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ABSTRACT

We address the problem of reference-based compressed sensing: re-
construct a sparse signal from few linear measurements using as
prior information a reference signal, a signal similar to the signal
we want to reconstruct. Access to reference signals arises in ap-
plications such as medical imaging, e.g., through prior images of
the same patient, and compressive video, where previously recon-
structed frames can be used as reference. Our goal is to use the
reference signal to reduce the number of required measurements for
reconstruction. We achieve this via a reweighted ¢;-¢; minimiza-
tion scheme that updates its weights based on a sample complex-
ity bound. The scheme is simple, intuitive and, as our experiments
show, outperforms prior algorithms, including reweighted ¢; mini-
mization, ¢1-¢1 minimization, and modified CS.

Index Terms— Compressed sensing, reweighted /1 minimiza-
tion, prior information, sample complexity.

1. INTRODUCTION

Compressed Sensing allows acquiring signals at rates much lower
than the Nyquist rate [1-3]. Applying it requires three elements:
a basis in which the signals are sparse, an acquisition matrix with
specific properties, and a nonlinear procedure to reconstruct signals
from their measurements, e.g., £1-norm minimization. After the ini-
tial work [1,2], much research focused on reducing acquisition rates
even further, by leveraging more structured signal information [4-8],
using prior information [9-16], or improving reconstruction algo-
rithms, e.g., via reweighting schemes [17-21].

In this paper, we propose a reweighted scheme for a reconstruc-
tion problem that uses as prior knowledge a reference signal. Specif-
ically, let z* € R™ be a sparse signal of which we have m linear
measurements y = Ax*, where A € R"*" is the measurement
matrix (or its product with a sparsifying basis). Assume we know
a reference signal T € R", close to =* in the ¢1-norm sense, i.e.,
|lz* — Z||1 is assumed small. Using the measurements y and refer-
ence T, * can be reconstructed via weighted {1-£1 minimization:

[do|], +[lwo (@-7), M
Az =y,

minimize
x
subject to

where o denotes the entrywise product between two vectors, and
d,w € R’ have nonnegative entries. Problem (1) generalizes
weighted ¢1-norm minimization [10,22], in which w is the zero vec-
tor, and also £1-¢1 minimization [13,14], where both d and w are the
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vector of ones. Given that d and w are free parameters, they can be
chosen in order to minimize the number of measurements required
for reconstruction. In general, however, their optimal value depends
on z* and is therefore unknown. To address this uncertainty, we
consider a reweighting scheme: starting from arbitrary d* and w',
we create a sequence {z*}£_; such that, fork = 1,..., K,

= arg min Hdkole-&-Hka(ﬁU_f)Hl @
sf:t. Az =y,

where d* and w" are functions of z* 7!, the vector reconstructed at
the previous iteration. If d* and w” are well-chosen, then the number
of measurements to recover z* should decrease as we iterate (2). Our
goal is to devise strategies to compute d* and w" at each iteration.

1.1. Overview and contributions

Our approach consists of two steps:

1) Obtaining a bound on the number of measurements m above
which (1) is guaranteed to reconstruct z*; the bound depends
on x* and is therefore uncomputable.

2) Computing d* and w" at iteration k such that an approxima-
tion of the bound of step 1) is minimized; the approximation
results from replacing the unknown signal z* by its current

best estimate, kL.

Our result establishing the bound in step 1) says that O(,,% log n)
measurements suffice to reconstruct z* via (1), where ¢ and 7
are functions of the weights d and w. We show that if d and w
are chosen properly, ¢/n? can be made arbitrarily small, in which
case the bound, and thus the number of required measurements,
becomes a constant independent of n. This contrasts with known
bounds for other problems, e.g., basis pursuit [7], weighted ¢;
minimization [22], or simple ¢;-¢; minimization [13], which re-
quire O(c log n) measurements with ¢ having the same order of
magnitude as the sparsity of x*. We use the above property in
the design of our reweighting scheme in step 2): at each itera-
tion, w and d are computed so that ¢/n? is minimized. To our
knowledge, this approach to reweighting is the first one to use a
sample complexity bound to update its weights. Although the bound
looks complex [see (5)], the resulting scheme is simple and intu-
itive (see Algorithm 1). Furthermore, our experiments show that it
outperforms prior reweighting schemes, including reweighted ¢;-
minimization [17], and static schemes that use prior information,
such as ¢1-f1 minimization [13] and modified-CS [9].

