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Abstract—Magnetic resonance (MR) imaging tasks often in-
volve multiple contrasts, such as T1-weighted, T2-weighted and
Fluid-attenuated inversion recovery (FLAIR) data. These con-
trasts capture information associated with the same underlying
anatomy and thus exhibit similarities in either structure level
or gray level. In this paper, we propose a Coupled Dictionary
Learning based multi-contrast MRI reconstruction (CDLMRI)
approach to leverage the dependency correlation between differ-
ent contrasts for guided or joint reconstruction from their under-
sampled k-space data. Our approach iterates between three
stages: coupled dictionary learning, coupled sparse denoising,
and enforcing k-space consistency. The first stage learns a set
of dictionaries that not only are adaptive to the contrasts, but
also capture correlations among multiple contrasts in a sparse
transform domain. By capitalizing on the learned dictionaries, the
second stage performs coupled sparse coding to remove the alias-
ing and noise in the corrupted contrasts. The third stage enforces
consistency between the denoised contrasts and the measurements
in the k-space domain. Numerical experiments, consisting of
retrospective under-sampling of various MRI contrasts with a va-
riety of sampling schemes, demonstrate that CDLMRI is capable
of capturing structural dependencies between different contrasts.
The learned priors indicate notable advantages in multi-contrast
MR imaging and promising applications in quantitative MR
imaging such as MR fingerprinting.

Index Terms—multi-contrast MRI, coupled dictionary learn-
ing, sparse coding, joint reconstruction, MR fingerprinting

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a noninvasive and
non-ionizing medical imaging technique widely used for
medical diagnosis, clinical analysis, and staging of disease.
Different MRI pulse sequences produce exquisite images of
body parts with different contrasts, such as T1-weighted, T2-
weighted and fluid-attenuated inversion recovery (FLAIR),
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enabling outstanding visualization of anatomical structures.
However, MRI physics and physiological constraints make
the MRI scanning procedure time-consuming. The relatively
slow imaging speed of MRI affects clinical throughput and
also leads to patients’ discomfort. Therefore, a variety of
MRI techniques have been proposed to shorten acquisition
time via reducing the amount of data required for accurate
reconstruction.

Single-contrast Reconstruction. MRI reconstruction from
under-sampled measurements has been thoroughly investigated
in the case of single contrast acquisition [1]–[3]. The pio-
neering framework proposed by Lustig et al. [1], motivated
by compressive sensing theory [4]–[7], uses the fact that MR
images are sampled in the spatial frequency domain (a.k.a.
k-space) and can be represented as a sparse combination of
fixed, predefined bases, for example, wavelets. See also further
developments in [8]–[12]. Ravishankar et al. [2] proposed a
dictionary learning approach for MRI reconstruction, DLMRI,
based on the fact that patches of MR images can be sparsely
represented with respect to a set of learned adaptive bases [13].
These learned bases are one of the reasons why DLMRI
outperforms SparseMRI [1]. Caballero et al. [3] apply dictio-
nary learning to spatio-temporal 3D dynamic complex-valued
cardiac cine MRI data via a sparsity model that combines both
spatial sparsity (for patches) and time sparsity (for temporal
gradients), and treats the real and imaginary parts of the dataset
independently. Recently, several deep learning based single-
contrast MRI reconstruction approaches were proposed [14]–
[18]. For example, Sun et al. [14] propose a deep ADMM-net
defined over a data flow graph that is derived from the iterative
procedures in the Alternating Direction Method of Multipliers
(ADMM) algorithm for optimizing a CS-based MRI model.

Multi-contrast Reconstruction. Multi-contrast MR imag-
ing is attracting increasing amount of attention and being
investigated in various scenarios [19]–[31]. Considering that
each contrast depicts different physical properties of the same
underlying anatomy and tissue, different image contrasts are
highly correlated [21], [32], [33]. Such correlation has been
exploited to shorten acquisition time or reduce the amount
of measurements mainly in two scenarios: 1) guided re-
construction – the under-sampled target contrast is recon-
structed with the aid of another fully-sampled contrast as
guidance/reference, and 2) joint reconstruction – both contrasts
are under-sampled and jointly reconstructed.

For the scenario where the target contrast is under-sampled
and the reference is fully sampled, Weizman et al. [19],
[20] proposed reference-based MRI (RefMRI), which exploits
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Figure 1: Coupled Dictionary Learning for multi-contrast MRI reconstruction framework. It reconstructs the contrasts x(1) and
x(2) jointly from their k-space samples. CDLMRI iterates between three stages – coupled dictionary learning, coupled sparse
denoising and k-space consistency – to progressively remove aliasing and noise and recover fine details.

the similarity between different contrasts at the pixel level
(e.g., T2-weighted and FLAIR). Namely, it reconstructs the
target contrast given the guidance contrast as reference. Their
approach is specific to contrasts with gray-level similarity,
not structural similarity, which is our focus here. Ehrhardt et
al. [21] proposed an approach that uses structure-guided total
variation (STV) to extract the location and direction priors
from a guidance contrast to aid the reconstruction of the target
contrast.

For the scenario where both contrasts are under-sampled,
Bilgic et al. [22] proposed a joint Bayesian compressed sens-
ing based algorithm to exploit the similarity of spatial deriva-
tives/gradients in multi-contrast MRI for joint reconstruction.
Qu et al. [23] suggested a patch-based nonlocal operator
(PANO) to make use of the similarity within and between
multi-contrast MRI patches in a CS framework. By combining
joint total variation (JTV) and group wavelet-sparsity regu-
larization, Huang et al. [24] suggested a Fast Joint-Gradient
Projection (FJGP) to simultaneously reconstruct multiple MRI
contrasts.

Our method. It is known that different contrasts from
the same anatomy exhibit complex relationships, including
both similarities and disparities in gray level and structure
level. Capturing these complex relationships is challenging for
compressive sensing based methods due to limited adaptivity
of predefined bases. In addition, most existing multi-contrast
MRI reconstruction methods are unable to capture differences
between distinct image modalities associated with the same
phenomenon, and thus tend to introduce noticeable texture-
copying artifacts [19]–[24].

In order to address these issues, we propose a new multi-
contrast MRI reconstruction approach that is able to capture
complex relationships between different contrasts both in gray
level (e.g., FLAIR and T2-weighted, as in [19]) and structure-
level (e.g., T1-weighted and T2-weighted). The proposed
multi-contrast MRI reconstruction framework consists of three
stages: coupled dictionary learning, coupled sparse denoising
and enforcing k-space consistency, as shown in Fig. 1. The
first stage learns a set of dictionaries with the goal of capturing
similarities and disparities of textures, edges, boundaries, or
other salient primitives, across different contrasts. The second
stage performs coupled sparse coding to remove aliasing and
noise in the corrupted contrasts, by capitalizing on the learned
adaptive dictionaries. The third stage enforces consistency
between the denoised contrasts and the measurements in
the k-space domain. Comprehensive experiments demonstrate
that our approach outperforms representative methods in both
guided and joint reconstruction with better visual quality and
peak signal-to-noise ratio (PSNR) performance. These ben-
efits, however, are at the expense of increased computational
complexity and memory requirements with respect to methods
that have no learning stage.

