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Abstract—LASSO MPC is a popular method for solving optimal
control problems within a receding horizon. It is, however, chal-
lenging to deploy LASSO MPC on resource constrained systems,
such as embedded platforms, due to the intensive memory usage
and computational cost as the horizon length is extended. By
exploiting a reduced precision, approximation technique applied to
Proximal Gradient Descent (PGD), we demonstrate an implemen-
tation on a resource constrained, reconfigurable device, such as a
Field Programmable Gate Array (FPGA). Our experiments show
equivalent performance to a high-precision optimisation solver,
but with significant improvements to both logic cost and memory
bandwidth, up to 60% and 80% reduction respectively, with up
to 70% power savings.

Index Terms—MPC, LASSO, Proximal Gradient Descent, Ap-
proximate Computing, FPGA

I. INTRODUCTION

Model Predictive Control (MPC) is a popular technique
to solve optimal control problems in discrete time. Its ro-
bustness, stability, and theoretical guarantees have made it
widely adopted by industry [1]. Given a dynamic model of
a system and an estimate of its current state, MPC computes
the next states and necessary control inputs by minimizing a
cost function that balances the achievement of a desired state in
a predefined time-horizon with the energy required. As energy
is often expressed in a quadratic form, MPC typically entails
the application of (nonzero) input signals to the system at all
time steps.

To reduce the number of times that inputs are applied, the
work in [2] proposed LASSO MPC which, inspired by results on
sparsity, regularizes the energy term with an ¢;-norm penalty.
This leads to sparse input signals. Despite many desirable
features, (LASSO) MPC requires an iterative procedure to solve
an optimization problem at each time step. This not only makes
execution in real-time challenging (as the number of required
iterations is unknown a priori), but also demands significant
memory and computation, which can be limiting on resource-
constrained systems, such as embedded hardware.

In such systems, one often has to trade-off accuracy for
power savings by using approximate computing (AC) tech-
niques [3]. One example is reduced precision (RP), in which
data is represented with fewer bits than desired throughout the
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entire computational stack. As arbitrary precision arithmetic is
not supported in many modern processors, a flexible hardware
architecture enabling RP, such as reconfigurable platform using
an FPGA, is demanded.

Our goal. We aim to implement an efficient solution to
LASSO MPC and deploy it on an FPGA with the goal of
achieving real-time performance [4]. Our optimization algo-
rithm of choice is proximal gradient descent (PGD) [5]. This
is sufficiently tractable to allow us to analyze the effects
of different RP strategies on accuracy, logic and memory
resources, and power consumption.

Contributions. We summarize our contributions as follows:

« We apply PGD to LASSO MPC which, to the best of
our knowledge, has never been done, and analyze its
performance. The application of accelerated versions of
PGD [5] should be immediate.

« We introduce an Approximate Core (AC) synthesis infras-
tructure.

« Using our infrastructure, we then conduct a detailed study
of the effects of the AC strategy on our algorithm.

II. BACKGROUND

We briefly explain MPC, LASSO MPC, and then review
different number representations and their use in RP computing.

State-space models. We consider state-space representations
of linear time-invariant (LTI) discrete systems. At each time, ¢,
such systems are completely described by a state vector z[t] €
R™, which is known to evolve as

z[t + 1] = Az[t] + Bult] t=0,1,..., (1)

where A € R™*™ and B € R™*™ are given matrices (assumed
known), and u[t] € R™ is the set of inputs at time ¢.

Model predictive control (MPC). Given a finite time-
horizon T' € N, a desired final state ; € R™, and an estimate
of the current state zp € R"™, MPC attempts to compute a
minimal energy state-trajectory such that the final state x[T
is as close as possible to the desired one, x;. This can be
formulated as an optimization problem:

win F(e{T) + S (el o) @
z[t+ 1] = Az[t] + Buft], t=0,...,T—1
z[0] = zo,



where (7,7) := ({z[t]}]o, {u[t]}o5") € RMTHD x R™T s
the optimization variable, F' : R™ — R a function that penalizes
deviations of the final state x[7T"] from the desired one, and
£ :R™ x R™ — R a function that measures “energy” at each
time instant. Notice that the first set of constraints is exactly (1),
and the second set reflects the current state.