1.2. Related Work

Reweighting has been applied in least squares problems as far back
as [23,24]. For sparse reconstruction problems, [17] proposed a sim-



ple algorithm known as reweighted ¢1 minimization: each weight d;
is updated at iteration k as ' = 1/(|zF| + €), where ¢ > 0
and z* is a solution of weighted ¢; minimization with weights d*,
i.e., (2) with wf = 0, (the zero vector). That algorithm and vari-
ations were analyzed in [25, 26]. Other reweighting schemes for
sparse reconstruction include [18,27], which solve simpler problems
per iteration, namely least squares problems, and are therefore com-
putationally more efficient. Regarding sparse reconstruction using
prior information, [20, 21] proposed a reweighting algorithm for a
slight variation of problem (1) in the context of MRI reconstruc-
tion. There, the weights are updated as d*™' = 1/(|z¥| + 1) and
wit = 1/(|zF — Z;| + 1), and the resulting scheme is shown to
significantly improve MRI reconstruction.

2. REWEIGHTED /;-¢; MINIMIZATION

2.1. Step 1: Bound on the number of measurements

The number of measurements that (1) requires to reconstruct x* de-
pends on several problem parameters, namely on how the vectors x*,
Z, d, and w interact. To capture those interactions, we define the sets

I={i:a; #0} J={i:a]#7} K={i:di#w}
I+:{i:m2>0} J+:{i:m2>ii} K+:{i:di>wi}

In={i:z; <0} J ={i:zj<zm} K ={i:di <ws}.

In words, I, J, and K are the supports of 2*, * — T, and d — w; the
subscript + (resp. —) restricts these supports to their positive (resp.
negative) components. We represent set intersections as products:
e.g., IJ denotes I N J. Using the above sets, we define [13]

he=|IiJy|+ | 1-J-|  he=|LJ |+|I-Js], 3

which are independent from d and w. As shown in [13], these pa-
rameters measure the quality of Z. In particular, ¢;-¢; minimization,
ie., (1) with d = w = 1,, requires O(hlog n) measurements to
reconstruct z*. To present our result, we need to define three addi-
tional parameters, all of which depend on d and w:

0:=|1J° K|+ |I°JK_| (4a)
2
Ci= Y [disg(al) +wisg(al —7)] + D (di —w)? @b)
i€lJ i€Q
7 := min { 12161211 |lw; —di, ieQnLlJi?CJC d; + wi} ) (4¢c)

where sg(-) denotes the sign of a number, Q := IJ°K{UI°JK_,
Q- =1J°K_UI‘JK,,and Q := Q+ U Q—. The role played
by & in £;-¢; minimization will now be played by the ratio ¢/n” in
weighted £;-¢; minimization. In contrast with A, however, ¢ /7> can
be manipulated because ¢ and 1 depend on d and w.

Theorem 1. Let z* € R"™ be the vector to reconstruct and T € R"
the prior information. Lety = Ax*, where the entries of A € R™*"
are drawn i.i.d. from the Gaussian distribution with zero mean and
variance 1/m. Assume d and w have positive entries, ¢ > 0, n > 0,
and also that there exist two (different) indices i and j such that
0#x; #Tiandz} =7; =0." If

¢ n 7 —
m22n—210g(m)+g(h+h)+0+l, )

I These assumptions can be stated equivalently as I.J # () and I¢J¢ # (,
and specify a minimum quality certificate for the prior information Z. On the
other hand, the assumptions ¢, 7 > 0 are necessary to make (5) well-defined.