Our contributions can be summarised as follows:

• We propose a framework for reconstructing multi-contrast
MRI based on coupled dictionary learning.

• We also suggest a learning algorithm to learn the re-
quired dictionaries, so that cross-modality dependency
correlation, including both similarities and disparities, is
expressed using joint sparse representations.
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• A refined sparse coding operation is then designed to
accelerate and improve coupled sparse denoising.

• Finally, we evaluate the proposed algorithm on a variety
of MRI contrasts and various sampling patterns for both
guided and joint reconstruction.

Organization. In Section II, we present the MRI recon-
struction problem and also introduce some background and
related work. In Section III, we introduce our data model
for multi-contrast MR images and the proposed CDLMRI
approach. Section IV is devoted to experiments. We conclude
in Section VI.

II. BACKGROUND AND RELATED WORK

We start by formalising the case of single-constrast MRI.
Let x(1) ∈ CN denote the vectorized 2D MRI contrast of
size

√
N ×

√
N , and y(1) = Fu1x

(1) ∈ Cm1 (m1 < N )
denote the under-sampled k-space measurements of x(1), with
Fu1 ∈ Cm1×N the corresponding under-sampled Fourier
transform matrix, i.e. a partial 2D DFT matrix. We refer to
the problem of reconstructing x(1) from y(1) single-contrast
MRI reconstruction.

In many scenarios, we also have access to an additional
contrast x(2) ∈ CN associated with the same underlying
anatomy. The corresponding vector of k-space samples is
y(2) = Fu2x

(2) ∈ Cm2 , where Fu2 ∈ Cm2×N is the
under-sampled or fully-sampled Fourier transform matrix. We
distinguish between two cases: (1) If the additional contrast
x(2) is fully-sampled, i.e. m2 = N , the reconstruction of x(1)

from y(1), given x(2) for guidance/reference, is called guided
or reference-based reconstruction. (2) If x(2) is also under-
sampled, i.e. m2 < N , the problem of reconstructing x(1) and
x(2) from y(1) and y(2) is referred to as joint reconstruction.

Next, we briefly introduce several representative types
of single-contrast and multi-contrast MRI reconstruction ap-
proaches. Whenever we refer to single-contrast MRI recon-
struction, we omit superscript (1) for notational simplicity.

A. Compressive Sensing based Single MRI Reconstruction

The reconstruction of x from y is an ill-posed problem with
an infinite number of solutions, due to the insufficient number
of observations. To find a suitable solution, Compressive
Sensing based single-contrast MRI (CSMRI) reconstruction
exploits sparsity to regularize this ill-posed problem. Based
on the fact that a MR image can be represented as a sparse
combination of fixed, predefined bases, it is possible to recover
the desired contrast from its measurements as follows:

minimize
x

‖Fux− y‖22 + λ‖Ψx‖1 + γ‖x‖TV (1)

where ‖ · ‖1 denotes the `1 norm of a vector, i.e., the sum of
the absolute values of the entries in a vector, and ‖x‖TV =∑N
i=1

√
(∇1xi)2 + (∇2xi)2 is the total variation, where ∇1

and ∇2 denote the forward finite difference operators on the
first and second coordinates. The parameters λ > 0 and γ >
0 trade off sparsity, piece-wise smoothness and measurement
fidelity. Commonly, Ψ is a fixed matrix, for example, one that
implements the discrete Fourier transform (DFT), wavelet, or
contourlet transforms. There exists a variety of algorithms to
solve such problems, e.g. [1], [8]–[10], [23], [34], [35].

B. Dictionary Learning based Single MRI Reconstruction

Compared with a pre-defined dictionary used in CSMRI,
an adaptive dictionary is able to further promote sparsity of
the signal and hence potentially require fewer samples for
successful reconstruction [2], [36]. DLMRI by Ravishankar
and Bresler [2] integrates dictionary learning with compres-
sive sensing to achieve more effective MRI reconstruction.
Specifically, [2] attempts to solve

min
x,D,αij

∑
ij ‖Rijx−Dαij‖22 + ν‖Fux− y‖22

s.t. ‖αij‖0 ≤ s ∀i, j,
(2)

where Rij is the operator that extracts a patch with top-left
corner at the location (i, j) of x, D denotes the dictionary
to be learned, αij denotes the sparse representation of the
patch Rijx with respect to D, and s is the sparsity constraint.
Formulation (2) involves an assumption that each image patch
admits a sparse representation αij with respect to the learned
dictionary D, i.e., Rijx = Dαij .

The first term in the cost function represents the quality of
the sparse approximation of the image patches and the second
term enforces data fidelity in k-space. Therefore, DLMRI
iterates between two steps: (1) performing dictionary learning
and sparse coding in the image space to update the first
term, and (2) performing data consistency in the k-space to
update the second term. The quality of the reconstructed MRI
increases along with iterations. Our framework is inspired
by this algorithm, but we generalize it to guided or joint
reconstruction for multi-contrast MRI. In addition, we also
propose a different learning algorithm, making improvements
on the training strategy, speed and accuracy.

C. Guided Reconstruction

In the scenario in which a fully-sampled additional contrast
x(2) is available, Ehrhardt et al.’s STVMRI [21] exploits the
location and direction priors from the guidance contrast x(2) to
aid in reconstruction of the target contrast x(1) by introducing
a structure-guided total variation1 ‖x‖STV . STVMRI modi-
fies the standard total variation regularization by introducing
anisotropic weights derived from the guidance contrast x(2),
by solving

minimize
x(1)

‖Fu1x
(1) − y(1)‖22 + γ‖x(1)‖STV , (3)

where, the parameter γ > 0 trades off piece-wise smoothness
and measurement fidelity.

Weizman et al. proposed a re-weighted approach,
RefMRI [19] that solves a sequence of optimization problems
to reconstruct the target contrast:

min
x(1)
‖A(Fux(1) − y(1))‖22 + λ1‖W1Ψx(1)‖1 + λ2‖W2(x(1) − x(2))‖1

where the fully-sampled contrast x(2) acts as reference, and
A is a diagonal matrix that controls the weight given to the
fidelity of certain measurements. The diagonal matrix W1

1‖x(1)‖STV =
∑N

i=1 |Di∇x
(1)
i |, where ∇ denotes the forward finite

difference operator, and Di = I − ξiξ
∗
i denotes directional weights matrix

with ξi := ∇x
(2)
i

/√(
∇x

(2)
i

)2
+ η2 for η > 0. The matrix field Di is

anisotropic as it has principal directions along and orthogonal to ξi.
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weighs specific wavelet atoms in the reconstruction process
and W2 weighs image regions according to their similarity
level with the reference scan. The matrices W1 and W2 are
re-adjusted recursively. Parameters λ1 > 0 and λ2 > 0 trade
off self-sparsity, relative sparsity, and measurement fidelity.

