
EFFICIENT METHODS FOR POINT MATCHING WITH KNOWN CAMERA ORIENTATION

João F. C. Mota, Pedro M. Q. Aguiar

Institute for Systems and Robotics / IST, Lisboa, Portugal
{jmota,aguiar}@isr.ist.utl.pt

ABSTRACT

The vast majority of methods that successfully recover 3D structure
from 2D images hinge on a preliminary identification of correspond-
ing feature points. When the images capture close views, e.g., in a
video sequence, corresponding points can be found by using local
pattern matching methods. However, to better constrain the 3D in-
ference problem, the views must be far apart, leading to challeng-
ing point matching problems. In the recent past, researchers have
then dealt with the combinatorial explosion that arises when search-
ing among N ! possible ways of matching N points. In this paper
we overcome this search by making use of prior knowledge that is
available in many situations: the orientation of the camera. This
knowledge enables us to deriveO(N2) algorithms to compute point
correspondences. We prove that our approach computes the correct
solution when dealing with noiseless data and derive an heuristic that
results robust to the measurement noise and the uncertainty in prior
knowledge. Although we model the camera using orthography, our
experiments illustrate that our method is able to deal with violations,
including the perspective effects of general real images.

Index Terms— Stereo vision, Image matching, Image registra-
tion, Permutations, Image sequence analysis

1. INTRODUCTION

Methods that infer three-dimensional (3D) information about the
world from two-dimensional (2D) projections, available as ordinary
images, find applications in several fields, e.g., digital video, virtual
reality, and robotics, motivating the attention of the image analysis
community. Using single image brightness cues, such as shading
and defocus, researchers have proposed methods that work in highly
controlled environments, like laboratories, but result sensitive to the
noise and unable to deal with more general scenarios. As a result, the
effort of the past decades was mainly on the exploitation of a much
stronger cue: the motion of the brightness pattern between images.
In fact, the image projections of objects at different depths move dif-
ferently, unambiguously capturing the 3D shape of the scene. This
lead to the so-called 3D Structure-from-Motion (SfM) methods.

SfM splits the problem into two separate steps: i) 2D motion es-
timation, from the images; ii) inference of 3D structure (3D motion
of the camera and 3D shape of the scene), from 2D motion. Usually,
the 3D shape of the scene is represented in a sparse way, by a set of
pointwise features, thus the 2D motion is represented by the corre-
sponding set of trajectories of image point projections. When deal-
ing with video sequences, consecutive images correspond to close
views, and those trajectories can be obtained through tracking, i.e.,
by using local motion estimation techniques. However, since very
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distinct viewpoints are required to better constrain the 3D inference
problem, in many situations, there is the need to process a single pair
of distant views. In this scenario, the 2D motion estimation step i),
i.e., the problem of matching pointwise features across views, be-
comes very hard and, in fact, the bottleneck of SfM (step ii) has
been extensively studied and efficient methods are available [1]).

Researchers have then addressed the problem of computing
point correspondences in a global way, by incorporating the knowl-
edge that the feature points belong to a 3D rigid object. However,
the space of correspondences to search grows extremely fast: con-
sidering N feature points, there exist N ! ways to match them. Due
to this combinatorial explosion, only sub-optimal methods have
been proposed to solve the problem, see, e.g., [2], for an iterative ap-
proach that strongly depends on the initialization. Curiously, in the
simpler scenario of dealing with noisy observations of geometrically
equal point clouds, the optimal solution can be efficiently obtained
as the solution of a convex problem [3]. The challenge in SfM is
that the point clouds from which we must infer the correspondences
have distinct shape because they are different 2D projections of the
(unknown) 3D shape.

In this paper, we overcome the difficulty pointed out in the pre-
vious paragraph by using as prior knowledge the orientation of the
camera. In fact, in many situations, that knowledge is available from
camera calibration or can be computed without using feature points
and their correspondences. For example, in scenarios where many
edges are aligned with three orthogonal directions, e.g., indoor or
outdoor urban scenes, the orientation of the camera can be reliably
obtained from the vanishing lines of a single image, see, e.g., [1], or
even directly from the statistics of the image intensities [4]. We show
how the knowledge of camera orientation simplifies the problem, en-
abling us to derive an algorithm of complexity O(N2). We prove
that this algorithm computes the optimal set of correspondences for
the orthographic camera projection model in a noiseless scenario and
propose a modified version that results robust to uncertain measure-
ments and violations of orthography.