Table 1. Sample complexity of alternative reconstruction schemes.

Prob. Objective Function Bound Ref.
wlr-ty doaly +lwo (@ -1 O(25logn)  here
01y el + llz -z O(2hlog n) [13]
Mod-CS 3, 7. |il o2& 108 n) 1221
BP 1R O(2slog n) (71

then, with probability at least 1 — exp (— 3 (m — /m)?), «* is the
unique solution of (1).

This theorem, whose proof® uses the concept of Gaussian
width [7,28,29], generalizes Theorem 1 in [13], which established a
similar bound for the particular case d = w = 1.

We mentioned before that ¢/n* can be made arbitrarily small.?
To see why, suppose d and w were selected so that Q@+ = (). Then,
according to (4b)-(4c), the set over which ( is defined, /.J, does not
intersect any of the sets over which 7 is defined, i.e., I[J N Q_ =
IJN(Q-UI°J°) = (. In other words, the set of components of d
and w that contribute to ¢ are independent from the components that
contribute to 7. Therefore, ¢ /n? can be arbitrarily small. As shown
next, this is not the case of alternative reconstruction problems.

Comparison with other reconstruction problems. Table 1
compares our bound for Weighted ¢;-¢; minimization (w-£1-¢1)
with bounds obtained using similar tools for other methods: ¢;-¢;
minimization [13], Modified-CS (Mod-CS) [9], and Basis Pursuit
(BP) [30]. These problems have the same format as (1), but their
objective functions are as shown in the table. In Mod-CS, I is an es-
timate of the support I of 2* and is used as prior information. Prior
information in ¢1-¢; is, as in our case, a reference signal T. Only BP
uses no prior information. Table 1 also shows where the displayed
bounds were computed. In the bound for Mod-CS, 0 < C' < 1, and
b is the sum of false negatives and false positives in the estimation
of I,ie, b := |I NI+ |I°NI|. Thus, for £1-¢1 and Mod-CS,
h and b measure the quality of the prior information: the better the
quality, the smaller & and b. This means the number of measure-
ments required by ¢1-¢; and Mod-CS is determined by the quality of
the prior information. For w-¢;-¢; minimization, however, the ratio
¢/n? can be arbitrarily small, independently of the quality of the
prior information (of course, it has to have a “minimum quality” to
satisfy the assumptions of Theorem 1; see footnote 1). Making ¢ /n*
small, however, requires selecting the weights d and w properly.
Our reweighting scheme, presented next, attempts to do exactly that.

2.2. Step 2: reweighting scheme

Algorithm 1 describes the method we propose. Its parameters are
Tmin and Tmax Which, as we will see, determine the amount by which
the bound in (5) is minimized, €¢; and €; > 0, which are used in the
estimation of the sets I and .J, and the number of iterations K. At
iteration %, the algorithm obtains an estimate x® of z* by solving
weighted ¢1-¢; minimization with weights d® and w” (step 2). Note

2http://www.ee.ucl.ac.uk/~Jmota/reLlLl.pdf

3Note that the first term of (5) is dominant for sparse signals. In particular,
it can be shown that (7/5)(h + h) + 8 < (17/5)s + 3, where s (resp. 3) is
the sparsity of 2* (resp. T). This follows from h + h = |IJ| < |I| = s and
0 <|I|+1]J] <2s+5.



Algorithm 1 Reweighted ¢;-¢; minimization

Input: A € R™*", y € R™, T € R" (prior information)
Parameters: 0 < rmin < Tmax, €1,€5 > 0, K (# iterations)
Initialization: d' = w' =1,, k=1

I: fork=1,..., K do

2: Obtain z" by solving
[ o x|, + [[w* o (z = T) |,
Ax =y

minimize
€T
subject to

300 SetI*={i:|zf|>e}and I ={i: |2} —Ti| > s}

4: fori=1,...,ndo

5 ifi € I*J* then dF' = W™ = riin

6: elseif i € 1" J°F then d*™' = rpin, W = rpax
7: elseif i € 1% J* then d"" = rpax, W™ =1
8 elseif i € 1% J%F then d* ' = wF ! = 1.