D. Joint Reconstruction

When both contrasts x(1) and x(2) are under-sampled,
joint reconstruction from their k-space measurements can be
achieved by using Huang et al.’s Fast Joint-Gradient Projection
(FJGP) algorithm [24] which solves:

min
X

1
2

2∑
s=1

‖Fusxs − ys‖22 + λ1‖X‖JTV + λ2‖ΨX‖2,1 , (4)

where X = [x(1),x(2)] is a set of multi-contrast MR
images. Here, Fus and ys are the sampling matrix
and the k-space measurement vector for the s-th im-
age, respectively. The joint total variation ‖X‖JTV =∑N
i=1

√∑T
s=1

(
(∇1Xis)2 + (∇2Xis)2

)
encourages piece-

wise smooth areas for all the contrasts. The `2,1 norm ‖ · ‖2,1
represents the sum of the `2 norms of the rows of a matrix,
inducing group sparsity across different contrasts.

Most of these methods have limited capability of the captur-
ing complex correlation between different contrasts and mak-
ing full use of both gray level and structure level similarities.
In addition, they tend to be susceptible to disparities between
different contrasts. This motivates us to design a new learning-
based robust multi-contrast MRI reconstruction approach for
both guided and joint reconstruction scenarios.

III. CDLMRI FORMULATION AND ALGORITHM

In this section, we introduce the proposed data model for
multi-contrast MR images, and then present the algorithm
for performing either guided or joint multi-contrast MRI
reconstruction.

Before diving into detailed formulations, we provide a
brief introduction to the motivation and intuition underlying
our approach. We highlight that our coupled data model is
motivated by a common observation that different contrasts
are often captured from the same underlying anatomy and
thus exhibit inherent common characteristics. In particular,
they often exhibit dependency correlations, including a variety
of structure similarities, such as edges, textures, corners, and
other salient primitives. For example, such dependencies can
be found in a pair of T1-weighted and T2-weighted MRI,
shown in Fig. 2 (a) and (c). If a first-order differential operator
is applied on such a pair of contrasts, the resulting gradient
maps exhibit resemblance, shown in Fig. 2 (b). The differential
operation can be regarded as a transform which reveals similar-
ities. To reveal and capture more complex dependencies among
different image modalities, more sophisticated transforming
techniques are needed. We thus propose to learn adaptive
transforms via coupled dictionary learning. Intuitively, when
different contrasts are split into pairs of small patches, their
complex dependencies are disseminated into a variety of
simpler and more concise local patterns that can be effectively
captured by learned coupled dictionaries, shown in Fig. 2

(a) T1w (left) and T2w (right) MRI (b) 1-order differential of T1w/T2w

50 100 150 200

pixel index along the row

0

0.5

1

p
ix

e
l 
v
a
lu

e

T1w

T2w

(c) pixel difference in a row of
T1w/T2w

(d) learned coupled dictionaries for
T1w/T2w

0 20 40 60

pixel index in an atom

-0.2

0

0.2

in
te

n
s
it
y

atom for T1w

atom for T2w

0 20 40 60

pixel index in an atom

-0.2

0

0.2

in
te

n
s
it
y

atom for T1w

atom for T2w

0 20 40 60

pixel index in an atom

-0.2

0

0.2

in
te

n
s
it
y

atom for T1w

atom for T2w

0 20 40 60

pixel index in an atom

-0.2

0

0.2

in
te

n
s
it
y

atom for T1w

atom for T2w

(e) some coupled atom pairs which are vectorized to 1D for illustration

Figure 2: Different contrasts often exhibit complex dependen-
cies, sharing a variety of pixel and structure similarities, as
shown in (a) and (c). (b) The gradient maps resulting from
1-order differential show resemblance and thus may be used
to capture the correlation, but it is not an effective way.
(d-e) When splitting different contrasts into small patches,
the complex dependencies are disseminated into a variety of
simpler and more concise local patterns that can be effectively
captured by learned coupled dictionaries.

(d-e). For any pair of coupled atoms, the intensity changing
directions reflect their positive or negative correlation, while
the absolute magnitudes capture their dependency correlation
quantitatively. Consequently, the learned priors facilitates the
leverage of correlation between different image modalities in
the reconstruction task.

A. Data Model for Multi-contrast MRI Data

To utilize the dependency correlation between two MRI
contrasts x(1) and x(2), we first propose a data model that
captures their structural similarities and disparities. Our data
model works with image patches, instead of entire images, be-
cause this allows modeling local image features effectively, as
has been shown in other applications such as image denoising,
super-resolution, inpainting, deblurring and demosaicing [37].
A more detailed analysis of the model can be found in
Appendix C Section A.

Let x
(1)
ij ∈ Cn and x

(2)
ij ∈ Cn denote the vector represen-

tations of image patch pairs of size
√
n×
√
n extracted from

the image x(1) ∈ CN and x(2) ∈ CN , respectively, where the
tuple (i, j) denotes the coordinates of the top-left corner of the
patches within the images. Formally, we write x

(1)
ij = Rijx

(1)

(resp. x
(2)
ij = Rijx

(2)), where the matrix Rij ∈ Rn×N

denotes the operator that extracts patch x
(1)
ij (resp. x

(2)
ij ) from

x(1) (resp. x(2)). In order to capture both the similarities and
the disparities between two different contrasts, we propose to
associate each pair of patches (x

(1)
ij ,x

(2)
ij ) with two types of

sparse representations: a common sparse component that is
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shared by both contrasts, and a distinct sparse component for
each contrast. This leads to the decomposition:

x
(1)
ij = Ψc zij + Ψ uij , (5)

x
(2)
ij = Φc zij + Φ vij , (6)

where zij ∈ CK is the common sparse representation shared
by both contrasts, uij ∈ CK is a sparse component specific
to contrast x(1), and vij ∈ CK is a sparse component specific
to contrast x(2). In addition, Ψc = [ψc1, · · · ,ψcK ] ∈ Cn×K
and Φc = [φc1, · · · ,φcK ] ∈ Cn×K are a pair of coupled
dictionaries associated with the common sparse representa-
tion zij , whereas Ψ = [ψ1, · · · ,ψK ] ∈ Cn×K and Φ =
[φ1, · · · ,φK ] ∈ Cn×K are dictionaries associated with the
distinct sparse representations uij and vij , respectively. This
model can be easily generalized for Ψ and Φ to have a
different number of atoms.

