Appendix A: CDLMRI

We provide more details in relation to Section 2.2 CDLMRI in this
appendix.

Stage 1) Coupled Dictionary Learning (details). The dictionary
update step is to solve the optimization problem:
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Taking the dictionary update of ¥. and ®. for example, we update
the atom pairs one by one. For the k-th atom pair v, and ¢, we
can immediately establish that
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By expanding the Frobenius norm and removing the constant term,
it turns out that the above problem is equivalent to the optimization

problem
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where z* denotes the k-th row of ZF_] We compute the derivative of
the objective w.r.t. d, leading to a norm equation:
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Then, we apply the ¢> norm constraint.
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The dictionary update of ¥ and & is performed in a similar way.
In order to accelerate the training, the proposed algorithm can be
updated to online training version without difficulty.
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Stage 3) k-space Consistency Enforcing (details). In this stage, we
aim to enforce consistency between the denoised image and its mea-
surements in the k-space domain. In particular, given the estimated

!Note that z* is a row vector resulting from the derivative w.r.t the k-th
atom pair, while z;; is a column vector corresponding to the ¢j-th patch pair.
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patches X x ) from Stage 2), this step is formulated as a least square
problem:
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which admits an analytical solution satisfying the normal equation
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where the superscript () denotes the Hermitian transpose op-
eration. The term Z R iRi; € CNV*N is a diagonal matrix
where each diagonal entry is the number of overlapping patches at
the corresponding pixel location in x*). Assuming that patches
wrap around at image boundaries, the number of overlapping
patches at each pixel is the same, denoted by BEI Thus, the term

Zl j RH 5]) represents the denoised image %M, where the in-
tensny Value of each pixel is the average of all the overlapping
patches that cover this pixel. Multiplying by the normalized full
Fourier transform matrix F on the both sides of equation (TT) leads

to
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The matrix FFZ F.,;F is a diagonal matrix consisting of ones
(corresponding to sampling locations in k-space) and zeros. Under
the "wrap around" assumption, FZ RHR FH = PIp. Thus,

the matrix pre-multiplying Fx® in is diagonal and trivially
invertible. The vector FFuly( represents the zero-filled Fourier
measurements. Dividing both sides of (12) by the constant /3 to ob-

tain
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where 7 = v, /8, %) = 1 5 2 RIx (1> denotes the denoised im-

age. We denote by QW the subset of k—space that has been sampled
and by y;? the updated value at location (p, q) in the k-space. Note
that (8) uses the dictionaries that were learned in Stage 1) to inter-
polate the non-sampled Fourier frequencies, and update the sampled
frequencies. Then, we immediately obtain the solution:

M =FHyg® (13)
where F* denotes the conjugate Fourier transform matrix. ¥ de-
notes the estimated k-space samples as in (8). In other words, the
estimation X is obtained by inverse DFT of v Then the process

returns to the Stage 1). The whole process is shown in Algorithm 1.

2In particular, 3 = n when the overlap stride » = 1, where the over-
lap stride is defined as the distance in pixels between corresponding pixel
locations in adjacent image patches.



Appendix B: More Experiments

Tissue can be characterized by two different relaxation times — T1
(longitudinal relaxation time) and T2 (transverse relaxation time)ﬂ
T1-weighted and T2-weighted pair of MRI scans are two basic types
of multi-contrast data, where the former is produced by using short
TE and TR times and conversely the latter is produced by using
longer TE (Time to Echo) and TR (Repetition Time) times. In gen-
eral, T1-weighted MRI images results in highlighted/bright fat tis-
sue, such as subcutaneous fat (SC fat) and bone marrow, and sup-
pressed/dark water-based tissue, such as Cerebrospinal fluid (CSF).
In contrast, T2-weighted MRI images highlight both fat tissue and
water-based tissue. Therefore, the correlation of T1-weighted and
T2-weighted is complex, instead of simple reverse mapping rela-
tionship.

In this experiment, we use under-sampled T1-weighted MRI as
the target contrast and corresponding fully-sampled T2-weighted as
the guidance contrast to replicate the same scenario as in [3]. Simi-
lar to previous approaches [3,9,12,28-30], the data acquisition was
simulated by retrospectively under-sampling the 2D discrete Fourier
transform of clinical magnitude MR imagesﬂ The sampling masks
include Cartesian 1D and 2D random sampling. We compare the
proposed approach with DLMRI [9] to show the benefits of inte-
grating guidance information into the MRI reconstruction task. We
also compare with SVTMRI [3] which uses the structure-guided to-
tal variation to integrate the guidance contrast to aid the reconstruc-
tion of the target one.Figure 3] and ] show reconstruction results for
the scenario where a variable density Cartesian mask is employed
for under-sampling on the target T1-weighted contrast, with a fully
sampled T2-weighted MRI for guidance contrast.

371 (longitudinal relaxation time) is a measure of the time taken for ex-
cited spinning protons to realign with the external magnetic field and return
to equilibrium. T2 (transverse relaxation time) is a measure of the time taken
for excited spinning protons to lose phase coherence among the nuclei spin-
ning perpendicular to the main field.

4 After using the Fourier transform to transform measured k-space data
into image space, the image data is of complex type, which is then manipu-
lated for different clinical utility. In clinical practice, magnitude images are
nearly exclusively used for diagnosis as it maximizes the signal-to-noise ra-
tio (SNR). Phase-images are occasionally generated in clinical MRI for the
depiction of flow and characterization of susceptibility-induced distortions.
Therefore, from the perspective of diagnosis, we focus on the magnitude im-
ages
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Fig. 3. Reconstruction for T1-weighted MRI, with fully-sampled T2-weighted version as reference using 4 fold Cartesian 1D random under-
sampling. The first row shows the groundtruth T1-weighted contrast, sampling mask and guidance T2-weighted contrast. The second and
third rows show the reconstructed images and the corresponding residual error from DLMRI [9], STVMRI [3], and the proposed CDLMRI.
It can be seen that the proposed approach reliably reconstructs fine details and substantially suppresses aliasing, noise and artifacts, leading
to the smallest residual error.
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(a) 5 fold 2D random under-sampling. (b) 20 fold 2D random under-sampling.

Fig. 4. Reconstruction for T1-weighted MRI, with fully-sampled T2-weighted version as reference using 5 fold and 20 fold 2D random
under-sampling, using DLMRI [9], STVMRI [3], and the proposed CDLMRI. The first row shows the groundtruth T1-weighted, sampling
mask and guidance modality T2-weighted. The second and third rows show the reconstructed images and the corresponding residual error
from DLMRI [9], STVMRI [3], and the proposed CDLMRI. It can be seen that the proposed approach outperform the competing approaches,
leading to the smallest residual error.