The functions F' and ¢ are often quadratic forms. An example
assuming x5 = 0 would be

F(z) =z Px
l(z,u) =2 Qr+u' Ru,

(3a)
(3b)
where P, R > 0 are positive definite matrices and Q@ > 0 is

positive semidefinite. With this choice, the variable T in (2) can
be eliminated. To see why, first write (1) as [6, Ch. 8]

x[0] I, 0 0 u[0]
x[1] A B 0 ull]
. = Tg + . )
: : AB 0 :
z[T] AT AT-1p Bl [u]T —1]
——
=T =A =B =u

“4)

where I, is the identity matrix in R™. Placing the resulting
equation into the cost of (2) and manipulating, we obtain

minimize %ET (B QB+R)yu+ (B QAz)w, ()

where R := It ® R, and @ is the diagonal concatenation of
I ®@Q and P (® denotes the Kronecker product). Problem (5)
is unconstrained quadratic, and thus has a closed-form solution.
In MPC [6], whenever (5) is solved, only the first input u[0] is
applied to the system, the resulting state is measured, and (5)
is solved again using z( as the current state.

LASSO MPC. Although (5) has a closed-form solution,
it typically yields dense (i.e., non-sparse) inputs, which can
lead to over-actuated systems. To encourage sparse inputs, [2]
proposed LASSO MPC which adds an ¢;-norm penalty A||z||1,
with A > 0, to (5) [or, equivalently, Aljul|; to (3b)]. Noticing
that the objective of (5) can be written as 3 || Hu—y||3— 1|y[|3,
with H:= (B QB+ R)Y? and y := —H B Q Axo, the
resulting problem is

(6)

which has format of LASSO [7]. However, the matrix H in (6)
is square. So, instead of regularizing the problem as in classical
LASSO, the ¢1-norm term enforces sparse inputs at the cost of
possibly not reaching (or delaying) the desired state. Notice
also that because we eliminated the state variable T from (2)
to (5), the system dynamics are always (implicitly) satisfied.

Reduced precision (RP). Some platforms require repre-
senting arithmetic numbers with short binary codes, thereby
reducing their accuracy. There are three main categories of rep-
resentation: floating point [8], Q fixed point [9], and universal
numbers (Unum) [10].

1
minimize §||HH —yll%+ M@l ,
u
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The IEEE 754 floating point arithmetic standard [11] rep-
resents a number by using three elements: a sign (1 bit), an
exponent (n bits), and a mantissa (m bits). That is,

)

sign x mantissa x 29PO""

The Q fixed point format uses instead a fixed number of bits
to represent the integer and the fractional parts of a number.
Specifically, a number is represented by its sign (1 bit), its
integer part (¢ bits), and its fractional part (k bits):

sign x (2imeger + 2—fraclion) (8)
Unum arose as an alternative to IEEE 754, and there are
several versions. For example, Type III Unum, Posit, represents
numbers by their sign (1 bits), regime (g bits), exponent (p bits),
and fractional part (c bits):
fraction
)

Each of these representations has a different dynamic range.
And different dynamic ranges affect not only the performance
of the algorithm by limiting the type of operations that can be
performed, but also their embedded implementation.

sign % (22P )regime % Qexponem % (1 +

©)

III. ALGORITHM AND IMPLEMENTATION

We now explain the algorithm we use to solve LASSO MPC
and its implementation on resource-constrained systems.

A. Proximal Gradient Descent

We consider the LASSO problem in (6) and apply the
proximal gradient descent (PGD) algorithm with fixed step
size [12]. PGD solves problems of the form

minimize f(@):= g(u) + h(T), (10)
u

where g : R? — R is convex, differentiable, and its gradient
is Lipschitz-continuous, i.e., there exists L > 0 such that
Vg(@) — Vg(v)|l2 < L||w — vl||2, for all @, v. The function
h:R? — RU {400} is assumed convex and closed. Given a
stepsize o < 1/L and an initial point #°, PGD solves (10) by
iterating (on k)

ﬂk+1

Y

where the proximal operator of a convex, closed function ¢ at
a point u is defined as

= prox,, (ﬂk — an(ﬂk)) ,

. 1 _
prox () := arg min o(v) + §||v — 3. (12)

It is well known that the iterates produced by PGD satisfy [12]
—k oy oL|@’ — a3
_ < = - N2

fat) - ) < R

where w* is a solution of (10), i.e., PGD converges sublinearly.