The data model such as (5) and (5) have also been suc-
cessfully used to address multi-modal image super-resolution
problems in [38]. Here, we extend them to multi-contrast MRI
reconstruction. In particular, we propose a coupled dictionary
learning algorithm, and a coupled sparse coding algorithm,
which are different from [38]. (More detailed elaboration can
be found in the Appendix C Section D.)

B. CDLMRI

We now present our approach for solving guided and joint
multi-contrast MRI reconstruction problems leveraging the
model (5) and (6). These two problems can be addressed by
solving:

min
x(1),α

x(2),D

∑
ij

‖Rijx
(1) − (Ψczij + Ψuij)‖22 + ν1‖Fu1x

(1) − y(1)‖22

+
∑
ij

‖Rijx
(2) − (Φczij + Φvij)‖22 + ν2‖Fu2x

(2) − y(2)‖22
s.t. ‖zij‖0 ≤ sc, ‖uij‖0 ≤ s1, ‖vij‖0 ≤ s2, ∀i, j,∥∥∥∥[ψck

φck

]∥∥∥∥2
2

≤ 1, ‖ψk‖22 ≤ 1, ‖φk‖22 ≤ 1, ∀k,
(7)

where α denotes all the sparse representations zij ,uij ,vij
and D denotes the four dictionaries Φc,Φ,Ψc,Ψ. The first
and third terms in the objective ensure that the image patches
are consistent with their postulated model (5)-(6). The second
and fourth terms enforce that the target and guidance contrasts
are consistent with their k-space measurements. For guided
reconstruction, the fourth term and the variable x(2) are fixed.
The parameters ν1 = λ/σ1 and ν2 = λ/σ2 depend on the
standard deviation of the measurement noise σ1 and σ2 and a
positive constant λ. They are used to balance fidelity between
the model and the measurements. In regard to the constraints,
the first set of constraints imposes sparsity on the vectors
zij ,uij ,vij , while the second set of constraints normalizes
the atoms of the dictionaries in order to remove the scaling
ambiguity and avoid trivial solutions. This prevents the `2
norm of the atoms from becoming infinitely large, which
would make the sparsity constraint ineffective. The rationale
for the `2 norm constraints for each atom pair [ψck;φck] is
further described in Appendix A.

Problem (7) is nonconvex as both the dictionaries and the
coefficients are optimization variables, and the `0 pseudo-norm

Algorithm 1 CDLMRI Algorithm

Input: Under-sampled k-space measurements: y(1) and y(2);
Fidelity parameters: ν1 and ν2; Sparse constraints: sc, s1,
s2; Number of inner iterations for CDL: L; Number of
outer iterations for CDLMRI: T ; Number of overlapping
patches at each pixel: β.

Output: Estimated x̃(1) and x̃(2).
Initialization: Initialize x(1) and x(2) as x(1) = FHu1y

(1) and
x(2) = FHu2y

(2), respectively.
Optimization:

1: for t = 1, · · · , T do
2: Stage 1) Coupled Dictionary Learning. Estimate the

coupled dictionaries Ψc, Ψ, Φc, Φ using Algorithm 2.
3: Stage 2) Coupled Sparse Denoising. Estimate the

sparse representations zij , uij and vij by solving (10),
(11) and (12) using the OMP algorithm, which leads to
denoised patches x̂

(1)
ij and x̂

(2)
ij .

4: Stage 3) k-space Consistency. Enforce data consis-
tency with k-space measurements to estimate x̃(1) and
x̃(2) as in (15).

5: end for

constraints are nonconvex. Therefore, we attempt to solve
this problem by iterating between three stages: 1) Coupled
dictionary learning, 2) Coupled sparse denoising, and 3)
Enforcing k-space consistency, as shown in Algorithm 1. In
Stage 1, we perform coupled dictionary learning on a subset
of patches by solving (7) with fixed x(1) and x(2) to obtain the
coupled dictionaries. In Stage 2, we perform coupled sparse
denoising with fixed dictionaries, where we fine tune the sparse
representations zij ,uij and vij for each patch in order to
remove aliasing and noise. Stage 3 enforces data consistency
between the denoised image and the measurements in the k-
space domain. Next, we describe each of these stages.

Stage 1) Coupled Dictionary Learning. In the first outer
iteration, x(1) and x(2) are initialized as FHu1y

(1) and FHu2y
(2),

respectively, where FHu1 (or FHu2) represents interpolating
y(1) (or y(2)) with zeros on non-sampled positions and then
performing inverse Fourier transform. That is, x(1) and x(2)

are set to be equal to the inverse DFT of their zero-filled
Fourier measurements for Cartesian sampling, and are set to be
the inverse NUFFT [39] of their k-space samples for sampling
on a non-Cartesian grid. In the remaining outer iterations, x(1)

and x(2) will be the output of Stage 3) from the previous outer
iteration. For fixed x(1) and x(2), we attempt to solve (7)
with respect to α = (zij ,uij ,vij) and D = (Φc,Φ,Ψc,Ψ)
via alternating minimization. First, we solve the sparse coding
problem (8) to update sparse representations for fixed dictio-
naries, and next we solve problem (9) to update dictionaries
for fixed sparse representations.
A. Sparse Coding:

minimize
zij ,uij ,vij

∑
ij

{
‖Rijx

(1) − (Ψczij + Ψuij)‖22

+‖Rijx
(2) − (Φczij + Φvij)‖22

}
subject to ‖zij‖0 ≤ sc, ‖uij‖0 ≤ s1, ‖vij‖0 ≤ s2, ∀i, j .

(8)

The sparse coding step is solved using the orthogonal matching
pursuit (OMP) [37], [40].
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B. Dictionary Update:

minimize
Ψc,Ψ,Φc,Φ

∑
ij

{
‖Rijx

(1) − (Ψczij + Ψuij)‖22

+‖Rijx
(2) − (Φczij + Φvij)‖22

}
subject to

∥∥∥∥[ψck

φck

]∥∥∥∥2
2

≤ 1, ‖ψk‖22 ≤ 1, ‖φk‖22 ≤ 1, ∀k .

(9)

The dictionary update is adapted from the Block Coordinate
Descent [37], [41], where the dictionaries are updated one pair
of atoms at a time2. The key idea of our coupled dictionary
learning is to train the coupled dictionaries simultaneously
and train the distinct dictionaries individually. Note that, since
a single image contains a large number of patches, to save
time in stage 1), we randomly select only a subset of the
patches as a training dataset X(1) = [· · · ,x(1)

ij , · · · ] and
X(2) = [· · · ,x(2)

ij , · · · ] which are updated in each outer
iteration. The learning algorithm is shown in Algorithm 2.
More details are provided in Appendix A.