2. PROBLEM FORMULATION

Consider the scenario of Fig 1, where two cameras C1 and C2 (or,
equivalently, the same camera in two different positions) capture two
different views of the world. As usual when recovering SfM, we
assume that a set of N feature points was extracted from each of the
images, and their coordinates in the image plane are represented by
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where the superscript (i) indexes the points to Ci, for i = 1, 2. Each
feature point has 3D coordinates (Xn, Yn, Zn), with respect to some
fixed coordinate frame. Let that frame be attached to C1 such that:



1) the axes X and Y are parallel to the axes x′ and y′ of the cam-
era frame; 2) the optical center of the camera C1 is aligned with
the axis Z (see Fig. 1). The major challenge when attempting to
recover {(Xn, Yn, Zn), n = 1, . . . , N} from I1 and I2 is the corre-
spondence problem. In fact, we do not know the pairwise correspon-
dences between the columns of I1 and I2 in (1) because there is not
a “natural” way to automatically order the feature point projections.
Although estimating this ordering leads to a combinatorial problem
whose solution, in general, becomes a quagmire for large N , we
show in this paper that, when the relative orientation of the cameras
is known and the perspective projection is well approximated by the
orthographic projection model, an efficient solution can be found.
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Fig. 1. Our scenario, with a choice for the reference frame.

Consider the orthographic model of a camera [1]: x = PX,
where X ∈ P3 and x ∈ P2 are, respectively, the homogeneous
coordinates of the points in space and in the image plane. The ma-
trix P ∈ R3×4 is given by

P =

[
R t
0T
3 1

]
, (2)

whereR ∈ R2×3 contains the first two rows of a 3D rotation matrix,
t ∈ R2 is a translation vector and 03 is the zero vector in R3. With
the choice of reference frame of the previous paragraph, it is straight-
forward to see that camera C1 captures the first two coordinates of
the feature points, i.e., that (x

(1)
n , y

(1)
n ) = (Xn, Yn), n = 1, . . . , N .

Naturally, camera C2 captures projections that depend on the rela-
tive position of the cameras, the 3D coordinates of the points, and
their correspondences:

[
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where 1N ∈ RN has all its entries equal to 1, and Π ∈ RN×N

is a permutation matrix, i.e., a matrix with exactly one entry equal
to 1 per row and per column and the remaining entries equal to 0
(when we multiply a matrix M by Π, we get a matrix with the same
columns of M but arranged in a possibly different order).

By using (3), we obtain the model relating the projections of the
feature points in images I1 and I2 with all the unknowns:

I2 =
[
R̂I1 + r̂ZT + t1T

N

]
Π, (4)

where Z = [Z1, Z2, . . . , ZN ]T and R was decomposed as R =

[R̂, r̂], with R̂ ∈ R2×2 and r̂ ∈ R2×1. When the relative orientation
of the cameras is known (which, as discussed in the previous section,

occurs in several practical situations), i.e., when R̂ and r̂ are known,
the problem becomes to find a permutation matrix Π, a set of 3D
point depths {Z1, . . . , ZN}, and a translation vector t that solve (4).
In general, the problem is hard due to the huge cardinality of the set
of all N ×N permutation matrices: N !.

3. CLOSED-FORM SOLUTION FOR TRANSLATION

The choice of the reference frame in the previous section leaves one
degree of freedom: we can place the frame at any point along the
axis Z. We now choose this position in such a way that the problem
is simplified: let it be such that

∑N
n=1 Zn = 1T

NZ = 0, i.e., that the
plane XY contains the center of mass of the feature points.