Application to LASSO MPC. As problem (6) has the format
of (10) with g(u) (1/2)||[Hu — y||% and h(u) = M[ul,

(13)



the application of PGD is immediate and yields the soft-
thresholding algorithm. Specifically, (11) becomes

=S, (ﬂ’“ —oH" (HT" - y))
= S\((ty—aHTH)T +aHTy)),  (4)

where the soft-thresholding operator S (@) applies to compo-
nent ¢, for ¢ = 1,..., ¢, the following nonlinearity:

Ui — A, Wy > A
{Sx(ﬂ)} =<0 L A<T <A (15)
‘ A, u < —A.

Parameters and precomputations. PGD (11) and the asso-
ciated convergence result in (13) apply whenever the stepsize
«a satisfies o < 1/L, where L is a Lipschitz constant of Vg. To
compute it, we can estimate the maximum eigenvalue of H TH,
Amax(H " H), e.g. by Lanczos’s method, or use the structure
of H and the matrices that define it:

Lemma 1. Let H (ETQE + R)Y/?, where B, Q, R
are defined in (4)-(5). Also, partition B vertically into B, €
R*T>xmT \which contains the first nT rows of B, and into
By € R™*™T ywhich contains the last n rows of B. Then,

)\max(HTH) S )\max(Q))\max (Elgz—)
+ )\max(P))\max (EQEJ) + )\max(R) .

The proof uses the subadditivity of Apax(), and the prop-
erties of the Kronecker product; it is omitted for brevity. The
matrices P, ), and R encode the objective of MPC [cf. (3)],
and the matrices B; and B, encode the system dynamics
through their dependency on A and B [cf. (1)]. Although
the matrices B; and B, have a lot of structure, namely B,
is block Toeplitz and B, is the controlability matrix with
permuted columns, it is not immediate to obtain a bound on
Amax (Elgf) and Apax (EQFQT) as a function of A and B.
These quantities can be accurately estimated via Lanczos’s
method.

Once « is set to the inverse of right-hand side of (16), the
matrix I, — aHT H and the vector H'y = §T§Z$Q in (14)
can be precomputed before the iterations of the algorithm. We
stop the algorithm whenever a maximum number of iterations
Emax is reached or when |f(@**1) — f(@")| < e, for some
defined e.

(16)

B. Approximate Core Synthesis

re (e Simulation Synthesis
Mex High-Level
Approximate Compilation Synthesis
Linear -
Algebra Approximation VHDL Core
Library Evaluation Generation

Fig. 1: Approximate kernel synthesis.

We now describe a proof-of-concept infrastructure that gen-
erates an approximate optimizer for (5) on a reconfigurable
device. Fig. 1 shows the workflow of this infrastructure. The

78

Back to Contents

optimizer kernel is a user-defined C++ function based on an
approximate linear algebra library, which defines basic algebra
operations such as addition, multiplication, inversion, and de-
composition, for matrices and vectors. We have developed that
algebraic library for arbitrary precision representations.

We solved LASSO MPC using different precisions using
an integrated environment with the Matlab MEX APIL. By
compiling the MEX files with the proposed kernel, we can
evaluate the functionality and algorithmic performance of the
algorithm. After checking the correctness of the kernel via
functionality simulation, the kernel is synthesized using high-
level synthesis tools, and the approximate core is generated in
VHDL.

IV. EXPERIMENTS

We now describe experiments using LASSO MPC to control
the attitude of a spacecraft [13] by ACADO [14]. Fig. 2 shows
the state parameters for attitude control using reaction wheels.
The state vector, corresponding to x in (1), is defined by
[roll, pitch, yaw, wy,, w1, ws, ws] in Fig. 2. The control voltages
for the reaction wheels that steer the spacecraft, (1, T2, 73, 7w),
are considered as the components of the input vector, w, in (1).
In our experiments, the dynamic matrices A and B in (1) and
the cost matrices P, ), and R in (3) were set exactly as in [13].