Stage 2) Coupled Sparse Denoising. As the sparse rep-
resentations computed in Stage 1) are associated only with
a subset of the collection of image patches, we need to
update the sparse representations of the remaining patches. In
addition, we also introduce linearly decreasing error thresholds
to fine tune the sparse representations, since our experiments
have shown that this improves the de-aliasing and denoising
performance. In particular, we give priority to updating the
common sparse representations associated with the various
image patches by performing the following optimization:

min
zij

max
{
‖Rijx

(1) −Ψczij‖22 + ‖Rijx
(2) −Φczij‖22, εc

}
s.t. ‖zij‖0 ≤ sc.

(10)
We then update the distinct sparse representations associated
with the various target image patches by solving:

min
uij

max
{
‖Rijx

(1) −Ψczij −Ψuij‖22, ε1
}

s.t. ‖uij‖0 ≤ s1,
(11)

and
min
vij

max
{
‖Rijx

(2) −Φczij −Φvij‖22, ε2
}

s.t. ‖vij‖0 ≤ s2.
(12)

Here εc, ε1 and ε2 denote the error thresholds which are used
together with sc, s1 and s2 in OMP as the stopping criteria.

The above formulations imply that once the objective value
for the (i, j)-th patch decreases below the expected error
threshold, OMP stops early. In addition, as the quality of
the reconstructed target image improves as the outer iterations
proceed, we decrease the thresholds εc, ε1 and ε2 linearly at
each outer iteration. In practice, this strategy accelerates the
algorithm, and also allows to dynamically control the sparsity
of each patch more effectively.

Given the sparse representations zij , uij and vij , we obtain
each denoised patch as x̂

(1)
ij = Ψczij + Ψuij and x̂

(2)
ij =

Φczij+Φvij , where Ψc, Ψ, Φc and Φ are dictionaries learned
in Stage 1).

2Compared to updating full dictionaries at once using least square, these
sequential updates reduce the computational complexity from O(K2N) to
O(nKN), as well as reduce the memory requirements. However, they cannot
be parallelized.

Stage 3) Enforcing k-space Consistency. Finally, in this
stage, we enforce consistency between the denoised image and
its measurements in the k-space domain. Taking contrast x(1)

as an example, we solve a least squares problem:

min
x(1)

∑
ij

∥∥∥Rijx
(1) − x̂

(1)
ij

∥∥∥2

2
+ ν1

∥∥Fu1x
(1) − y(1)

∥∥2

2 , (13)

where, x̂
(1)
ij is a denoised patch obtained from Stage 2.

As in [2], we assume that patches wrap around at image
boundaries (which implies that the number of overlapping
patches occurring at each pixel is equal). Then, for sampling
schemes on a uniform grid of the k-space, such as Gaussian
random 2D sampling and Cartesian 1D sampling, we obtain
the solution as follows:

x̃(1) = FH ỹ(1) , (14)
where FH denotes the conjugate of the Fourier transform
matrix F, and ỹ(1) ∈ CN denotes the updated k-space, where
the elements are given by:

ỹ
(1)

[p] =


(
Fx̂(1)

)
[p]
, [p] /∈ Ω(1)

1

1 + ν̃1

(
Fx̂(1) + ν̃1FFH

u1y
(1)
)
[p]
, [p] ∈ Ω(1)

. (15)

Here, ν̃1 = ν1/β, x̂(1) = 1
β

∑
ij RH

ij x̂
(1)
ij ∈ CN is the

denoised image, β is the number of overlapping patches at
the corresponding pixel location in x(1), Ω(1) ∈ Rm1 denotes
the subset of k-space that has been sampled, and [p] denotes
the location in the vectorized k-space. Specifically, if location
[p] is not sampled, i.e. [p] /∈ Ω(1), we use the Fourier transform
results of the denoised image x̂(1) to interpolate this location.
Otherwise, if location [p] is sampled, i.e. [p] ∈ Ω(1), we
consider both the Fourier transform results of the denoised
image x̂(1) and original samples, and use their weighted
sum to interpolate this location. Equation (15) is a kind of
reformulation of Equation (9) in [2], and more details on the
derivation and analysis can be found in Appendix A, as well
as referring [2].

For sampling schemes on a non-uniform grid of the k-
space, such as radial sampling, we propose to perform data
consistency via a gradient step. Specifically, we compute the
difference between the forward NUFFT of the denoised image
x̂(1) and the groundtruth k-space samples y(1). Then, the
difference in k-space is transformed to the image domain via
inverse NUFFT to update the estimation by a gradient descent
operation with step size η, as

x̃(1) = x̂(1) − ηFHu1(Fu1x̂
(1) − y(1)) . (16)

For joint reconstruction, we repeat the above procedures to
estimate x(2). The overall process consisting of the three stages
is repeated over a number of outer iterations, as summarized
in Algorithm 1.

C. Algorithm Complexity and Convergence Behaviour

The computing cost of dictionary learning is mainly dom-
inated by sparse coding using OMP. Therefore, the complex-
ity of the proposed CDLMRI algorithm is O(δnK(2sc +
s1+s2)LNT ), where O(2δnKscLNT ), O(δnKs1LNT ) and



7

Algorithm 2 Coupled Dictionary Learning algorithm

Input: A subset of estimated image patch pairs: X(1) =

{x(1)
ij }, X(2) = {x(2)

ij }; Sparse constraints: sc, s1, s2;
Number of iterations: L; Number of dictionary atoms: K.

Output: Coupled dictionaries: Ψc,Φc,Ψ,Φ.
Initialization: Initialize each dictionary with randomly se-

lected K patches of the corresponding contrast. Initialize
all sparse representations with zeros.

Optimization:
1: for l = 1, · · · , L do
2: a) Sparse Coding step. Apply OMP to estimate Z =

[· · · , zij , · · · ] given data X(1), X(2) and dictionaries
Ψc, Φc.

3: Initialize the active set Γ = ∅ and zij ← 0.
4: while |Γ| < sc do
5: select a new coordinate k̂ that leads to the smallest

residual and then update the active set and the solu-
tion zij :

(k̂, α̂) ∈ arg min
k∈Γc,α∈C|Γ|+1

∥∥∥∥∥
[
x

(1)
ij

x
(2)
ij

]
−
[
Ψc

Φc

]
Γ∪{k}

α

∥∥∥∥∥
2

2

;

Γ← Γ ∪ {k̂}; zijΓ ← α̂; zijΓc ← 0;

6: end while
7: Steps 3 - 6 are repeated to estimate U = [· · · ,uij , · · · ]

and V = [· · · ,vij , · · · ] given X(1) −ΨcZ = ΨU and

X(2) − ΦcZ = ΦV, with sparsity constraints s1 and
s2, respectively.

8: b) Dictionary Update step. This step updates the
dictionaries for fixed sparse codes.