9: end if

10: end for

11: end for

that because d and w are initialized as 1,,, the first iteration is simply
£1-¢1 minimization [13]. Then, using x¥, the sets I and .J are esti-
mated via thresholding in step 3. Recall that / and J depend on the
unknown vector z*; so, we estimate them by using our current best
guess: z*.* The weights d and w for the next iteration are then com-
puted in steps 4-10. Note that they take only two values: 7max and
Tmin. This is a consequence of the way we derive the algorithm, as
explained later in the section. Although Algorithm 1 is derived with
the goal of minimizing the bound in Theorem 1, the way it updates
the weights is actually quite intuitive.

Intuition. Consider, for example, i € k gk, ie., it is estimated
that 7; # x7 # 0 (step 5). The algorithm sets the corresponding
weights d; and w; to a small value 7'min, which means that =] will
be estimated solely from the measurements y = Ax*. If, on the
other hand, i € I*J**, i, it is estimated that 7; = x} # 0, the
algorithm sets d; to a small value, to avoid penalizing large values
for ¥, and sets w; to a large value, penalizing deviations from an
apparently accurate component of Z. Similarly, if i € I®*J*, i.e.,
it is estimated that T; # x; = 0, w; is set to a small value, since
T; seems to be inaccurate, and d; is set to a large value, since x}
is likely to be zero. Finally, if i € I ek Jok je. itis estimated that
T; = x; = 0, both d; and w; are set to large values since, very likely,
x; is zero. These updates, beyond intuitive, lead to a reduction of
the number of required measurements, as shown next.

Corollary 2. Let z*,7 € R™ and A € R™*"™ be as in Theorem 1.
Consider Algorithm 1 and suppose the sets I and J are correctly
estimated at iteration K — 1, i.e, I ' = Tand JX~' = J. If the
number of measurements satisfies

Tmin 2 n 7+
mZ(m) hlog(h+h)+g(h+h)+17 (6)

then, with probability at least 1 — exp (—3(m — W)Q) Algo-
rithm I outputs x*.

4The threshold parameters € and e ; play a key role in the estimation of
I and J, and we recommend initializing them with large values and reduce
them progressively at each iteration. The reason is to reduce the chance of
misclassifying a component as belonging to one of these sets at an early stage.

Proof. The weights used at iteration /' are computed at iteration
K — 1. Hence, the last instance of w-¢1-¢1 in step 2 is solved with

di = Tamin, Wi = Tmin, foralli € IJ (7a)
di = Tmin s Wi = Tmax, foralli € 1J¢ (7b)
di = Tmax , Wi = Tmin, foralli € I°J (7¢)
di = Tmax , Wi = Tmax, foralli € I°J°,  (7d)

Note that (7b) implies IJ°K+ = () and (7c) implies [°JK_ =
(0, that is, Q+ = (0. This means the parameter ¢ in (4b) equals
Thin Dosers (38(xF) + sg(a] — Ti))? = rhiuh, where we used (3).
We also have 6 = 0 [cf. (4a)]. According to (4c) and (7b)-(7d), n
equals Tmax — Tmin if @— # (), and 27y,ax otherwise (note that,
by assumption, [°J¢ # (); see footnote 1). As a consequence, the
bound in (5) becomes

2
m> (L‘m“ ) 7 log (,h—zh) I SR

T'max 5

when Q_ # (0, and becomes (6) otherwise. Note, however, that (6)
implies (8). Therefore, whether or not  # (), all the assumptions of
Theorem 1 hold, and thus the statement of the corollary is true. [

Although this result requires the strong assumption that / and J
are correctly estimated at iteration K — 1, it shows that Algorithm 1
may reduce the number of required measurements significantly. If
Tmax > Tmin, the dominant term of (6) becomes approximately
(Trnin/Tmax) 2k log n. Thus, under the corollary’s assumptions, set-
ting "max =~ +/1og n rmin makes the number of measurements re-
quired by Algorithm 1 a constant independent of n.