X
Fig. 2: Attitude Control [13]: seven states are considered here,
Roll, Pitch,Y aw, wy, ws, w3, w,,, where Roll, Pitch,Y aw de-
scribe the rotating angles of the body frame relative to the orbit
frame, wy,w2,ws are the corresponding angular velocities, and
w,, is the angular velocity along the spin axis. The wheels are
controlled by the input voltages, 7y, T2, T3, Tw.

Experimental setup. We considered three different time
horizons T 1, 5, and 10. To assess our implementation of
PGD, we compared its solution with the one returned by
CVX [15], and used the sum of the absolute differences,
D = |U11€ap — Uepe|1 for k" iteration, of the control input
vector, [y, T, T3, T,,], as the performance metric. For example,
Dk 10 = [tukoui—10 — Uevs|1 is the solution between
floating point using 10 bits and CVX at the k'" iteration,
where uf, ..o is the solution of (6) using a 10 bit floating
point representation, and u. is the solution returned by CVX.

A. RP Approximation Performance

We implemented the framework described in section III-B
with different number representations, each with its own preci-
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——Float-8, n=3, m=4
Float-10, n=4, m=5

——Float-12, n=5, m=6

~——Float-14, n=5, m=8
Float-16, n=5, m=10

—— FixedPoint-20, t =9, k=10
FixedPoint-24, t =11, k=12
——FixedPoint-28, t =13, k=14
—— FixedPoint-32, t =15, k=16
- - -Float-32

——SPX8,g=2, p=2, c=3
SPX-10, g=2, p=2, c=5

——SPX-12, g=2, p=2 c=7
SPX-14, g=2, p=2,, c=9
SPX-16, g=2, p=2, c=11

- - -Float-32

- - -Float-32

oo0s8 0.34\( oos D%;‘;//‘
RS 954 0.36
06 0a Tty 06 =~ 034 Lo
T 032 B 9.82 ——
7 8 9 10 | e T 10
04 N . | -
S — o { \“"'\---— ===
| P —— | D i e — |
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Iteration Iteration Iteration
(a) FP (b) EXP (c) UP

Fig. 3: Convergence performance of approximate PGD (14) between the baseline 32-bit floating point (FP) and reduced precision
(RP) implementations using (a) Floating Point (FP), (b) Fixed Point (FXP), and (c) Unum Posit (UP).

sion. Fig. 3a shows the baseline, single precision floating point
(32 bits) simulation using CVX as the Lasso MPC solver, com-
pared against our reduced precision implementations described
in paragraphs (a), (b), and (c) below. Due to limited space,
we only consider 7" = 10 here. Similar phenomena happen for
T=1and T =5.

(a) Floating Point (FP): In Fig. 3a RP floating point solu-
tions are presented for PGD from 6-bit to 16-bit. As
shown, performance with 8 to 10 bits is much worse
compared to single precision float. However, from 12
bits the performance is considerable, which is similar
to single precision floating. Hence, 12-bit floating point
approximation is considered as a viable candidate for
approximate FP implementation.

Fixed Point (FXP): In Figure 3b, RP fixed point is pre-
sented for PGD from 20-bit to 32-bit. As shown, proper
convergence does not occur for 20 or 24 bit approxima-
tion, while similar performance is obtained using 32 bits.
Hence, 32-bit fixed point is considered as a candidate for
approximate FXP implementation.

Unum Posit (UP): In Fig. 3c, the RP unum posit is consid-
ered for PGD from 8 to 16 bits. Compared to the single
precision float, similar performance is obtained from 14
bits which makes it the candidate of RP approximate PGD
as well.

(b)

(©)

Fig. 4 shows the comparison of the the control state in an
open-loop simulation with different RP techniques. As shown in
Fig. 4b-4d, compared to the CVX solution using the baseline 32
point FP precision solution of Fig. 4a, the approximate solver
shows very similar control process and performance to CVX
over time. For example, in Fig. 4b, the PGD optimized input
using 12 bits FP exhibits slightly larger variance on than CVX,
while the PGD optimized output for Euler and Angular control
takes about 1.5s to converge rather than about 1.1s with CVX.
However, an approximation with over-reduced precision causes
instability in the spacecraft attitude is shown in Fig. 4e.