9: for k = 1, · · · ,K do
10: Update the k-th column of Ψc and Φc as follows:

dk ←
([

X(1) −ΨU

X(2) −ΦV

]
−
[
Ψc

Φc

]
Z +

[
ψck

φck

]
zk

)
zkH

[
ψck

φck

]
← dk

max(‖dk‖2, zkzkH )

where zk denotes the k-th row of Z.
11: end for
12: for k = 1, · · · ,K do
13: Update the k-th column of Ψ and Φ as follows:

ψk ←
(
X(1) −ΨcZ−ΨU +ψkuk)ukH

φk ←
(
X(2) −ΦcZ−ΦV + φkvk)vkH

φk ←
φk

max(‖φk‖2,ukukH )
;ψk ←

ψk

max(‖ψk‖2,vkvkH )

where uk and vk denote the k-th row of U and V,
respectively.

14: end for
15: end for
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Figure 3: Convergence behaviour with respect to different dictionary initialization methods. (a) The cost function decreases
monotonically along with the outer iterations. Such convergence behaviour applies to different dictionary initialization methods.
(b) Zoom-in convergence curve for last few iterations. (c) The mean value and standard deviation (s.d.) for multiple repetitions.

O(δnKs2LNT ) are the complexities of performing sparse
coding with coupled dictionary pairs and two distinct dictio-
naries, respectively, with L the number of training iterations,
δN the fraction δ of all N patches used for dictionary
learning, and T the number of entire outer iterations. Thus,
our complexity is on the same order as that of DLMRI,
O(δnKsLNT ).

The proposed algorithm alternates between coupled dictio-
nary learning, coupled sparse coding and enforcing k-space
consistency. Assume that each step is performed successfully
to decrease the total representation error, alternatively execut-
ing a series of such stages leads to a monotonic decrease in
the nonnegative cost function. Furthermore, if one uses entire

patches and provides a sufficient number of inner iterations for
dictionary update (Ψc, Ψ, Φc, Φ), sparse representation up-
date (zij , uij , vij), and image update (x(1), x(2)) to guarantee
sufficient decrease in costs, alternating optimization usually
leads to convergence to local minima. Note that, the above
claim depends on the success of coupled sparse coding which
is more likely to be satisfied in circumstances of small sparsity.
Otherwise, the convergence of coupled dictionary learning
to a local minimum is not always guaranteed. When there
is measurement noise during k-space sampling, the proposed
method requires proper parameter tuning to balance between
the denoised image and original k-space samples during the
stage of enforcing k-space consistency, in order to guarantee
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Coupled Dict
cΨ Ψ

Φ

Distinct Dict

Distinct Dict
cΦCoupled Dict

Figure 4: Learned coupled dictionaries from T1- and T2-weighted
MRI contrasts; 256 atoms are shown. The top row displays the
coupled and distinct dictionaries for the T1-weighted contrast. The
bottom row displays dictionaries learned from corresponding T2-
weighted contrast. It can be seen that the atom pairs from coupled
dictionaries Ψc,Φc capture associated edges, blobs and textures with
the same direction and location, while Ψ,Φ represent the disparities.

that the updated estimation is always improved. More rigorous
convergence analysis for such alternating methods remains to
be investigated further.

Although theoretical convergence is not guaranteed, the
convergence behaviour has been validated empirically on
extensive experiments. In particular, we carried out a set
of experiments to investigate the convergence behaviour of
the proposed CDLMRI algorithm with respect to different
dictionary initialization methods, such as Gaussian matrix,
DCT matrix, PCA of image patches, and globally trained
dictionaries. As shown in Fig. 3 (a) and (b), it is observed
that various dictionary initialization methods can provide
convergence. Using globally trained dictionaries which are
learned on a set of synthetic MRI images from BrainWeb
give slightly better convergence than the other 3 initialization
methods. We also conducted multiple repetitions (200 times)
of the experiments and computed the mean value and the
standard deviation (s.d.) of RMSE, depicted by the curve and
the error bar in Fig. 3 (c). It shows that the relative error (i.e.
ratio of the mean value over the s.d.) is as small as 0.39%.

IV. EXPERIMENTS

We carried out a series of experiments to evaluate the
performance of the proposed algorithm on guided and joint
reconstruction. We examined a variety of MRI contrasts,
under-sampling patterns and factors, with and without noise.
Sampling schemes used in the experiments include 2D random
sampling [10], Cartesian sampling with random phase encodes
(1D random), and radial sampling with golden angle. The
radial sampling with golden angle is implemented using the
NUFFT package of Fessler et al. [39]. Similar to previous
approaches [2], [8]–[10], [19], [21], complex-valued k-space
data was acquired by retrospectively under-sampling the 2D
discrete Fourier transform of magnitude MRIs. The MRI
dataset includes both realistically simulated MR scans from
BrainWeb3 and real clinical MR scans used in [19], [21].

3http://brainweb.bic.mni.mcgill.ca/brainweb/

(a) Groundtruth T1 (left), Mask (middle), Guidance T2 (right)

DLMRI
PSNR = 33.4 dB

STVMRI
PSNR = 33.7 dB

CDLMRI
PSNR = 36.1 dB

(b) Reconstruction and error map of 3 algorithms

Figure 5: Guided reconstruction for T1, with fully-sampled T2
as reference with 4 fold Cartesian 1D random under-sampling. (a)
groundtruth T1-weighted contrast, sampling mask and guidance T2-
weighted contrast. (b) reconstructed images and the correspond-
ing residual error for single-contrast MRI reconstruction approach
DLMRI [2], guided approach STVMRI [21], and the proposed
CDLMRI. It can be seen that the proposed approach reliably recon-
structs fine details and substantially suppresses aliasing, noise and
artifacts, leading to the smallest residual error.

We compared our method against several representative al-
gorithms, including DLMRI [2], STVMRI [21], RefMRI [19],
and FJGP [24]. The implementation codes of these algorithms
are available at the authors’ websites. We use the built-in
parameter settings in those implementations, which were tuned
for the dataset we test all the algorithms on. We quantitatively
assess image quality using two commonly used evaluation
metrics, the Root Mean Squared Error (RMSE) between the
original image and the reconstructed image, and the Peak Sig-
nal to Noise Ratio (PSNR), defined as PSNR = 20 log10

PeakVal
RMSE

where PeakVal stands for the pixel peak value. The experi-
ments were conducted using MATLAB R2016b in a computer
equipped with an Intel double-core i7-6500U CPU at 2.59GHz
with 12GB of memory, and 64-bit Windows 10 operating
system.

In the experiments, the nominal values of the various
parameters were set as image size

√
N ×

√
N = 256 × 256,

patch size
√
n×
√
n = 8×8, number of atoms in a dictionary

K = 512, number of inner iterations L = 50, number of outer
iterations T = 50, sparsity constraints sc = ceil(0.16n), s1 =
s2 = ceil(0.2 sc), error thresholds εc = 0.1 ↓ 0.005 (meaning:
εc is set to 0.1 in the beginning and linearly decreases to 0.005
along the outer iterations.), ε1 = ε2 = 0.9 εc, ν1 = ν2 → ∞
(for noise-free situation) or ν1 = λ/σ1, ν2 = λ/σ2 (for the
noise scenarios, where σ1 and σ2, assumed to be known,
are the standard deviations of the measurement noise, and
λ = 140), and gradient step η = 1.2.