Derivation of the scheme. We now explain how to arrive at
Algorithm 1. Given estimates of I and J at iteration k, we want
to find d and w minimizing the ratio ¢/n?, subject to ¢ > 0 and
n > 0 (cf. Theorem 1). Such a problem is ill-posed, as it has no
minimizer: the infimum is 0, but it can never be achieved because of
the constraints. So, rather than minimizing ¢ /5 formally, i.e., with
an optimization algorithm, we do it heuristically. In particular, we
only allow two values for the weights: 7min and rmax-.

To aid our derivation, Table 2 shows the sets involved in the
definitions of ¢ and 7, and describes how the respective compo-
nents of d and w should relate to minimize the ¢ /172. Consider,
for example, a component ¢ € [.J; it contributes g;(d;,w;) =
(d; sg(x}) 4+ w; sg(x} —;))? to ¢ and has no influence on 7. There
are two scenarios: either¢ € I Jy Ul _J_ori e I .J_UI_J4.
In the former, we have sg(z}) = sg(z] — T;), and ¢;(d;, w;) has
a unique minimizer at d; = w; = 0: g;(0,0) = 0. However, we
cannot set d; = w; = 0, since (5) is valid only for d,w > 0;
rather, we set these components to a small value, rmin > 0. When
i € I.J- UI_Ji, gi(di,w;) has an infinite set of minimizers,
{(di, w;) d; = w;}, from which we select d; = w; = Tmin
so that all the components in I.J are treated similarly; any other
choice for a common value would also work. Consider now a com-
ponent i € I.J°K: it contributes with (d; — w;)? to ¢ and the sum
d; + w;, if small enough, may define . To eliminate as many terms
as possible from ¢, we make IJ°K empty by setting d; = rmin
and w; = rmax. The same reasoning applies to the components
i € I°JK_. Making IJ°K, = I°JK_ = () has a (positive) side
effect not mentioned in Table 2: 6 in (4a) is also minimized.

Regarding the components in 7, consider ¢ € [J°K_. Such a
component has no influence on ¢. Hence, we simply want |w; — d;|
as large as possible. We achieve that by setting d; to a small value,
Tmin, and w; to a large one, rmax. Recall that K_ = {i : d; < w;};



Table 2. Derivation of the scheme. The third column shows the reasoning for minimizing ¢ /7>, the fourth the action we select.

Parameter Set Reasoning to minimize ¢ /7> Action at iteration k
¢ IJ Ifie I Jy UI_J_,setd; and w; as small as possible e T .
Ifi€ Iy J Ul Jy, setd; =w; df = Wt =
c c _ k+1 _ k+1 _
IJ°Ky Setd; < w; tomake [J°K, =0 d;"" = Tmin, W, = Tmax
I°JK_ Setd; > w; to make I°JK_ = () ¥ = e, W = g
n 1J°K_ Set d; small and w; large to make |w; — d;| large df"’l = Tmin> wiﬁ'l = Tmax
I°JK 4 Set d; large and w; small to make |w; — d;| large df+1 = Tmax, wf+1 = Tmin
I1J°K Set d; large, w; large, or both, to make d; + w; large df"’l = Tmin, wiﬁ'l = Tmax
I°JK Set d; large, w; large, or both, to make d; + w; large df+1 = Tmax>» wf+1 = Tmin
1¢Je Set d; large, w; large, or both, to make d; + w; large df'H = wf"'l = Tmax

therefore, if we had switched the roles of d; and w;, we would have
instead made /J°K_ empty. The same reasoning applies to the
components in 1°J K. Now note that because [J°K = [J°K} U
IJ°K_and I°JK = I°JK_ U I°JK, the action for the compo-
nents in I J°K and I°J K has already been determined. Namely, the
2nd and 4th lines of the table defined d; = Tmin and w; = Tmax for
the components in I J°K; and I.J°K _, thus defining the action for
all the components in IJ°K. The same applies to the components
in I1°J K (3rd and 5th lines). These actions do not conflict with our
goal of making 7 as large as possible; rather, they reinforce it, as they
align with the reasoning described in the table. Finally, the compo-
nents ¢ € 1°J° only influence 7 and, therefore, we set the respective
d; and w; as large as possible: d; = w; = rmax-.