B. Cost Evaluation

Choosing the closest MPC performance of each RP approxi-
mation to CVX across the different precisions shown in the last
section, the corresponding costs are evaluated by implementing
the PGD kernel on an Xilinx Ultrascale+ ZCU106 device as
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shown in Table I. The single 32-bit FP precision implemen-
tation is considered again as the baseline against which other
representations are compared. All costs are estimated from high
level synthesis using the Xilinx Vivado design tool 2019.2.

Across different horizon lengths, the approximate fixed point
implementation (FXP-24,28,32) consumes the least logic area,
which is about 30% of the baseline (FP32) in each case.
Accordingly, the power consumption is reduced to 25% when
the horizon length is 1, and <50% when the horizon length
is 5 or 10. As the problem size increases with horizon length,
the number of bits for fixed point arithmetic grows from 24
to 32 to maintain a performance similar to the single precision
implementation. This is due to the fact that the dynamic range
of linear algebra, numeric computations is larger as the size
increases.

The (FP-12, 16,14) implementation does not save as much
logic area as fixed point, but as the horizon length increases, up
to 40% reduction in the use of LUT is achieved. Accordingly,
up to 20% power reduction is introduced, but only within a very
limited time horizon, T' — 1. However, the least number of bits
are adopted compared to fixed point implementations, enabling
significant saving in communication bandwidth to 14.06% of
FP-32.

The approximate unum posit (UP-12,14) is based on high
level synthesis of SoftPosit [16]. It consumes significantly
larger logic area comparing to floating point and fixed point
implementations, although similar savings on communication
bandwidth are made due to the low number of representative
bits.

Hence, if power and area are of most concern on a resource
constrained system, the fixed point (FXP) lean PGD does pro-
vide significant savings compared to the full, single precision,
FP-32 implemnetation. However, if communication is of the
most concern in a resource constrained system, such as a mesh
network with edge devices, the FP floating point variations
show the largest bandwidth savings.

V. CONCLUSIONS

In this work, an approximate proximal gradient descent is
applied to solve Lasso MPC with fixed step size. By adopting
the reduced precision technique, a considerable optimization
performance is achieved compared to high-precision solver
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Fig. 4: LASSO MPC Simulation: [r1, T2, 73, 7] is the control (input) vector in Volt while [roll, pitch, yaw, w,,,w, wa,ws] is
the state (output) vector. roll, pitch, yaw are measured in Degrees and w,, w1, ws,ws are measured in Rad/s. The simulation
shows all input and output states changing over 2s with a 0.1s step interval.

TABLE I: RP Cost Comparison with Different Horizon Length (T)

T=1 T=5 T=10
Precision | FP-32  FP-12  FXP-24 UP-12 | FP-32 FP-16 FXP-2§8 UP-14 | FP-32  FP-14 FXP-32  UP-14
LUT (x10%) | 331 2.99 1.21 194 | 317 216 1.24 109 | 401 242 1.46 10.6
DSP48El | 30 0 11 12 20 6 10 4 20 6 16 4
BRAM | 0 0 0 0 2 2 4 0 5 5 5 8
Clock (MHz) | 482 465 443 393 434 401 403 382 370 384 379 382
T M Inst/sec) | 042 048 0.46 0.41 045 041 0.42 039 | 038 039 0.39 0.39
Power (mW) | 273 199 68 248 219 220 110 152 250 254 113 148
Bandwidth | 100%  14.06% 56.25% 14.06% | 100%  25%  76.56% 19.14% | 100% 19.14%  100%  19.14%
(CVX). An approximate core synthesis infrastructure is devel-  [6] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control For Linear

oped for fast prototyping the computational kernel of proximal
gradient descent on reconfigurable device, FPGA. The results
show up to 60% in logic cost reduction, 80% in memory
bandwidth saving, and 70% in power reduction, which is very
promising for deploying LASSO MPC on resource constrained
system considering computing and communication cost. The
future work includes further exploring the approximation ef-
fects against different MPC applications as well as different
optimization algorithms.
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