We first present the coupled dictionary learning results
in Section IV-A to show that our algorithm is capable of
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capturing structure similarities and disparities between differ-
ent MRI contrasts. Then, we present the results for guided
reconstruction in Section IV-B where one has access to a
fully sampled contrast to aid the reconstruction of the target
contrast. Next, we repeat the experiments in Section IV-C for
joint reconstruction where different MRI contrasts are under-
sampled and then reconstructed simultaneously. Appendix
B includes additional experiments and an analysis of the
performance sensitivity with respect to key parameters, such
as acceleration factors, dictionary size, noise levels, etc.

A. Coupled Dictionary Learning

T1-weighted and T2-weighted MRI scans are two types of
commonly used multi-contrast data. In general, T1-weighted
MRI images highlight fat tissue, such as subcutaneous fat
(SC fat) and bone marrow, and suppress water-based tissue,
such as Cerebrospinal fluid (CSF). In contrast, T2-weighted
MRI images highlight both fat tissue and water-based tissue.
Therefore, T1-weighted and T2-weighted MRIs exhibit gen-
eral reverse brightness in fat tissue and similar brightness in
water-based tissue.

Fig. 4 shows the learned coupled dictionaries from T1-
and T2- weighted MRI images. It shows that the atom pairs
from coupled dictionaries Ψc,Φc capture associated edges,
blobs and textures with the same direction and location. Most
of them exhibit considerable resemblance to each other, but
with opposite intensity. This phenomenon is consistent with
MRI characteristics determined by magnetization properties of
tissue, such as CSF being dark in T1-weighted contrast and
bright in T2-weighted. This outcome indicates that the cou-
pled dictionaries are able to capture the similarities between
T1-weighted and T2-weighted contrasts. In comparison, the
learned distinct dictionaries Ψ,Φ represent the disparities of
these modalities, and such disparities can be observed in the
highlighted atoms in the figure. The training results illustrate
that the learned dictionaries are adaptive to the data modalities.
Moreover, they are capable of capturing the complicated
mapping between T1/T2-weighted multi-contrast MRIs, thus
better characterizing the inherent dependency relationship than
predefined bases. Such adaptive dictionaries can be employed
to effectively reduce aliasing, noise and other artifacts, as
demonstrated in the following subsections.

B. Guided Reconstruction

We first consider the scenario in which one contrast is under-
sampled to serve as the target contrast to be reconstructed,
while another one is fully-sampled as the guidance contrast to
aid reconstruction.

1) Guided Reconstruction for T1, with T2 as reference:
In this experiment, we reconstruct a T1-weighted MRI from
its under-sampled k-space measurements, with the aid of a
T2-weighted fully-sampled MRI. This replicates the scenario
in [21]. We compare our CDLMRI with SVTMRI [21] which
uses a structure-guided total variation to transfer structural
information across the different contrasts. We also compare the
proposed approach with DLMRI [2] to illustrate the benefits of
integrating a reference contrast in the reconstruction process.

(a) Groundtruth FLAIR (left), Mask (middle), Guidance T2 (right)

RefMRI
PSNR = 30.7 dB

FJGP
PSNR = 32.1 dB

CDLMRI
PSNR = 34.6 dB

(b) Reconstruction and error map of 3 algorithms

Figure 6: Guided reconstruction for FLAIR, with fully-
sampled T2 as reference with 6.67 fold radial under-sampling,
using RefMRI [19], FJGP [24], and the proposed CDLMRI.

Fig. 5 shows reconstruction results for the scenario where
a variable density Cartesian mask is employed for four fold
under-sampling (i.e. 25% k-space data) on the target T1-
weighted contrast, with a fully sampled T2-weighted MRI
for guidance contrast. It can be seen that the reconstructed
target contrast and its corresponding residual from DLMRI [2]
exhibit undesirable aliasing, noise and blurred areas. In com-
parison, the edges, outlines and textures in the reconstructed
image from STVMRI [21] are sharper, thereby more visu-
ally appealing in high-frequency regions. However, it is also
noticed that these high-frequency regions tend to be over-
sharpened, thus introducing noticeable artifacts. In contrast,
the proposed CDMRI approach substantially attenuates alias-
ing and noise. At the same time, CDLMRI reliably restores
fine details without introducing noticeable artifacts, leading to
a more comprehensive and interpretable reconstruction. The
performance improvement is also demonstrated by the PSNR
values with 2.7 dB and 2.4 dB improvement over DLMRI [2]
and STVMRI [21], respectively.

2) Guided Reconstruction for FLAIR, with T2 as reference:
In this experiment, the task is to reconstruct a fluid-attenuated
inversion recovery (FLAIR) contrast, from under-sampled
measurements, by capitalizing on the similarity with a fully-
sampled T2-weighted contrast. The data was collected by the
authors of [19] and made available on the author’s website. We
sampled 15% (i.e. 6.67 fold under-sampling) of the FLAIR k-
space with radial sampling. As mentioned before, the radial
sampling pattern with golden angle is implemented using
NUFFT package of Fessler et al. [39], which is more practical
than the radial sampling pattern used in STVMRI [21]. As
STVMRI [21] and DLMRI [2] cannot apply practical radial
sampling directly, the two methods are not included in our
comparisons. We compare CDLMRI with RefMRI [19] and
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Groundtruth T1 Groundtruth T1 Zoom-in Sampling mask

FJGP
PSNR = 36.1 dB

DLMRI
PSNR = 37.8 dB

CDLMRI
PSNR = 41.1 dB

(a) reconstruction for T1-weighted contrast

Groundtruth T2 Groundtruth T2 Zoom-in Sampling mask B

FJGP
PSNR = 30.8 dB

DLMRI
PSNR = 31.2 dB

CDLMRI
PSNR = 33.4 dB

(b) reconstruction for T2-weighted contrast

Figure 7: Joint reconstruction for both T1- and T2-weighted
MRIs with 5 fold 2D random under-sampling using FJGP [24],
DLMRI [2] and proposed CDLMRI.

FJGP [24] which use the same guidance contrast and sampling
pattern as ours for reconstructing FLAIR.