3. EXPERIMENTAL RESULTS

To illustrate the performance of Algorithm 1, we conducted experi-
ments using synthetic data, described as follows.

Experimental setup. We generated a vector x* of size n =
1000 with s = 70 nonzero entries, whose locations were selected
uniformly at random. The values of the nonzero entries were drawn
from the standard Normal distribution A/ (0, 1). The reference T was
generated as T = x* + z, where z had sparsity 100 and a support
that intersected the support of £* in 60 locations and missed it in 40.
The nonzero entries of z were drawn from N(0, 0.8). The number of
measurements varied m from 1 to 400 and, for each m, we generated
10 different matrices A as in Theorem 1: A;; S (0,1/m).

In Algorithm 1, we set rmin = 0.1, rmax = 10, K = 15 itera-
tions, and €; and € ; were initialized with 0.5 and decreased by 10%
in each iteration. Each problem in step 2 of Algorithm 1 was solved
with ADMM. We compared Algorithm 1 with the reweighted ¢;-¢;
scheme in [20,21] and reweighted ¢; minimization [17]. Both algo-
rithms ran for K = 15 iterations as well, and while we used the same
ADMM solver for each subproblem of [20], we used SPGL1 [31]
for each subproblem of [17]. For reference, we also compared with
Mod-CS [9], which is a static algorithm, i.e., it uses no reweight-
ing, but uses an estimate of the support of 2* as prior information.
Naturally, we used the support of Z as such prior information.

Results. Fig. 1 shows the results of our experiments. The hori-
zontal axis depicts the number of measurements m, the vertical axis
the success rate over 10 different realizations of A. We consider that
an algorithm reconstructed x* successfully if the relative error of its
output Z was smaller than 0.1%, i.e., |Z — z*||2/||z*]|2 < 1073,

Rate of successful reconstruction

1.0
0.8 !
’I [20] "4 Mod-CS [9]
0.6 K /{’:
I(h+h)+1 i
‘ I A
0.4 RS o
)i ;‘tll—él minimization [13]
0.2 .
i)' {reweighted-£; [17]
0 PO R Y & Al L )
0 100 200 300 400

Number of measurements m

Fig. 1. Rate of reconstruction of Algorithm 1 and prior schemes.
The vertical line shows the minimal theoretical value of (5).

The figure shows that Algorithm 1 had the best performance, requir-
ing the least amount of measurements to reconstruct z*. The algo-
rithm in [20] had the second best performance, followed by Mod-CS,
{1-£1 minimization, and reweighted ¢; minimization. Note that ¢;-
{1 minimization corresponds to one iteration of Algorithm 1. The
plot then clearly shows that reweighting is an effective strategy to
reduce the number of required measurements: in 15 iterations, the
number of measurements required for reconstruction was reduced
from 250 to 160, a reduction of 36%. Fig. 1 also shows a vertical
line indicating the minimum theoretical value of the bound in (5),
85, obtained by ignoring the first term and considering # = 0. Since
Algorithm 1 started reconstructing 2™ using 120 measurements, this
shows that the margin for improvement is small.

4. CONCLUSIONS

We proposed a reweighted scheme for reference-based compressed
sensing, in particular, weighted ¢1-¢1 minimization. Our method
differs from prior reweighting methods for either ¢;-¢; minimiza-
tion or simple /1 minimization by minimizing a sample complexity
bound in each iteration. The resulting scheme is simple, intuitive,
and shows excellent performance in practice. Possible research di-
rections include understanding how the parameters of the algorithm
affect its performance, and whether the sample complexity bound
can be used to derive a stopping criterion.
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