Multiplying both sides of (4) by 1N and simplifying, we get

I21N =
[
R̂I1 + r̂ZT + t1T

N

]
1N (5)

= R̂I11N +Nt. (6)

where (5) uses the fact that Π 1N = 1N (permutation of a vector
with all equal entries) and (6) uses equalities ZT 1N = 0 (from the
choice of reference frame) and 1T

N 1N = N . From (6), we see that
the solution for the translation vector t does not depend on the re-
maining unknowns (Π, Z):

t =
1

N

(
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)
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By removing the (now known) translation from the problem, i.e.,
by replacing the solution (7) in (4) (and using 1T

N Π = 1T
N ), we get
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To simplify notation, we re-define our observations by introducing
matrices Ĩ1 and Ĩ2, both computed from known data:

Ĩ2 := I2 −
1

N

(
I2 − R̂I1

)
1N 1T

N , Ĩ1 := R̂I1. (9)

With these definitions, problem (4) is re-written as

Ĩ2 =
[
Ĩ1 + r̂ZT

]
Π, (10)

where the unknowns are the depths Z1, . . . , ZN , in Z, and the cor-
respondences, coded by Π.

4. OPTIMAL SOLUTION FOR NOISELESS DATA

We first present an efficient algorithm to compute the solution to our
problem when there is no noise, meaning that there exists at least
one pair (Z,Π) that solves (10).

Naturally, the solution for the permutation matrix Π is given by
the association of each column of Ĩ1 with a column of Ĩ2, for the
correct value of Z. Let column n of Ĩ1 (resp. Ĩ2) be represented
by [X̃n, Ỹn]T (resp. [x̃n, ỹn]T ) and consider the error Eij of associ-
ating column j of Ĩ1 with column i of Ĩ2, i.e.,

Eij = min
Zj

[
x̃i − X̃j − r̂1Zj

]2
+
[
ỹi − Ỹj − r̂2Zj

]2
, (11)

where r̂ = [r̂1, r̂2]T . The minimizer Z∗j solving (11) is straightfor-
wardly obtained in closed-form:

Z∗j =
r̂1(x̃i − X̃j) + r̂2(ỹi − Ỹj)

‖r̂‖2 . (12)



Our algorithm, detailed and analyzed in the sequel, computes
for each column i of Ĩ2, the column j∗ of Ĩ1 that minimizes error
Eij∗ (11) (without noise, for each i there exists at least one j∗ such
that Eij∗ = 0). In the algorithm description below, the N ×N per-
mutation matrix Π is simply parameterized by aN×1 vector perm:
the jth column of Π has entry permj equal to 1 (and, obviously,
the others equal to zero); also, |S| denotes the cardinality of set S
and S1\S2 the set of elements of S1 that do not belong to S2.

Algorithm 1.
Inputs Matrices Ĩ1 and Ĩ2, organized into the corresponding sets

of columns B1 = {[X̃1, Ỹ1]T , . . . , [X̃N , ỸN ]T } and A ={
[x̃1, ỹ1]T , . . . , [x̃N , ỹN ]T

}
, and vector r̂.

Procedure For i = 1, . . . , N (N = |A|)

• For all j = 1, . . . , |Bi|, compute Z∗j (12) andEij (11);

• j∗ = arg minj Eij;

• permj∗ = i, Zj∗ = Z∗j∗ ;

• Bi+1 = Bi\[X̃j∗ , Ỹj∗ ]
T .

Outputs Vectors perm and Z.

Algorithm 1 consists of N loops where, in each loop, a column
of Ĩ2 is assigned to a column of Ĩ1. Each assignment requires a
search over, at most, N possibilities. It is then clear that our algo-
rithm has complexity of O(N2), in particular, we obtain the total
number of floating point operations (flops) as 7N2 + 7N − 14. Be-
fore proving optimality of Algorithm 1, we interpret it in a geometric
way. Defining the “displacement” as aij := [x̃i−X̃j , ỹi− Ỹj ]T , the
cost to be minimized in (11) can be rewritten as ‖aij − Zj r̂‖2. So,
for each column [x̃i, ỹi]

T of Ĩ2, our algorithm searches the column
[X̃j , Ỹj ]T of Ĩ1 that minimizes ‖aij −Zj r̂‖2 for all possible values
of Zj . Since this expression achieves its minimum (zero) when aij

is collinear with r̂ (which we synthetically denote by aij//r̂), Al-
gorithm 1 assigns pairs of columns such that their difference is “as
parallel as possible” to r̂. This collinearity is a re-statement of the
fact that the trajectories of image projections of a rigid scene can be
represented in a rank 1 matrix [5].