Fig. 6 shows the groundtruth FLAIR contrast and fully sam-
pled T2-weighted version, as well as the reconstructed images
and corresponding residual error maps from RefMRI [19],
FJGP [24] and CDLMRI. It can be clearly seen that FLAIR
reconstruction using CDLMRI is clearer, sharper and more
interpretable than the reconstruction by the two other methods.
In particular, the gyrus and sulcus, shown in the zoom-in
region, appear less obscured than those in RefMRI [19],
FJGP [24], indicating the advantage of CDLMRI in restoring
fine features and suppressing noise. The residual error maps,
shown on the same scale, indicate that CDLMRI leads to the
smallest reconstruction error. The performance improvement

Groundtruth FLAIR /
Radial sampling mask

FJGP
PSNR = 31.3 dB

CDLMRI
PSNR = 34.2 dB

(a) reconstruction for FLAIR contrast

Groundtruth T2 /
Radial sampling mask

FJGP
PSNR = 31.1 dB

CDLMRI
PSNR = 33.0 dB

(b) reconstruction for T2-weighted contrast

Figure 8: Joint reconstruction for both FLAIR and T2-
weighted MRIs with 6.67 fold radial under-sampling using
FJGP [24] and the proposed CDLMRI. (a) groundtruth and
reconstruction for FLAIR contrast. (b) groundtruth and recon-
struction for T2 weighted contrast.

is also demonstrated by the impressive PSNR gains with 3.9
dB and 2.5 dB improvement over RefMRI [19] and FJGP [24],
respectively, for 15% (i.e. 6.67 fold) under-sampling. This
advantage also holds for other under-sampling folds, such as
2 fold leading to PSNR gains of 4.4 dB and 4.2 dB better
than RefMRI [19] and FJGP [24], respectively, as shown in
Appendix B.

C. Joint Reconstruction

We now explore the scenario in which both contrasts are
under-sampled in their k-space and we reconstruct them jointly
using the proposed CDLMRI. We compare with FJGP [24]
which also performs joint reconstruction in the current sit-
uation, and also with DLMRI [2] which performs separate
reconstruction for both contrasts from their k-space samples.
The experimental setting is similar to the one in Section IV-B.

1) Joint Reconstruction for T1- and T2-weighted: In this
experiment, both T1- and T2-weighted contrasts are under-
sampled using two different 2D random sampling masks with
the same sampling ratio. Then, we jointly reconstruct both
contrasts from their k-space samples. The visual performance,
shown in Fig. 7, demonstrates that the images reconstructed
by DLMRI [2] and FJGP [24] exhibit noticeable blurred or
over-smoothed regions, whereas the reconstructed contrasts
by CDLMRI are sharper and visually more appealing. The
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performance improvement is also demonstrated by the PSNR
gains.

2) Joint Reconstruction for FLAIR and T2-weighted: In
this experiment, both FLAIR and T2-weighted contrasts are
under-sampled using the same radial sampling, and are then
jointly reconstructed. Fig. 8 shows the visual performance,
where it can be seen that the proposed CDLMRI outperforms
FJGP [24] in terms of both visual and quantitative metrics. The
zoomed gyrus and sulcus regions in our reconstruction appear
clearer and less obscure than in FJGP [24]. In addition, the
residual error maps, shown on the same scale, also indicate
that CDLMRI leads to the smallest reconstruction error.

To summarize, the advantage of CDLMRI is the ability
of learning adaptive coupled dictionaries that are capable
of effectively capturing salient features and critical correla-
tions between the target and the guidance MRI contrasts in
their sparse transform domains. By employing learned priors,
CDLMRI effectively reduces streaking artifacts for Cartesian
1D random sampling, spiny artifacts for radial sampling, and
incoherent aliasing for 2D random sampling compared to
competing methods.

V. DISCUSSION

We also compare CDLMRI with other state-of-the-art meth-
ods (please refer to Appendix B Section D and E for detailed
results). Further, we show in Appendix B Section F that the
proposed method can also be applied to Magnetic Resonance
Fingerprinting (MRF) and achieves decent performance in this
quantitative MR imaging task that acquires tissue’s quantitative
parameters (e.g. longitudinal relaxation time [T1] and trans-
verse relaxation time [T2]) simultaneously.

We point out that the computation time of our method
is higher compared to CSMRI approaches. However, this
can be improved with parallel computing for sparse coding
operations. Our experiments were performed with retrospec-
tive under-sampling of inverse-Fourier transformed magnitude
images, rather than under-sampling raw complex MRI data.
While this does not reflect the real MRI acquisition scenario
perfectly, retrospective under-sampling is standard practice
adopted by all methods to allow a fair comparison between
them.

The proposed data model may have other variants for taking
advantage of the common information among multi-contrast
images. One of them is based on an assumption that they share
a common dictionary instead of common sparse representa-
tions. Our analysis shows that this reduces to a model similar
to classic dictionary learning, and the contribution from the
different modalities is loosely coupled during the dictionary
learning. More detailed analysis can be found in Appendix C.
Section A.

Our approach works with image patches during coupled
dictionary learning and image reconstruction. A large image
may result in a large number of patches and consume a
considerable amount of memory. In order to alleviate the
memory burden, we rely on a few tricks, such as randomly
producing a fraction of patches and removing patches with
small variance during coupled dictionary learning, producing

a moderate number of patches every time for reconstruction.
More detailed description can be found in Appendix C. Section
C.

The proposed data model for CDLMRI admits a resem-
blance to that in CDLSR [38] to some extent, as they both
exploit the assumption that different data modalities may share
common components represented by identical sparse codes.
However, we highlight that there exists a variety of differences
between our CDLMRI approach and CDLSR not only in the
data model, but also including the task, goal, training strategy,
and optimization method. More detailed description can be
found in Appendix C. Section D.

Since the data in the experiments is from rasterized images,
there might exist inverse crime [42] which may lead to
artificially good results due to the neglect of the aliasing that
is inherent to spatial discretization. This issue influences both
our approach and competing approaches. More discussion can
be found in Appendix C. Section E.

We used the same setting as in other literature and did not
consider the possible effect of nonlinear effects. To reduce the
distortion due to the nonlinear effects in practice, one may
apply some strategies [43]–[46], for example, using higher
performance hardware, parallel imaging, etc. (See Appendix
C. Section F for details).

We also discussed possibilities and limitations of extending
our method to multi-coil multi-contrast MR imaging and phase
image reconstruction in Appendix C Section G and H.

VI. CONCLUSION

We proposed a coupled dictionary learning based multi-
contrast MRI reconstruction framework that capitalizes on not
only patch-based sparsity, but also structure similarity across
different MRI contrasts. The proposed framework enables
the learned adaptive coupled dictionaries to capture both the
similarities and disparities between different contrasts, and
exploits such beneficial dependency information to improve
reconstruction performance. Practical experiments on a variety
of MRI contrasts, sampling schemes and under-sampling fac-
tors demonstrate the superior performance of our design with
respect to competing methods. In future work, we may con-
sider extending the proposed framework to other multi-modal
image restoration, such as joint positron emission tomography
(PET) and computed tomography (CT) reconstruction, as well
as parallel multi-contrast MR imaging.
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