

more than half of the power is taken from the main beam by 

interfering grating lobes. The area within which it is 

reasonable scanning is therefore between the maximum 

achievable gain and the threshold, and is referred to as 

“scanning range” in the following. In the study, no feeds are 

added, i.e., the general case where subarrays are at best 

overlapped once is considered. Indeed, it has been shown that 

there is no added value adding tiles in terms of grating lobe 

mitigation except when the tiles are twice closer. This case is 

explored later. 

The results are presented in Fig. 7. The uniform taper is 

preserved such that all the radiating elements are fed with 

exactly the same power. The tapering effect is discussed in 

the following, but a first study is led on the degree of 

overlapping. 

 
Fig. 6. : Scan loss from nadir for the non-overlapped array (NO) and 

different extension ratio for the overlapping configuration 

As observed, the non-overlapped (NO) configuration is 

not always the worst case scenario. Indeed, in terms of 

scanning range, there is a slight decrease of 0.21° between 

NO and an overlap of 1.50 (corresponding to ½ overlap from 

Fig. 3). As depicted, the null of the regional beam situated at 

2.0° enforces a drastic decrease of the gain. It is worth noting 

that, before the curves reach the threshold, the gain is more 

constant for the 1.5 overlap case than for the NO 

configuration. Moving to 1.16 overlap, the scanning range is 

also more constant. The gain between nadir and the threshold 

is increased by 1.17 dB overall and the scanning range is 

improved by 0.05°. In the 1.33 case, however, the 

improvement is less noticeable in terms of gain while not 

guaranteeing any increase of the scanning range. Indeed, the 

gain is increased by 0.98 dB. It seems that, by ensuring a 

uniform power distribution all over the array, there is no 

improvement guaranteed by overlapping due to the position 

of the first null of the subarray pattern that is set closer. 

Indeed, adding connections between radiating elements and 

ABFNs is a hardware complexity. The decision then rests 

with the system designers as to whether a 1dB-order gain 

improvement worth this additional complexity in a mission 

context. 



The position of these nulls can nevertheless be changed 

thanks to a tapering at ABFN level. Indeed, a broadening of 

the subarray pattern main lobe is performed thanks to 

Gaussian-shaped tapers (e.g. Taylor, dB tapers, or Hamming 

window). In particular, the contribution focuses on the 

parameterization of such tapers. The targeted investigation is 

whether a taper can improve the scanning range and if so, 

define the specific cases for which it is worth overlapping. 

To achieve such investigation, a Hamming Window is 

applied at each subarray level. In (1), 𝑥𝑘 denotes the position 

of the radiating elements within a non-steered subarray.  

 

𝑤(𝑘) =  𝛼 + (1 − 𝛼) cos(2𝜋𝑥𝑘) (1) 

 

The 𝛼 ∈ [0 1] parameter can vary and therefore generate 

several types of tapers with different heights of pedestal. 

When 𝛼 is close to 1, the taper is almost uniform. When 𝛼 is 

very low, the taper is a full Gaussian. The effect of the taper 

itself can be extracted with the use of the general case when 

tiles are twice closer than the non-uniform case. This case is 

presented on Fig. 8. As depicted, 𝛼 varies from 0.4 to 0.7 by 

steps of 0.02.  

 

 
Fig. 7. : Tapering impact on the scan losses. Comparison between the 

overlapped configuration (OA) and the NO one 

For the NO case, the higher the 𝛼, the better the scanning 

range and the gain within the scanning area. The highest gain 

is performed by a uniform taper with 𝛼 = 1 and is set as a 

reference for the comparison. For this value, NO and OA 

(overlapped arrays) are fully superimposed as already 

suggested by the radiation patterns from Fig. 6.  

A first observation is that tapering does not guarantee an 

improvement with overlapped subarrays. Indeed, when 𝛼 is 

low, i.e., for 𝛼 between 0.4 and 0.48 or very high between 

0.62 and 0.70, there is no added value using a taper. It even 

decreases the performances given by OA. Both gain and 

scanning range are degraded. Between 0.48 and 0.62 , there 

is always a gain improvement compared to the uniform taper. 

However, only a range in [0.52 0.58] guarantees a better 

scanning range and gain. For 𝛼 = 0.56 there is an optimal 

gain reached as well as the best scanning range. It leads to a 

gain improvement of 2.5 dB and an extended scanning area 

by 0.16°. 

By applying a similar study to the general case limited 

to extended subarrays and no tile addition, the improvements 

are similar but with different parameters depending on the 

extension. 

  

 

V. CONCLUSION 

A general overlapping technique for linear arrays has 

been studied where the contribution is limited by two 

subarrays per radiating elements. Such technique enable an 

investigation on either it is worth overlapping subarrays. By 

displacing the tiles of the subarrays, it is possible to show for 

several periodic overlapping cases from the literature that 

overlapping is not always beneficial. A strong tapering study 

is needed to find the optimal improvement in terms of gain. 

Depending on the type of application, the taper choice must 

be done wisely considering the hardware cost of such 

technique.  
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