Theorem 1 (Optimality of Algorithm 1). If there exists at least one
pair (Z,Π), such that (10) holds, then the outputs of Algorithm 1
determine a pair (Z̄, Π̄) that that solves (10).

Proof. Suppose the pair (Z∗,Π∗) is such that (10) holds. For each
i = 1, . . . , N , there exists one and only one k such that

Π∗ki = 1 (13)

(because Π∗ is a permutation matrix). We now denote by j∗(i) the
assignment produced by Algorithm 1, i.e., we make explicit the de-
pendence of j∗ on i. Obviously, if j∗(i) = k for all i = 1, . . . , N ,
then the algorithm returned an optimal solution. So, for the remain-
ing of the proof, we assume there is an index i such that j∗(i) 6= k.
We will see that, even in this case, (10) holds for the solution pro-
vided by the algorithm, because Eij∗(i) = 0, for all i.

A simple way to complete the proof is using contradiction.
Assume i is the smallest index such that Eij∗(i) > 0 (obvi-
ously j∗(i) 6= k). If Eij∗(i) > 0, then [X̃k, Ỹk]T 6∈ Bi (at the ith
loop). Thus, there exists 1 ≤ l < i such that [x̃l, ỹl]

T //[X̃k, Ỹk]T

(because Elj∗(l) = 0 for all 1 ≤ l < i). According to the
assignment defined by (13), we have [X̃k, Ỹk]T //[x̃i, ỹi]

T , thus
[x̃l, ỹl]

T //[x̃i, ỹi]
T . Also, since Π∗ is a permutation matrix, there

exists an index m = 1, . . . , N , such that Π∗ml = 1, or, equivalently,
such that [X̃m, Ỹm]T //[x̃l, ỹl]

T , thus, [X̃m, Ỹm]T //[x̃i, ỹi]
T .

We now consider two cases: 1) if [X̃m, Ỹm]T ∈ Bi, there is
a contradiction because Eim = 0; 2) if [X̃m, Ỹm]T 6∈ Bi, it
is straightforward to find a vector [X̃m′ , Ỹm′ ]

T ∈ Bi such that
[X̃m′ , Ỹm′ ]

T //[x̃i, ỹi]
T , by performing steps like the ones above,

which brings us back to case 1).

5. APPROXIMATE SOLUTION FOR NOISY DATA

In practice, not only the knowledge of the camera orientation is un-
certain but also the feature point projections are noisy. Since Algo-
rithm 1 is based on the collinearity of a vector that depends on the
camera orientation (r̂) with vectors that depend on the feature point
projections ([x̃i − X̃j , ỹi − Ỹj ]T ), its behavior is sensitive to distur-
bances affecting these vectors. We now propose a modification of
this algorithm, which results robust not only to the noise but also to
violations of the orthogaphic projection model.

From model (10) we note that the clouds of points in Ĩ1 and Ĩ2
differ by r̂ZT . Since r̂ contains entries of a rotation matrix, i.e., en-
tries with magnitude smaller than 1, in practice, the patterns of points
in Ĩ1 and Ĩ2 will almost coincide when the depth of the scene is not
too large (more rigorously, when r̂ZT is negligible if compared to
the minimum distance between points), even if the corresponding
points in I1 and I2 are very distant (see an insightful example in
Fig. 4). This motivated us use the matching criterion of minimizing
the Euclidean distance between points in Ĩ1 and Ĩ2,

E′ij =

∥∥∥∥[xi

yi

]
−
[
Xj

Yj

]∥∥∥∥2

, (14)

rather than the less robust collinearity (11).

Algorithm 2.
Inputs Matrices Ĩ1 and Ĩ2, organized into the corresponding sets

of columns B1 = {[X̃1, Ỹ1]T , . . . , [X̃N , ỸN ]T } and A ={
[x̃1, ỹ1]T , . . . , [x̃N , ỹN ]T

}
, and vector r̂.

Procedure For i = 1, . . . , N (N = |A|)
• For all j = 1, . . . , |Bi|, compute E′ij (14);
• j∗ = arg minj E

′
ij;

• permj∗ = i, Zj∗ = Z∗j∗ (12);

• Bi+1 = Bi\[X̃j∗ , Ỹj∗ ]
T .

Outputs Vectors perm and Z.

Our experiments, some of them singled out in the following sec-
tion, demonstrate that Algorithm 2 successfully infers correct fea-
ture point correspondences when dealing with real images. In spite
of correctly determining correspondences, the accuracy of the depth
estimates in Z strongly depend on the magnitude of the components
of r̂. In fact, assuming the correspondences are known, for example,
Π = IN×N (for simplicity), model (10) becomes Ĩ2 − Ĩ1 = r̂ZT ,
making clear that the accuracy in the estimation of Z depends not
only on the accuracy of the measurements (Ĩ1, Ĩ2, r̂) but also on the
magnitude of the components of r̂. In particular, we obtain an upper-
bound for the depth estimation error as ρZ = max |Ĩ2−Ĩ1|/min |r̂|.
Naturally, when ρZ is large, we can still use our algorithm to es-
timate the correspondences between the feature points (in general,
the bottleneck of the problem), which are not affected by ρZ , and
then use a standard algorithm to recover SfM from known correspon-
dences, eventually using a larger set of images to reduce ambiguity,
see, e.g., [1].



6. EXPERIMENTS

To test the algorithms with ground truth, we synthesized data. In
particular, we generated the 3D world as a set of 50 points ran-
domly distributed in [−200, 200]3 and relative orientations between
the cameras by specifying random rotation matrices. Then, we syn-
thesized measurements according to the model in expression (3), for
random permutation matrices. As expected, according to our the-
oretical derivation of Section 4, Algorithm 1 always produced the
correct result: it successfully recovered the permutation, i.e., the
correct correspondences between the points, and their depth. To test
robustness to disturbances, we then run experiments by considering
inaccurate knowledge of camera orientation and noisy feature point
projections. As anticipated in Section 5, we observed that Algo-
rithm 2 results more robust than Algorithm 1. The plot in Fig. 2
illustrates this point by showing the average number of wrong corre-
spondences as functions of the (white Gaussian) measurement noise
standard deviation (st.dv.). Note that, even for noise st.dv. of 5 pixels,
Algorithm 2 almost always recovers totally correct correspondences.
In what respects to depth estimation accuracy, the magnitudes of the
errors were smaller than the magnitudes of the measurement noise.

Fig. 2. Number of incorrect correspondences as functions of the
observation noise power (mean over 1000 runs).

We tested our algorithms with real images. Two examples are
shown in Fig. 3, which contains the two pairs of images with feature
points superimposed. Note that, in both examples, corresponding
features are far from being close to each other, preventing thus the
usage of “local” methods. We used standard calibration techniques
to compute camera orientation [6] and then run our algorithms. The
plots in Fig. 4 provide insight over our approach: while the fea-
ture point projections of corresponding features in I1 and I2 are in
general far apart, their “version" in Ĩ1 and Ĩ2 are close. As a conse-
quence, Algorithm 2 recovered the correct correspondences in both
cases. We emphasize that these examples strongly depart from the
assumed orthographic projection, see the perspective effects between
the pairs of images in Fig. 3, thus, that our approach is able to deal
with a wide range of real life scenarios.

7. CONCLUSION

We proposed efficient algorithms for finding, simultaneously, the
correspondences between points in two images and their depth in
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Fig. 3. Two pairs of real images with feature points superimposed.

Fig. 4. Left: feature point coordinates in I1 and I2, extracted from
the pair of images in the top of Fig. 3 (the blue circles are from the
left image and the red crosses from the right one). Right: corre-
sponding entries of Ĩ1 and Ĩ2, computed from known data, see (9).

the 3D world. Our approach is based on the facts that, in many sit-
uations, the relative orientation of the cameras is available, or can
be easily inferred, and the camera model can be approximated by an
orthographic projection. The resulting complexity is O(N2), where
N is the number of feature points (compare with N !, the number
of possible correspondences). We prove the optimality of a first al-
gorithm when dealing with noiseless data and develop a modified
version that results more robust to uncertainty in the measurements.
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